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Abstract—The efficient construction of reflectionless PML's "
in 3-D curvilinear coordinates via a new higher-order FDTD 3~("Jf1;’f.+1>,{

methodology, is presented in this paper. By accurately treating Primary grid g LD
the div-curl problem, the technique introduces a higher-order e /,oh:‘ o
rendition of the covariant/contravariant vector theory with Ry iy | 3L

generalized conventional and nonstandard schemes. Moreover, a
mesh expansion algorithm decreases the absorbers’ thickness. In 3,7kt 1)
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the time domain, the four-stage Runge—Kutta integrator is also !
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invoked, while the wider spatial stencils are effectively limited by o gijaeny B /“/‘h3 HLALE
self-adaptive compact operators. Numerical verification indicates . o LA b T
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that the novel PML's offer a serious suppression of dispersion

errors and significant savings in the computational burden. Secondary grid
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Fig. 1. A nonorthogonal curvilinear lattice with its covariant components.
|. INTRODUCTION
. oo ndar nditions (ABC'’s). Furthermor rvilinear mesh
HE CONSISTENT modeling of arbitrarily curved ge_bguagggncg drtogci( roﬁdse)s Ialljr te?cel(ljsei,zgscgoraseaecifi::az\c
ometries in general curvilinear coordinates, via body-coﬁ- P P P 9 P

formed FDTD mapping and the constantly developing perfect?uracy_level. l\_IumencaI evaluation examines PML behavior as
matched layer (PML) [1]-[5], is being intensively investigate function of distance from the scatterer, the convergence prop-

[6]. Lately, various efficient methods extended the versatilit?rties with respect to lattice resolution and the evolution of dif-
of the absorber to curvilinear grids. In [7], [8] split-field PML's erent error norms.
are derived, while [9] introduces an unsplit medium involving
nonorthogonal discretization. The application of uniaxial
PML's to conformal FDTD meshes is investigated in [10] and The primary attribute of the new FDTD methodology are the
in [11], a Maxwellian well-posed sponge layer, for the threkigher-order nonstandard concepts, which approximate the spa-
coordinate systems, is thoroughly presented. tial and temporal derivatives. Therefore, we introduce

It is the objective of this paper to introduce a novel fully 11 1
nonorthogonal higher-order FDTD technique—founded on ad-DS"**[f] = — DI [f] + ——
vanced conventional and nonstandard concepts—for the con- 12 = 246u
struction of 3-D curvilinear PML's. Its essential premise is field : (5UDZ,S§5“ 14 f o suy2) — f|f,,_(3u,/2)) ;
representation via a modified higher-order covariant and con-
travariant strategy (Fig. 1) that stems from an efficient solijthereu is a variable of the general coordinate systemu, w)
tion of the strenuous div-curl problem on an unstructured megid D5, [.] (84 = 6u, 36u) the 3-D nonstandard operator
Apart from the leapfrog process, the Runge—Kutta operators are _,
alternatively utilized, while new self-adaptive compact operap uwonlf ]1
tors treat the widened spatial stencils. Hence, reduced disper-— ( 9] 2) 3 ) )
sion and lattice reflection errors are obtained and the grid more  mu(6h) ady alfIF ed il + odonlf) @)
_ea3|ly copes with the rapidly increasing PML losses. To aChIEﬁe correction functiomy,
improved attenuation, the layers are backed by lossy absorblbnr

Il. HIGHER-ORDER NONORTHOGONALFDTD SCHEMES

(6h) in (1), minimizes derivative ap-
Bximation errors and significantly improves dispersion and
dissipation characteristics. A possible selection could be
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(3)
dux}h

Fig. 2. Graphical depiction of the curvilinear finite-difference operators. T
numbers at the faces indicate the sign of summation in the expressions.

is fulfilled with k& denoting the wave number. To perform
highly accurate transition to the discretized spateperators
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Temporal derivatives in Maxwell’s equations are computed
by means of the properly rearranged nonstandard formula

&t2

1
)= S5 %A1 (6)

m,,(6t)

DT f] = (FF02 = frr?
whered? denotes third-order time differentiation and, (6t)

is the respective correction function. For time integration (apart
from the leapfrog scheme) the fourth-stage Runge—Kutta inte-
grator, which staggers field variables in space but not in time, is
MdIso utilized. Its general form is

M

2.

m=1

(—8to)m

m!

n+1l _
g,k T

n
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S Sl ()

a

for p = 1, 2, 3, are cast on the following form which completelyn Which C'is the spatial discretization matrix and the order

exploits the geometry of the elementary cell, as in Fig. 2

d(l)

u, 6h[f] = f|(t5h/2, 0,0 f|t—6h/2, 0,0 (2)

d,5lf]
f|<t5h/2,<5h, 6h+f|<t5h/2, 8h, —6h+f|gh/2, —6, 61,
= % +f|gh/2,—6h,—<5h_f|t_6h/2, 5h, 6h_f|t_6h/2,6h, —sh |
_f|t—6h/2, —6h, 6h_f|t_6h/2, —6h, —6h
®3)
d, /]

t t t
f|<5h/2, &N, 0 + f|(5h/2, -6, 0 + f|(5h/2, 0,6

1
1

t t t
+f|<5h/2,0,—(5h_f|—<5h/2,(5h,0_f|—<5h/2,—(5h,0

7

t t
_f|—(5h/2,0,(5h - f|—(5h/2,0,—(5h

(4)

in which only the respective stencils towaud v, w are indi-

cated. Equivalently crucial, also, are theparameters as they

ensure stability and well-posedness. Thus, we derive

a=p+s(l-p)/3, q@=s(1-p)/3, (59)

g =1-p—2s5(1-p)/3, (5b)

with s(k) andp(k) functions given by

s(k) :pRA +(1—p)Rg —(cos k —1)
(p —1)(Ra+ Rp — 2Rc)

cos k,, cos k, — cos k

?

p(k)

“1+cos k. cos k, — cos k, — cos k,,’

while R coefficients are expressed via the wave number, as

Ry

Lp

Re =0.5(cos ky, cos k, + cos k, cos ky,
+ cos k, cos ky, — 3).

cos k., + cos k, + cos k,, — 3,

cos k, cos k, cos ky, — 1,

of the integrator. Among the various operators of (7), the fourth-
stage seems to be ideal for our higher-order FDTD technique.
It is conditionally stable and is not affected by compact differ-
encing. The above form is proven to be 1.4 times more efficient
than the respective leapfrog scheme. This increase in perfor-
mance is attained at the expense of storage requirements. There-
fore, the selection of the appropriate time procedure must be a
compromise between different factors.

Another important feature of the higher-order curvilinear
FDTD concepts, which can sometimes render their utilization
prohibitive, is the inevitably widened spatial stencil in the
vicinity of perfectly conducting interfaces and absorbing walls.
What is apparent in second-order techniques (like the Yee
algorithm) where discontinuities are precisely simulated, is
not adequate when dealing with higher-order formulae. The
stencil of such forms extends at least two nodes on either side
of a specific lattice point at which the unknown quantity is
defined. Thus, when we reach these areas, problems arise. To
circumvent them, we present a general class of self-adaptive
compact operators that ensure the meticulous modeling of
complex problems and can be expressed via the relation

1

a10uf1h, + a2(8uf iy sn + Ouflisn)
+ agéh(agfmwh — O flh )+
= b(f|f,,+(5h/2 - f|f,,—(5h/2)/5h7

wherea; (¢ = 1, 2, 3) andb are unknown coefficients. Their
values for the fourth-order operator ate = 1, ax = 1/22,
az = 0 andb = 3(3 — ay)/8, with an erro{175h* /528003 f.

I1l. FORMULATION OF THE DIV-CURL PROBLEM

The numerical consistency of Maxwell's equations in curvi-
linear coordinates depends on the choice of the proper basis
on which field quantities are expressed [12]-[14]. An incor-
rect selection may generate the erroneous Cristoffel symbols.
Since the FDTD technique is not an exception to this rule, we
will develop a new algorithm for the solution of the curvilinear
div-curl problem which is a hyperset of Maxwell's equations.
The scheme uses a fully conservative higher-order approach of
the covariant and contravariant vector component theory and
considers all metric terms.

Let us describe our domain by a general nonorthogonal
curvilinear coordinate systefm, v, w), smooth enough so that
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any vectorF’ can be decomposed in terms of the contravariant
a!, &%, &> or the covariant, az, a3 linear base system as

F =

%

3 3 3 3

(a; - F)a' = Z fiat = Z(ai -Fa; = Z fla;.

1 i=1 i=1 i=1

with superscripts and subscripts denoting the contravariant anc
covariant components. The metrics of the coordingtgsg®™

are defined byy;; = g;; = a; - a;, ¢ = ¢ = a' - @’ and
g'/? = a;-(a; x a3,) with a cyclic permutation of, j, k. Hence,

the curl of vectorF can be computed

"M
AP;\/]L(K)
Curvilinear Mur or

Bayliss-Turkel ABCs

1 afs 9fs afi  9fs Fig. 3. The geometry of the PML and the mesh expansion procedure.
VxF=— |93 92 o (G 930,

V9 v Jw Jw du
of: _OfY, In the light of their theoretical background, we will inves-
ou ov ) tigate the two most complicated formulations. The rest of the

o . _ techniques are analogously implemented. In the first one, we
Approximation of the derivatives, yields an accuralferive the nonorthogonal version of a 2-D TE split-field ab-
hlgher-order cur,V|I|near .curl operator which is then aps,per. By resolving the magnetic field into two subcomponents,
plied to Maxwell's equations. For example, the nonstandajd _ ;. % 5. the nonstandard FDTD expressions for both the
Ampere’s law is shown in (8) fields in the interior of the layer, which spans betwdenu.x,

ntl " n+1/2 Can be cast on the form of
C1 C1 1
g 6t2 83 st —-1/2 nst
o = | e — mw(ét) g — 2—4 % Co EODIm [h?)u] + O—h?)u =—-g DSu [62]7 (10)
€3 pos €3 pos €3 pos
g1 912 013 eoDT™* [hs,] = g7 /2DS " ey], (11)
m,(6t)
W g21 G222 g23
g31  g32  g33 coDT™" 1] = g /% (g1 DST! [hs] — 912DS7" [ha)]), (12)
DSy hs] - DS ha] 172
DS ] — DS ho] 8) DT [es] +0cz = g 2(912 DS ha] — 922D [ha]),
DS [hy] — DS [h4] (13)

pos

In this expressiony are the electric losses apdsindicates the With o = oax[(4 — L) /(tmax — L)]™ andm =0, 1, 2.

positions ofE = [ey, €2, es] of H = [hy, ha, hs] unknown The second case examines the development of a HO unsplit

covariant components (Fig. 1). By substituting the appropria®ML in spherical coordinates. The entire space is divided into

metric coefficients in these generalized curl equations we ctwp parts, as shown in Fig. 3: volun§g. which is a sphere of

derive the FDTD formulae in any coordinate system. radiusro and volume2, extending fronr, to infinity that must
Therefore, the curvilinear div-curl problem which searcheslee truncated. The primary goal is to find the proper scaling argu-

vectorF that its curl and divergence are known, may now be efaents which will introduce the desired anisotropy in the PML

ficiently treated. By using a Helmholtz-type decomposition, weithout the need of field splitting. For example, the nonstandard

can compute the desired electric or magnetic field via the proDTD ¢-component is given by

jection of the curl onto the space of divergence-free vectors [15].

This is the purpose of the unknown quantities in (8). Finally, for DT"*'[dy] =(V x H)y;
¢h™ =y, v, w, the stability criterion becomes DT [dy] =eo DT [ey] + o, (1)dy,
3 3 —1/2 whered,, is the covariant oD, ando,.(r) = oy maxr™, m > 0.
wedt < 3sin H(0.7) [ YY" g /(s¢tsC™) . (9 The number of layers can be adequately decreased via a

=1 m=1 curvilinear mesh expansion technique, according to which the
FDTD cell is successively growing in the PML region (Fig. 3).
If £ is the expansion factor then, spatial stepsy;, grow as
Apyr(L > 0) = €P6u (L =0, 1/2, 1, 3/2, ---, K). A care-

The new FDTD technique is now used for the construction @dilly selected¢ leads to the suppression of spurious reflections
higher-order (HO) curvilinear PML's. It should be stated, thatue to the inability of highest frequencies to propagate through
our algorithm has been applied to all existing curvilinear PMthe largest cells. Finally, PML's are backed by a lossy version
methods [7]-[11] in order to improve their absorption, as wef Bayliss—Turkel (BT) and Engquist—-Majda (EM) ABC'’s, for
will observed from the numerical results section. an additional reduction of lattice errors.

IV. DERIVATION OF THE NOVEL CURVILINEAR PMLs
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Fig. 6. The variation of maximum error vs. distance from the scatterer.
Fig. 4. The variation of global error versus time for various PML schemes.
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Fig. 5. Convergence of the reflection property for different PML techniques.

In Fig. 4, the variation of the global error proves that the non-
standard HO PML's outperform their second-order counterparts
V. CONCLUSIONS even with a fairly coarse grid. We also calculdfig.)||,, for

The absorption of the proposed PML's and all of the curveld: 1,2, 00, on a sequence of grids generated by a successive

boundary models are validated via diverse simulations. Si refinement of their spatial step. Fig. 5 shows the convergence of

nce ; C 2 . i
. . fAe reflection property. A promising improvement is achieved
the FDTD method hosts a linear mapping to such problems |Ir)1{ our method combined with the BT or 2nd EM ABC's. Next,

. o b
respectto memory and CPU requirements, itis apparent that ?hg behavior of the existing PML techniques, enhanced by our
endeavor regarding grid minimization is of crucial importance Ehodology is investigated '

. e
as far as efficacy and system resources are concerned. The Wr?

. - . n Figs. 6 and 7, the maximum erreg,,x = |le(.)||inr @S a
problem involves scattering in a 3-D free space. It contains,a_ . : . .
: g . . function of the distance from the scatterer, is presented. Again,
centered spherical scattefer. = 2.5) of radius2¢Z’/3, illumi-

nated by a magnetic sourcedre [0, 7 we conclude that the HO PML's exhibit the best performance.
y 9 ’ Also, the proper value of the expansion factor (as an additional
degree of freedom) plays a significant role in the attainment
27 4w 67 . . .
g(t) =10 —-12cos ==t +6cos —t—4dcos —1t]. of high attenuation rates and accuracy levels. Finally, an
off-centered electric dipole is studied and the evolution of
(14) . o
. . the r-component is shown in Fig. 8. The full absence of
Reflection errors are computed at the= 7 /2 plane. Their nonphvsical boundary reflections is evident
definition is the standard one used in the literature (not nor- phy y ’
malized) and their units are (A/mfor the global and A/m for
the local error, respectively. We také = 1 nsec. Due to HO
schemes, spatial increments are further increased, thus making novel class of accurate higher-order curvilinear PML's
the mesh variant and very flexible, while the self-adaptive corbased on conventional and nonstandard FDTD concepts, has
pact operators receive a lossy formulation. been presented, in this paper. Self-adaptive compact operators

VI. CONCLUSIONS
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Er, (=2.573 nsec
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Fig. 8. The evolution of% field r-component via an HO 6-cell PML.

(1]
(2]
(3]
(4]
(3]
(6]
(71
(8]
(9]

along with general Runge—Kutta integrators are utilized f0|110]
the efficient treatment of any structural peculiarities. The[11]
essential strength of the proposed methodology focuses d#?l
their ability to introduce additional attenuation terms along new 3

directions in the medium and the significantly lower dispersion

or anisotropy errors. Hence, they require fewer points pet4l
wavelength (1/300 that of the Yee algorithm), namely largefs,

spatial cell sizes given a constant error level.
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