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Abstract—The efficient construction of reflectionless PML’s
in 3-D curvilinear coordinates via a new higher-order FDTD
methodology, is presented in this paper. By accurately treating
the div-curl problem, the technique introduces a higher-order
rendition of the covariant/contravariant vector theory with
generalized conventional and nonstandard schemes. Moreover, a
mesh expansion algorithm decreases the absorbers’ thickness. In
the time domain, the four-stage Runge–Kutta integrator is also
invoked, while the wider spatial stencils are effectively limited by
self-adaptive compact operators. Numerical verification indicates
that the novel PML’s offer a serious suppression of dispersion
errors and significant savings in the computational burden.

Index Terms—Curvilinear nonorthogonal coordinates, FDTD
methods, higher-order schemes, perfectly matched layers.

I. INTRODUCTION

T HE CONSISTENT modeling of arbitrarily curved ge-
ometries in general curvilinear coordinates, via body-con-

formed FDTD mapping and the constantly developing perfectly
matched layer (PML) [1]–[5], is being intensively investigated
[6]. Lately, various efficient methods extended the versatility
of the absorber to curvilinear grids. In [7], [8] split-field PML’s
are derived, while [9] introduces an unsplit medium involving
nonorthogonal discretization. The application of uniaxial
PML’s to conformal FDTD meshes is investigated in [10] and
in [11], a Maxwellian well-posed sponge layer, for the three
coordinate systems, is thoroughly presented.

It is the objective of this paper to introduce a novel fully
nonorthogonal higher-order FDTD technique—founded on ad-
vanced conventional and nonstandard concepts—for the con-
struction of 3-D curvilinear PML’s. Its essential premise is field
representation via a modified higher-order covariant and con-
travariant strategy (Fig. 1) that stems from an efficient solu-
tion of the strenuous div-curl problem on an unstructured mesh.
Apart from the leapfrog process, the Runge–Kutta operators are
alternatively utilized, while new self-adaptive compact opera-
tors treat the widened spatial stencils. Hence, reduced disper-
sion and lattice reflection errors are obtained and the grid more
easily copes with the rapidly increasing PML losses. To achieve
improved attenuation, the layers are backed by lossy absorbing
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Fig. 1. A nonorthogonal curvilinear lattice with its covariant components.

boundary conditions (ABC’s). Furthermore, a curvilinear mesh
expansion approach provides larger cell sizes for a specific ac-
curacy level. Numerical evaluation examines PML behavior as
a function of distance from the scatterer, the convergence prop-
erties with respect to lattice resolution and the evolution of dif-
ferent error norms.

II. HIGHER-ORDERNONORTHOGONALFDTD SCHEMES

The primary attribute of the new FDTD methodology are the
higher-order nonstandard concepts, which approximate the spa-
tial and temporal derivatives. Therefore, we introduce

where is a variable of the general coordinate system
and the 3-D nonstandard operator

(1)

The correction function in (1), minimizes derivative ap-
proximation errors and significantly improves dispersion and
dissipation characteristics. A possible selection could be

such that
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Fig. 2. Graphical depiction of the curvilinear finite-difference operators. The
numbers at the faces indicate the sign of summation in the expressions.

is fulfilled with denoting the wave number. To perform a
highly accurate transition to the discretized space,operators
for , 2, 3, are cast on the following form which completely
exploits the geometry of the elementary cell, as in Fig. 2

(2)

(3)

(4)

in which only the respective stencils toward are indi-
cated. Equivalently crucial, also, are theparameters as they
ensure stability and well-posedness. Thus, we derive

(5a)

(5b)

with and functions given by

while coefficients are expressed via the wave number, as

Temporal derivatives in Maxwell’s equations are computed
by means of the properly rearranged nonstandard formula

(6)

where denotes third-order time differentiation and
is the respective correction function. For time integration (apart
from the leapfrog scheme) the fourth-stage Runge–Kutta inte-
grator, which staggers field variables in space but not in time, is
also utilized. Its general form is

(7)

in which is the spatial discretization matrix and the order
of the integrator. Among the various operators of (7), the fourth-
stage seems to be ideal for our higher-order FDTD technique.
It is conditionally stable and is not affected by compact differ-
encing. The above form is proven to be 1.4 times more efficient
than the respective leapfrog scheme. This increase in perfor-
mance is attained at the expense of storage requirements. There-
fore, the selection of the appropriate time procedure must be a
compromise between different factors.

Another important feature of the higher-order curvilinear
FDTD concepts, which can sometimes render their utilization
prohibitive, is the inevitably widened spatial stencil in the
vicinity of perfectly conducting interfaces and absorbing walls.
What is apparent in second-order techniques (like the Yee
algorithm) where discontinuities are precisely simulated, is
not adequate when dealing with higher-order formulae. The
stencil of such forms extends at least two nodes on either side
of a specific lattice point at which the unknown quantity is
defined. Thus, when we reach these areas, problems arise. To
circumvent them, we present a general class of self-adaptive
compact operators that ensure the meticulous modeling of
complex problems and can be expressed via the relation

where and are unknown coefficients. Their
values for the fourth-order operator are , ,

and , with an error .

III. FORMULATION OF THE DIV-CURL PROBLEM

The numerical consistency of Maxwell’s equations in curvi-
linear coordinates depends on the choice of the proper basis
on which field quantities are expressed [12]–[14]. An incor-
rect selection may generate the erroneous Cristoffel symbols.
Since the FDTD technique is not an exception to this rule, we
will develop a new algorithm for the solution of the curvilinear
div-curl problem which is a hyperset of Maxwell’s equations.
The scheme uses a fully conservative higher-order approach of
the covariant and contravariant vector component theory and
considers all metric terms.

Let us describe our domain by a general nonorthogonal
curvilinear coordinate system , smooth enough so that
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any vector can be decomposed in terms of the contravariant
or the covariant linear base system as

with superscripts and subscripts denoting the contravariant and
covariant components. The metrics of the coordinates
are defined by , and

with a cyclic permutation of . Hence,
the curl of vector can be computed

Approximation of the derivatives, yields an accurate
higher-order curvilinear curl operator which is then ap-
plied to Maxwell’s equations. For example, the nonstandard
Ampere’s law is shown in (8)

(8)

In this expression, are the electric losses andposindicates the
positions of or unknown
covariant components (Fig. 1). By substituting the appropriate
metric coefficients in these generalized curl equations we can
derive the FDTD formulae in any coordinate system.

Therefore, the curvilinear div-curl problem which searches a
vector that its curl and divergence are known, may now be ef-
ficiently treated. By using a Helmholtz-type decomposition, we
can compute the desired electric or magnetic field via the pro-
jection of the curl onto the space of divergence-free vectors [15].
This is the purpose of the unknown quantities in (8). Finally, for

, the stability criterion becomes

(9)

IV. DERIVATION OF THE NOVEL CURVILINEAR PMLS

The new FDTD technique is now used for the construction of
higher-order (HO) curvilinear PML’s. It should be stated, that
our algorithm has been applied to all existing curvilinear PML
methods [7]–[11] in order to improve their absorption, as we
will observed from the numerical results section.

Fig. 3. The geometry of the PML and the mesh expansion procedure.

In the light of their theoretical background, we will inves-
tigate the two most complicated formulations. The rest of the
techniques are analogously implemented. In the first one, we
derive the nonorthogonal version of a 2-D TE split-field ab-
sorber. By resolving the magnetic field into two subcomponents,

, the nonstandard FDTD expressions for both the
fields in the interior of the layer, which spans between ,
can be cast on the form of

(10)

(11)

(12)

(13)

with and .
The second case examines the development of a HO unsplit

PML in spherical coordinates. The entire space is divided into
two parts, as shown in Fig. 3: volume which is a sphere of
radius and volume extending from to infinity that must
be truncated. The primary goal is to find the proper scaling argu-
ments which will introduce the desired anisotropy in the PML
without the need of field splitting. For example, the nonstandard
FDTD -component is given by

where is the covariant of and , .
The number of layers can be adequately decreased via a

curvilinear mesh expansion technique, according to which the
FDTD cell is successively growing in the PML region (Fig. 3).
If is the expansion factor then, spatial steps grow as

. A care-
fully selected leads to the suppression of spurious reflections
due to the inability of highest frequencies to propagate through
the largest cells. Finally, PML’s are backed by a lossy version
of Bayliss–Turkel (BT) and Engquist–Majda (EM) ABC’s, for
an additional reduction of lattice errors.
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Fig. 4. The variation of global error versus time for various PML schemes.

Fig. 5. Convergence of the reflection property for different PML techniques.

V. CONCLUSIONS

The absorption of the proposed PML’s and all of the curved
boundary models are validated via diverse simulations. Since
the FDTD method hosts a linear mapping to such problems in
respect to memory and CPU requirements, it is apparent that any
endeavor regarding grid minimization is of crucial importance
as far as efficacy and system resources are concerned. The first
problem involves scattering in a 3-D free space. It contains a
centered spherical scatterer of radius , illumi-
nated by a magnetic source in

(14)
Reflection errors are computed at the plane. Their

definition is the standard one used in the literature (not nor-
malized) and their units are (A/m)for the global and A/m for
the local error, respectively. We take nsec. Due to HO
schemes, spatial increments are further increased, thus making
the mesh variant and very flexible, while the self-adaptive com-
pact operators receive a lossy formulation.

Fig. 6. The variation of maximum error vs. distance from the scatterer.

Fig. 7. The behavior of maximum error vs. distance from the scatterer.

In Fig. 4, the variation of the global error proves that the non-
standard HO PML’s outperform their second-order counterparts
even with a fairly coarse grid. We also calculate , for

, on a sequence of grids generated by a successive
refinement of their spatial step. Fig. 5 shows the convergence of
the reflection property. A promising improvement is achieved
by our method combined with the BT or 2nd EM ABC’s. Next,
the behavior of the existing PML techniques, enhanced by our
methodology, is investigated.

In Figs. 6 and 7, the maximum error as a
function of the distance from the scatterer, is presented. Again,
we conclude that the HO PML’s exhibit the best performance.
Also, the proper value of the expansion factor (as an additional
degree of freedom) plays a significant role in the attainment
of high attenuation rates and accuracy levels. Finally, an
off-centered electric dipole is studied and the evolution of
the -component is shown in Fig. 8. The full absence of
nonphysical boundary reflections is evident.

VI. CONCLUSIONS

A novel class of accurate higher-order curvilinear PML’s
based on conventional and nonstandard FDTD concepts, has
been presented, in this paper. Self-adaptive compact operators



916 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

Fig. 8. The evolution ofEEE field r-component via an HO 6-cell PML.

along with general Runge–Kutta integrators are utilized for
the efficient treatment of any structural peculiarities. The
essential strength of the proposed methodology focuses on
their ability to introduce additional attenuation terms along new
directions in the medium and the significantly lower dispersion
or anisotropy errors. Hence, they require fewer points per
wavelength (1/300 that of the Yee algorithm), namely larger
spatial cell sizes given a constant error level.

REFERENCES

[1] J.-P. Berenger,IEEE Trans. Antennas Propagat., vol. 45, no. 3, pp.
466–473, Mar. 1997.

[2] W. C. Chew and W. H. Weedon,Microwave Opt. Technol. Lett., vol. 7,
no. 13, pp. 599–604, Sept. 1994.

[3] C. M. Rappaport,IEEE Trans. Magn., vol. 32, no. 3, pp. 968–974, May
1996.

[4] L. Zhao and A. C. Cangellaris,IEEE Microwave Guided Wave Lett., vol.
6, no. 5, pp. 209–211, May 1996.

[5] N. Harada and M. Hano,IEEE Microwave Guided Wave Lett., vol. 7, no.
7, pp. 335–337, July 1997.

[6] A. Taflove, Ed.,Advances in Computational Electrodynamics: The Fi-
nite-Difference Time-Domain Method. Boston: Artech House, 1998.

[7] F. L. Teixeira and W. C. Chew,IEEE Microwave Guided Wave Lett., vol.
7, no. 9, pp. 285–287, Sept. 1997.

[8] F. Collino and P. Monk,SIAM J. Sci. Comp., vol. 19, pp. 2061–2090,
Sept. 1998.

[9] J. A. Roden and S. D. Gedney,Microwave Opt. Technol. Lett., vol. 14,
no. 2, pp. 71–75, 1997.

[10] K.-P. Hwang and J.-M. Jin,IEEE Microwave Guided Wave Lett., vol. 9,
no. 4, pp. 137–139, Apr. 1999.

[11] P. G. Petropoulos, SIAM J. Appl. Math., submitted for publication.
[12] J. Fang, “Time Domain Finite Difference Computation for Maxwell’s

Equations,” Ph.D. thesis, Univ. of California, Berkeley, CA, 1989.
[13] J. B. Cole,IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp.

2053–2058, Sept. 1995.
[14] R. Schuhmann and T. Weiland,IEEE Trans. Magn., vol. 34, no. 5, pp.

2751–2754, Sept. 1998.
[15] N. V. Kantartzis and T. D. Tsiboukis,IEEE Trans. Magn., vol. 34, no. 5,

pp. 2736–2739, Sept. 1998.


