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Abstract – A comparative investigation of high-performance PML ab-
sorbers for the termination of 2-D nonlinear photonic bandgap (PBG) 
waveguides, analyzed by the FDTD method, is conducted. Third-order 
nonlinear materials are considered, whereas existing effective permittiv-
ity schemes are properly implemented for the modeling of circular inter-
faces between linear and nonlinear media. 
 

INTRODUCTION 
 

The numerical modeling of photonic bandgap materials 
has recently been a point of interest, due to their ability to 
control wave propagation at frequencies varying between 
microwave and optical [1]. However, structures mainly con-
sisting of linear media have been analyzed so far. 

In this paper, an attempt is made to extend the implemen-
tation of the FDTD method to photonic crystals comprising 
nonlinear materials. Specifically, utilizing a simple and accu-
rate Z-transform based technique [2] for the simulation of the 
nonlinear media, various PML configurations (proper combi-
nation of nonlinear [3] and photonic crystal-based [4] PMLs) 
for the truncation of the waveguide are tested. The 2-D struc-
ture that is being studied consists of a periodic square lattice 
of air circles embedded in a nonlinear material (Fig. 1). The 
dielectric constants at the interfaces created between the air 
and the nonlinear material are computed via various effective 
permittivity schemes [5]. 

 
FDTD FORMULATION OF THE NONLINEAR MATERIAL 

 

The simulation of the nonlinear material is based on the 
following variation of the electric field constitutive equation 
 NLPDE −=∞εε 0 , (1) 
the nonlinear electric field polarization, PNL, being given by 
the convolution integral 
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where delta function, δ(t), represents the Kerr effect and 
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man scattering. Implementation of Z-transform in (2) converts 
the convolution to multiplication and allows the direct calcu-
lation of the nonlinear polarization. The final equations, thus, 
derived from (1) and (2) are 
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which, along with Maxwell’s curl equations in finite differ-
ence notation, constitute the solution algorithm. 

 
NONLINEAR PML ABSORBERS 

 

The truncation of the waveguide is performed by means 
of, properly matched to the nonlinear material, PML absorb-

ers, the common basis of which is the standard (homogene-
ous) nonlinear PML. For the realization of the latter, conduc-
tivities related to the electric field displacement are intro-
duced instead of the usual electric field conductivities. More-
over, the modified in stretched coordinates Maxwell’s curl 
equations in frequency domain are the update equations in-
side the PML. The complex numbers sx, sy are assumed to be 
of the form 
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where σm is constant, k = x, y and n=4. 

The absorbing configurations compared in this paper are 
the homogeneous nonlinear PML and other inhomogeneous 
ones, in which the periodic pattern of the waveguide is re-
tained inside the PML layers. Thus, not only the impedances 
but the wave numbers as well, are matched at the boundaries. 

 
RESULTS 

 

The structure under test is a PBG waveguide formed by 
appropriately removing a row of circles from the initial peri-
odic lattice (defect). It is excited by a TM modulated Gaus-
sian pulse which propagates along the defect, as illustrated in 
Fig. 1. Fig. 2 depicts the relative error computed along a line 
transverse to the propagation direction, which lies inside the 
waveguide, 10 cells away from the PML. As expected, the 
preservation of the structure’s periodic pattern inside the ab-
sorbing medium significantly increases its performance. 
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 Fig. 1. Propagation along the defect.         Fig. 2. Local relative error (%). 
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