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Perfectly Matched Anisotropic Layer
for the Numerical Analysis of
Unbounded Eddy-Current Problems

Theodoros |. KosmanisStudent Member, IEEETraianos V. Yioultsis, and Theodoros D. Tsibouk#ember, IEEE

Abstract—An extension of the perfectly matched layer (PML) In static or quasi-static field problems, the truncation of
technique in quasi-static fields is developed. The new low- the infinite space is usually performed by means of a hybrid
frequency PML is based on a fictitious medium with diagonal finite element-boundary element formulation ([9]-[13]), in

tensor anisotropy. On the basis of a theoretical investigation, . . ;
the material properties of the anisotropic layer are specified, which the unbounded free space is modeled by an integral

so that it will be reflectionless for an arbitrary eddy-current €quation. Although exact, this approach results in partially
field that may exist in free space. Furthermore, the PML is dense matrices and the demands in storage and computation

designed in such a way that outgoing eddy-current fields are may be high. Recently, an appropriate modification of the
sufficiently absorbed. The effectiveness of the low-frequency \;ay\ellian PML technique has been proposed for the solution
PML is validated by the implementation of the finite-element L .

solution of a simple two-dimensional eddy-current problem as of open boundary static field PrOb'emS’ SO th"flt the S'_Zf:" C?f the
well as a more complicated three-dimensional one. meSh, and thus the Computatlonal burden, will be mlnlmlzed,

as Bardiet al. [14] and Ticaret al. [15] have shown.

It is the purpose of this paper to introduce a new anisotropic
absorbing layer, appropriate for mesh truncation of open-
boundary eddy-current problems. The methodology of con-

. INTRODUCTION structing a PML for quasi-static fields is conceptually different

HE perfectly matched layer (PML) technique, whicHrom that in the case of high frequency problems, where it is

was introduced by Berenger [1] for the free-space siniequired that the reflection coefficient for a wave incident on
ulation of unbounded two-dimensional (2-D) high frequencipe interface between air and the absorbing layer is zero. In the
problems, is based on the concept of the use of a fictitioG@se of low frequency fields, the derivation of PML properties
layer designed to absorb outgoing waves without CausiM@” be based on the fulfilment of matching conditions for
any reflection. Katzet al. [2] validated this technique andthe fields on the interface, whereas it aspriori enforced
extended it to three-dimensional (3-D) finite difference tim#at the presence of the layer will not affect their values
domain (FDTD) grids. However, this kind of PML, whichin the domain of interest. The whole procedure could be
is reflectionless for all frequencies, polarizations, and anglé®nsidered as an extension of the approach for electrostatic
involves a modification of Maxwell's equations. Hence, it§elds [14]. The resulting PML can be used to efficiently
implementation requires a modification of the standard FDT®rminate finite element meshes in the case of eddy-current
equations, using the concept of sp|it field components. problems. Unlike hybrld methods, all the characteristics of a

Sackset al. [3] proved that the reflectionless properties oflifferential formulation, like sparsity of the system matrices
the PML may also be obtained by an appropriate anisotrorﬁ.ﬁd the use of iterative methods for system solution, are
medium. In contrast to the conventional PML approach, thigeserved in our approach. The new scheme is validated by
one, also known as Maxwellian PML, does not require ari{)¢ implementation of a finite element solution of a simple
modification of Maxwell’s equations. Furthermore, it is easilg-D skin and proximity effect problem ([16]-[18]) and that of
implemented in any existing finite element or FDTD code th&t 3-D one, known as Nakata's conductor [19].
deals with anisotropic materials and provides a better physical
understanding of the PML [4]. 1.

So far, the PML technique having been introduced as a
promising alternative to the concept of absorbing boundary
f:on(_jmons [51-[6], has. bec_en almost excluswely mpleme_nt%_ Electric Field Formulation
in high frequency applications, such as scattering or radiation

Index Terms—Eddy currents, edge elements, numerical meth-
ods, perfectly matched layers.

FORMULATION AND PROPERTIES
OF THE PML IN Low FREQUENCIES

problems [7]-[8]. For the investigation of the properties of a PML in the quasi-
static field case, we adopt first a simplified 2-D model, which
Manuscript received December 8, 1998; revised July 15, 1999. will be later extended in the 3-D case. We also assume an
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B First of all we will investigate the general form of solutions
for (4) both in free space and the PML. Using a standard
in analytical approach, a general solution to (4) is given by
Qa1 i " ik , ik :
. E = ¢ feviy (cle Ty ViYL ool y\/Ey) (5)
/ r 0=0,110,1=0 whereas the magnetic field intensity is calculated via (1)
and is given by
Sty H = i{l—k‘y e ke “y“’(—cle_jkymy + Cerky\/“_Iy):i
Fig. 1. General topology of the 2-D quasi-static case. w Vi
+ ke e ke Hym(cle_jky\/ﬂ_a:y+626jky\/ﬂ_a:y)@} (6)
yA VHy
C, where k, and k,, satisfy the relation
:h .
Y Qe [ Qpmix kf; - ki = JWolig- (7)
N For the PML analysis we assume that an arbitrary eddy-
0 current field exists within free space. We require that its values
y= =0 o p : remain unchanged when the PML is placed (Fig. 2). This
= =Xo 1

requirement is similar to the property of zero reflection in
Fig. 2. The PML for truncation along the direction (PMLXx). the high frequency case. Unlike previous approaches in the
static field case we do not consider the existence of boundaries

lation is obtained through the introduction of an absorbingi: ¥ = 0,z > zg and Ca: y = h,z > zo. For example,

boundary with appropriate properties. To simplify the probletthe electrostatic potential is supposed to be zer@on’s in

we consider only one side of the rectangular region (Fig. 2J14], which is a rather restrictive condition. A general case
Two cases are considered. In the first case the strip is fillsdpresented in [15] where the field is expanded @nC,

with vacuum, while in the second one the PML is introducedby means of a Fourier series. In our approach we consider a

with the interface separating it from the domain of intere®*ML in the semi-infinite space > z,, without the presence of

being located atr = xy. Thus, the PML occupies the areaC;, C», since they will affect only the absorption rate within

z > xo,0<y<h. the layer. The electric field in free space, according to (5),
The governing equations of the problem, when the displacgill be given by

ment term is neglected, are air e ik .

E* =¢ (cle IR 4 coed y)
since k, = k, = k due to (7) and the fact that = 0.
VxH=0cE (2)  similarly, the magnetic field intensity is given by

where we assumed that the domain of interest is source-free

) o e i ok —jky LA
(Js = 0), that there is harmonic time variation, and that the H™ = ;{Jk@ (e + ™) &
n"_nagnet|c perm_eabll_nw and the electrllc conductivitg are + ke—ke (cle—jky + CQijy)@}
diagonal, time-invariant tensors, that is
4e 0 O 6. 0 0 According to (5) and (6), the fields inside the PML are given
T=m|0 w, 0| and 5=|0 o, 0]. by
0 0 0 0 o EPML _ ke uya;(cllcfjky\/;ﬁy_’_céejky\//ﬂy)
It is noted that in vacuumu, = p, = p. = 1 and
o, = 0y = o, = 0, whereas the PML is an anisotropicand
medium, and hence the values of the tensor elements are not j L
necessarily equal to each other. Combining (1) and (2), we get ~ H™" = —{‘7—‘“(3’% Ry
the following equation, which stands in vacuum as well as in NY “”" '
the PML region: : (—c’lc*”“y\/my + cge”“y\/“_fy)?c
VX% 'V xE=—jusE. (3) N [
—c 7 ¥
For the 2-D case we assume that only theomponent of ViHy
the electric field intensitﬁ is nonzero, that iF = E(z,y)z. ) (Cllc_jky\/ujy + Cécjky\//ﬂy)@ _
Therefore, (3) can be written in the form

2 2
1 8_5" + 1 8_5} = jwo. k. (4) The matching conditions for the fields on the interface are
py O fa Oy the continuity of the tangential component of the electric and
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magnetic field intensity, respectively, gives

Eair|x=x0 :EP]\“‘|x=x0 aEZ

H31r|a}:w0 :th'IL|x:x0 Oz
and the continuity of the normal component of the magnetf#hich leads to the cask. (z, y) that has already been treated.
flux density In a similar way, if we consider the cadg,(z,z) we obtain

the conditions

NOH::H|$=$0 = (ﬁHPML)Am‘zm‘O

. . . oz =1
which yield the following constraints:
k and
ky = (8.2)
V Ha oy = 0.
ke =k /1ty (8.b)
, e kw0 However, if we attempt to deal with the case.(y, 2),
R Y e (8:C) which has no dependence on thecoordinate, it can be
) e—kao shown that such fields cannot be absorbed by the PML if
R N T (8.d) ., # 1,u. # 1. This case could be considered similar

] ) ] to a wave with grazing incidence, i.e., with a®9@ngle of
If constraints (8.a) and (8.b) are combined with (7) Wgcidence, in the high frequency case. Therefore, although in

obtain three dimensions there are certain classes of fields not absorbed
9 1y by the PML, its properties that ensure the attenuation of the
Ry — ) T 0T (8-8) field along thex direction should be as follows:
This equation should hold for every possildgi.e., for any . 0 0
arbitrary field that can exist in free space. Hence m=po| 0 1/ps 0 (11.a)
0 0 1/
Hafly =1 (9.2)
and and
g, 0 0
0z =0. (9.b) =0 0 o (11.b)
0O 0 O

Thus, in order to have an efficient attenuation of the
electric field along ther direction (normal to the interface

between vacuum and the PML), the properties of the aniStro%iFoblem we choose,, = 0, setting therefore the conductivity
absorbing medium must be defined by (9.a) and (9.b). of the aiasorbing memdium7 to be zero

Iaylzelirtizegi?/(e):we’b;he attenuation factor of the field within the The PML proposed for the finite element analysis of eddy-

current problems by a# formulation is also appropriate for
R = ¢ Favive — ko (10) the treatment of eddy-current problems by a magnetic vector

potential formulation(A formulation). This is concluded by

Our aim is to obtain as much attenuation as possible, so the similarity that the two formulations have. Specifically we

exponent in (10) must be large enough. Thus, the value gét A formulation, if we replaceE with A in (3).

1y must exceed unity and, therefore, in accordance to (9.a),

that of 2, must be less than unity. Furthermore, the absorbirgg Magnetic Field Formulation

layer must be thick enough to cause the desirable attenuation .
of the field. It could be expected that because of the duality of the

pctromagnetic field quantities, the properties of a PML
propriate for the treatment of eddy-current problems by an
formulation would arise from the transposition @fand s

: HQ the E formulation PML. However, due to the null value of

air conductivity and since we have neglected the displacement

rent, this duality does not hold in the quasi-static field.

The value ofr,, can be arbitrary. Since it has no effect on the

The extension of this procedure to the 3-D case is n
straightforward, since a general analytical treatment, taki

involving nine unknown functions, which is very difficult to

solve. Instead of this, we consider a restricted treatment takifi : . ) .
into account one component at a time. This method covers ver erefore, the matching conditions on the interface between air

wide classes of fields, although some fields, which cannot Bd the absorbing layer cannot be satisfied using the concept

absorbed, may exist, as it will be shown. of duality. _ _
If the = component of the electric field intensify. («, v, ) Alternatively, using the concept of the magnetic scalar

is considered, it is easily shown that the condition potential, we can easily prove that the PML for a magnetic
field formulation in the quasi-static field is the same as the one

V-E=0 for the magnetostatic field [15], i.e., the magnetic permeability
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Fig. 3. Geometry of the 2-D multiconductor system. © 10°
tensor is given by o
e 0 0 0.05 0.1 0.15 0.2 0.25 0.3
= |0 1/p. O x (m)
0 0 1/t (a)
while the conductivity tensor is zero. x 10
35
I1l. NUMERICAL RESULTS = sl
In order to validate the scheme that was proposed in thiz —_ transverse 1, = 10
paper, some numerical results were carried out. Two edd§ 25¢ e e 1000
current problems, in 2-D and in 3-D, respectively, werez; )
. . = -
elaborated by a Galerkifz formulation. In the 2-D problem 2
the efficiency of the PML with an formulation is tested 5 | |

in comparison with a reference solution, whereas in the 3—@
problem the new scheme is used for the computation of the 41

eddy currents in a multiply connected conductor. §
= oosp L T
A. Eddy Currents in a Multiconductor System | e
The geometry of the problem is depicted in Fig. 3. The 0405 -0.404 -0.403 -0.402 -0.401 0.4
system consists of two circular current carrying conductors of X (m)
conductivitys; ando. and radius:. The total current of each ®)

conductor is sinusoidal at 50 Hz frequency and of constant L i
. Lo ig. 4. (a) Current density distribution inside the right conductor (5 mm
amp“tUdeI' It can be proved that the current denS|ty n eacllﬂick PML). (b) Attenuation of the electric field inside the PML region (5
conductor is composed of three terms, the fidgt, denoting mm thick PML).
the uniform distribution of current, and the two others/y
and J2, denoting the eddy currents induced by the magnets the layer and the value of the conductivity and permeability
field of the first conductor and the magnetic field of the secomghsor elements. The former must be such that the electric field
conductor, respectively. Therefore, the total current denSFyduces even|y; however it must be Composed of an adequate
inside each conductor is expressed as the vectorial sum of f.hlﬁnber of elements, so as no errors emerge. It came up by
three terms the experiments that a large value of the transverse relative
J=Jo+J1+Ja permeability is needed for a small _thickness PML vyhereas a
small value of the transverse relative permeability is needed
The total current density was numerically computed bipr a large thickness PML.
the use of conventional triangular nodal finite elements. A In Fig. 4(a) the current density distribution inside the right
reference solution, the accuracy of which is ensured by thenductor along the ling = 0 is depicted for different values
simplicity of the problem and the reliability of the finiteof the transverse relative permeability of a 5 mm thick PML.
element method, was obtained by setting the outer bound#ig. 4(b) compares the attenuation of the magnitude of the
far enough from the two conductors. The nodes laid on thidectric field intensity inside the PML for the three cases.
outer boundary were enforced to a null value of the electr&imilar results are depicted in Fig. 5 for a 50 mm thick PML.
field intensity (Dirichlet boundary condition). Obviously the results obtained for the 5 mm thick PML with
The solution of the problem with the PML as an attenuatica larger value of the transverse relative permeability are closer
medium has shown that, similar to the static field case [15], thee the reference solution as opposed to the case of the 50 mm
two factors that control the PML performance are the thicknegsck PML. The decay of the field is satisfactory in both cases,
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Fig. 5. (a) Current density distribution inside the right conductor (50 mmig 6. (a) Current density distribution inside the right conductor (5 mm

thick PML). (b) Attenuation of the electric field inside the PML region (5Qpick PML — transverse relative permeability equal to 200). (b) Attenuation

mm thick PML). of the electric field inside the PML region (5 mm thick PMk transverse
relative permeability equal to 200).

however in the latter, significant errors are introduced because
of the larger element size. complicated problem and has no analytical solution, Nakata’'s

In Fig. 6(a) the current density distribution inside the rightonductor has been a test problem for the evaluation of various
conductor is also depicted. Three cases are considered accBrife element formulations in the past [19].
ingly to the number of elements composing the PML. The The conductor is multiply connected and therefore the use
value of the transverse relative permeability is 200 (that 6f €lectric or magnetic scalar potentigkl — ¢ or H — ¢
the normal relative permeability is 0.005) and the PML is #prmulation) requires special treatment [12], [13]. On the
mm thick. As it can be easily seen, both the accuracy of t§€ntrary E formulation is much more preferable, since it
solution and the attenuation of the electric field intensity insice&n be applied unconstrained. Therefore, a formulation based
the PML [Fig. 6(b)], increase with the number of the elemenf the Galerkin weighted residual procedure in terms of the
inside the PML region. Similar results are depicted in Fig. §lectric field intensityE’ and the corresponding PML, were
for a 50 mm thick PML. chosen, along with edge elements. It is noted that at corners
where two or three different layers intersect a combination of
the properties of each layer is preferred [8].

Figs. 9 and 10 verify the deductions of the 2-D case as far

The problem’s structure is depicted from two differenas the value of the transverse relative permeability concerns.
points of view in Fig. 8(a) and (b). Although it is a quitelt is observed that a PML with transverge = 10 approaches

B. Eddy Currents Inside a Conductor with a Hole



KOSMANIS et al: PERFECTLY MATCHED ANISOTROPIC LAYER 4457
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§ Fig. 8. (a) Top view of the problem structure (dimensions in mm). (b)
A= Transverse cut of the problem structure (dimensions in mm).
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Fig. 7. (a) Current density distribution inside the right conductor (50 mr%;

thick PML — transverse relative permeability equal to 200). (b) Attenuatio
of the electric field inside the PML region (50 mm thick PML transverse
relative permeability equal to 200).
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nt DensityJ

measured [19]
with PML (i, = 10) —&—
with PML (p, = 1000) ——
without PML ——

-0.5
the experimental measurements better than one with transve:ise

- = 1000. It is also obvious that these two cases are mofe
effective than the non-PML case. Finally, Fig. 11 investigates —1 o
the effectiveness of the proposed scheme as a function of the
PML thickness.
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V. CONCLUSIONS
. . . . Filg. 9. y component of the eddy-current density along lijpe= 72 mm,
This paper introduces a new PML suitable for the numerical= 19 mm with the use of a 50—mm thick PML.

computation of open boundary quasi-static field problems.

This PML is obtained by properly selecting the values of

the permeability and conductivity tensor elements. It has beehelements inside the PML region, are the main factors that
shown, by the implementation of the new scheme by a finitentrol its efficiency. However, they are not independent.

element solution of two simple skin and proximity effeclThe accuracy obtained is much better if the above elements
problems, that the thickness of the PML, the values of ttege combined in such a way that the electromagnetic field
permeability and conductivity tensor elements, and the numlatenuates evenly introducing no significant errors. Finally,
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. B B L L B obtained in the latter case is a significant gain. Hence, the
PML could be a promising tool in the finite element analysis
of eddy-current problems, where hybrid methods seemed to be
the only reliable technique for mesh truncation.
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