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Abstract—An extension of the perfectly matched layer (PML)
technique in quasi-static fields is developed. The new low-
frequency PML is based on a fictitious medium with diagonal
tensor anisotropy. On the basis of a theoretical investigation,
the material properties of the anisotropic layer are specified,
so that it will be reflectionless for an arbitrary eddy-current
field that may exist in free space. Furthermore, the PML is
designed in such a way that outgoing eddy-current fields are
sufficiently absorbed. The effectiveness of the low-frequency
PML is validated by the implementation of the finite-element
solution of a simple two-dimensional eddy-current problem as
well as a more complicated three-dimensional one.

Index Terms—Eddy currents, edge elements, numerical meth-
ods, perfectly matched layers.

I. INTRODUCTION

T HE perfectly matched layer (PML) technique, which
was introduced by Berenger [1] for the free-space sim-

ulation of unbounded two-dimensional (2-D) high frequency
problems, is based on the concept of the use of a fictitious
layer designed to absorb outgoing waves without causing
any reflection. Katzet al. [2] validated this technique and
extended it to three-dimensional (3-D) finite difference time
domain (FDTD) grids. However, this kind of PML, which
is reflectionless for all frequencies, polarizations, and angles,
involves a modification of Maxwell’s equations. Hence, its
implementation requires a modification of the standard FDTD
equations, using the concept of split field components.

Sackset al. [3] proved that the reflectionless properties of
the PML may also be obtained by an appropriate anisotropic
medium. In contrast to the conventional PML approach, this
one, also known as Maxwellian PML, does not require any
modification of Maxwell’s equations. Furthermore, it is easily
implemented in any existing finite element or FDTD code that
deals with anisotropic materials and provides a better physical
understanding of the PML [4].

So far, the PML technique having been introduced as a
promising alternative to the concept of absorbing boundary
conditions [5]–[6], has been almost exclusively implemented
in high frequency applications, such as scattering or radiation
problems [7]–[8].
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In static or quasi-static field problems, the truncation of
the infinite space is usually performed by means of a hybrid
finite element-boundary element formulation ([9]–[13]), in
which the unbounded free space is modeled by an integral
equation. Although exact, this approach results in partially
dense matrices and the demands in storage and computation
may be high. Recently, an appropriate modification of the
Maxwellian PML technique has been proposed for the solution
of open boundary static field problems, so that the size of the
mesh, and thus the computational burden, will be minimized,
as Bardiet al. [14] and Ticaret al. [15] have shown.

It is the purpose of this paper to introduce a new anisotropic
absorbing layer, appropriate for mesh truncation of open-
boundary eddy-current problems. The methodology of con-
structing a PML for quasi-static fields is conceptually different
from that in the case of high frequency problems, where it is
required that the reflection coefficient for a wave incident on
the interface between air and the absorbing layer is zero. In the
case of low frequency fields, the derivation of PML properties
will be based on the fulfillment of matching conditions for
the fields on the interface, whereas it isa priori enforced
that the presence of the layer will not affect their values
in the domain of interest. The whole procedure could be
considered as an extension of the approach for electrostatic
fields [14]. The resulting PML can be used to efficiently
terminate finite element meshes in the case of eddy-current
problems. Unlike hybrid methods, all the characteristics of a
differential formulation, like sparsity of the system matrices
and the use of iterative methods for system solution, are
preserved in our approach. The new scheme is validated by
the implementation of a finite element solution of a simple
2-D skin and proximity effect problem ([16]–[18]) and that of
a 3-D one, known as Nakata’s conductor [19].

II. FORMULATION AND PROPERTIES

OF THE PML IN LOW FREQUENCIES

A. Electric Field Formulation

For the investigation of the properties of a PML in the quasi-
static field case, we adopt first a simplified 2-D model, which
will be later extended in the 3-D case. We also assume an
electric field formulation.

Let us suppose that the domain of interest is truncated
by a rectangular boundary (Fig. 1). The free space simu-
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Fig. 1. General topology of the 2-D quasi-static case.

Fig. 2. The PML for truncation along thexxx direction (PMLx).

lation is obtained through the introduction of an absorbing
boundary with appropriate properties. To simplify the problem
we consider only one side of the rectangular region (Fig. 2).

Two cases are considered. In the first case the strip is filled
with vacuum, while in the second one the PML is introduced,
with the interface separating it from the domain of interest
being located at Thus, the PML occupies the area

The governing equations of the problem, when the displace-
ment term is neglected, are

(1)

(2)

where we assumed that the domain of interest is source-free
, that there is harmonic time variation, and that the

magnetic permeability and the electric conductivity are
diagonal, time-invariant tensors, that is

and

It is noted that in vacuum and
whereas the PML is an anisotropic

medium, and hence the values of the tensor elements are not
necessarily equal to each other. Combining (1) and (2), we get
the following equation, which stands in vacuum as well as in
the PML region:

(3)

For the 2-D case we assume that only thecomponent of
the electric field intensity is nonzero, that is
Therefore, (3) can be written in the form

(4)

First of all we will investigate the general form of solutions
for (4) both in free space and the PML. Using a standard
analytical approach, a general solution to (4) is given by

(5)

whereas the magnetic field intensity is calculated via (1)
and is given by

(6)

where and satisfy the relation

(7)

For the PML analysis we assume that an arbitrary eddy-
current field exists within free space. We require that its values
remain unchanged when the PML is placed (Fig. 2). This
requirement is similar to the property of zero reflection in
the high frequency case. Unlike previous approaches in the
static field case we do not consider the existence of boundaries

and For example,
the electrostatic potential is supposed to be zero on in
[14], which is a rather restrictive condition. A general case
is presented in [15] where the field is expanded on
by means of a Fourier series. In our approach we consider a
PML in the semi-infinite space without the presence of

since they will affect only the absorption rate within
the layer. The electric field in free space, according to (5),
will be given by

since due to (7) and the fact that
Similarly, the magnetic field intensity is given by

According to (5) and (6), the fields inside the PML are given
by

and

The matching conditions for the fields on the interface are
the continuity of the tangential component of the electric and
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magnetic field intensity, respectively,

and the continuity of the normal component of the magnetic
flux density

which yield the following constraints:

(8.a)

(8.b)

(8.c)

(8.d)

If constraints (8.a) and (8.b) are combined with (7) we
obtain

(8.e)

This equation should hold for every possible, i.e., for any
arbitrary field that can exist in free space. Hence

(9.a)

and

(9.b)

Thus, in order to have an efficient attenuation of the
electric field along the direction (normal to the interface
between vacuum and the PML), the properties of the anistropic
absorbing medium must be defined by (9.a) and (9.b).

Furthermore, the attenuation factor of the field within the
layer is given by

(10)

Our aim is to obtain as much attenuation as possible, so the
exponent in (10) must be large enough. Thus, the value of

must exceed unity and, therefore, in accordance to (9.a),
that of must be less than unity. Furthermore, the absorbing
layer must be thick enough to cause the desirable attenuation
of the field.

The extension of this procedure to the 3-D case is not
straightforward, since a general analytical treatment, taking
into account the three field components and would
result in coupled set of three ordinary differential equations
involving nine unknown functions, which is very difficult to
solve. Instead of this, we consider a restricted treatment taking
into account one component at a time. This method covers very
wide classes of fields, although some fields, which cannot be
absorbed, may exist, as it will be shown.

If the component of the electric field intensity
is considered, it is easily shown that the condition

gives

which leads to the case that has already been treated.
In a similar way, if we consider the case we obtain
the conditions

and

However, if we attempt to deal with the case
which has no dependence on thecoordinate, it can be
shown that such fields cannot be absorbed by the PML if

This case could be considered similar
to a wave with grazing incidence, i.e., with a 90angle of
incidence, in the high frequency case. Therefore, although in
three dimensions there are certain classes of fields not absorbed
by the PML, its properties that ensure the attenuation of the
field along the direction should be as follows:

(11.a)

and

(11.b)

The value of can be arbitrary. Since it has no effect on the
problem, we choose setting therefore the conductivity
of the absorbing medium to be zero.

The PML proposed for the finite element analysis of eddy-
current problems by an formulation is also appropriate for
the treatment of eddy-current problems by a magnetic vector
potential formulation formulation). This is concluded by
the similarity that the two formulations have. Specifically we
get formulation, if we replace with in (3).

B. Magnetic Field Formulation

It could be expected that because of the duality of the
electromagnetic field quantities, the properties of a PML
appropriate for the treatment of eddy-current problems by an

formulation would arise from the transposition ofand
in the formulation PML. However, due to the null value of
air conductivity and since we have neglected the displacement
current, this duality does not hold in the quasi-static field.
Therefore, the matching conditions on the interface between air
and the absorbing layer cannot be satisfied using the concept
of duality.

Alternatively, using the concept of the magnetic scalar
potential, we can easily prove that the PML for a magnetic
field formulation in the quasi-static field is the same as the one
for the magnetostatic field [15], i.e., the magnetic permeability
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Fig. 3. Geometry of the 2-D multiconductor system.

tensor is given by

while the conductivity tensor is zero.

III. N UMERICAL RESULTS

In order to validate the scheme that was proposed in this
paper, some numerical results were carried out. Two eddy-
current problems, in 2-D and in 3-D, respectively, were
elaborated by a Galerkin formulation. In the 2-D problem
the efficiency of the PML with an formulation is tested
in comparison with a reference solution, whereas in the 3-D
problem the new scheme is used for the computation of the
eddy currents in a multiply connected conductor.

A. Eddy Currents in a Multiconductor System

The geometry of the problem is depicted in Fig. 3. The
system consists of two circular current carrying conductors of
conductivity and and radius The total current of each
conductor is sinusoidal at 50 Hz frequency and of constant
amplitude It can be proved that the current density in each
conductor is composed of three terms, the first, denoting
the uniform distribution of current and the two others,
and , denoting the eddy currents induced by the magnetic
field of the first conductor and the magnetic field of the second
conductor, respectively. Therefore, the total current density
inside each conductor is expressed as the vectorial sum of the
three terms

The total current density was numerically computed by
the use of conventional triangular nodal finite elements. A
reference solution, the accuracy of which is ensured by the
simplicity of the problem and the reliability of the finite
element method, was obtained by setting the outer boundary
far enough from the two conductors. The nodes laid on this
outer boundary were enforced to a null value of the electric
field intensity (Dirichlet boundary condition).

The solution of the problem with the PML as an attenuation
medium has shown that, similar to the static field case [15], the
two factors that control the PML performance are the thickness

(a)

(b)

Fig. 4. (a) Current density distribution inside the right conductor (5 mm
thick PML). (b) Attenuation of the electric field inside the PML region (5
mm thick PML).

of the layer and the value of the conductivity and permeability
tensor elements. The former must be such that the electric field
reduces evenly; however it must be composed of an adequate
number of elements, so as no errors emerge. It came up by
the experiments that a large value of the transverse relative
permeability is needed for a small thickness PML, whereas a
small value of the transverse relative permeability is needed
for a large thickness PML.

In Fig. 4(a) the current density distribution inside the right
conductor along the line is depicted for different values
of the transverse relative permeability of a 5 mm thick PML.
Fig. 4(b) compares the attenuation of the magnitude of the
electric field intensity inside the PML for the three cases.
Similar results are depicted in Fig. 5 for a 50 mm thick PML.
Obviously the results obtained for the 5 mm thick PML with
a larger value of the transverse relative permeability are closer
to the reference solution as opposed to the case of the 50 mm
thick PML. The decay of the field is satisfactory in both cases,
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(a)

(b)

Fig. 5. (a) Current density distribution inside the right conductor (50 mm
thick PML). (b) Attenuation of the electric field inside the PML region (50
mm thick PML).

however in the latter, significant errors are introduced because
of the larger element size.

In Fig. 6(a) the current density distribution inside the right
conductor is also depicted. Three cases are considered accord-
ingly to the number of elements composing the PML. The
value of the transverse relative permeability is 200 (that of
the normal relative permeability is 0.005) and the PML is 5
mm thick. As it can be easily seen, both the accuracy of the
solution and the attenuation of the electric field intensity inside
the PML [Fig. 6(b)], increase with the number of the elements
inside the PML region. Similar results are depicted in Fig. 7
for a 50 mm thick PML.

B. Eddy Currents Inside a Conductor with a Hole

The problem’s structure is depicted from two different
points of view in Fig. 8(a) and (b). Although it is a quite

(a)

(b)

Fig. 6. (a) Current density distribution inside the right conductor (5 mm
thick PML � transverse relative permeability equal to 200). (b) Attenuation
of the electric field inside the PML region (5 mm thick PML� transverse
relative permeability equal to 200).

complicated problem and has no analytical solution, Nakata’s
conductor has been a test problem for the evaluation of various
finite element formulations in the past [19].

The conductor is multiply connected and therefore the use
of electric or magnetic scalar potential or
formulation) requires special treatment [12], [13]. On the
contrary formulation is much more preferable, since it
can be applied unconstrained. Therefore, a formulation based
on the Galerkin weighted residual procedure in terms of the
electric field intensity and the corresponding PML, were
chosen, along with edge elements. It is noted that at corners
where two or three different layers intersect a combination of
the properties of each layer is preferred [8].

Figs. 9 and 10 verify the deductions of the 2-D case as far
as the value of the transverse relative permeability concerns.
It is observed that a PML with transverse approaches
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(a)

(b)

Fig. 7. (a) Current density distribution inside the right conductor (50 mm
thick PML � transverse relative permeability equal to 200). (b) Attenuation
of the electric field inside the PML region (50 mm thick PML� transverse
relative permeability equal to 200).

the experimental measurements better than one with transverse
It is also obvious that these two cases are more

effective than the non-PML case. Finally, Fig. 11 investigates
the effectiveness of the proposed scheme as a function of the
PML thickness.

IV. CONCLUSIONS

This paper introduces a new PML suitable for the numerical
computation of open boundary quasi-static field problems.
This PML is obtained by properly selecting the values of
the permeability and conductivity tensor elements. It has been
shown, by the implementation of the new scheme by a finite
element solution of two simple skin and proximity effect
problems, that the thickness of the PML, the values of the
permeability and conductivity tensor elements, and the number

(a)

(b)

Fig. 8. (a) Top view of the problem structure (dimensions in mm). (b)
Transverse cut of the problem structure (dimensions in mm).

Fig. 9. y component of the eddy-current density along liney = 72 mm,
z = 19 mm with the use of a 50–mm thick PML.

of elements inside the PML region, are the main factors that
control its efficiency. However, they are not independent.
The accuracy obtained is much better if the above elements
are combined in such a way that the electromagnetic field
attenuates evenly introducing no significant errors. Finally,
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Fig. 10. y component of the eddy-current density along liney = 72 mm,
z = 19 mm with the use of a 10–mm thick PML.

Fig. 11. y component of the eddy-current density along liney = 72 mm,
z = 19 mm (transverve relative permeability equal to ten).

the new PML can be feasibly and effectively applied to the
computation of eddy currents in complicated 3-D problems as
it has been shown. The reduction of the computational burden

obtained in the latter case is a significant gain. Hence, the
PML could be a promising tool in the finite element analysis
of eddy-current problems, where hybrid methods seemed to be
the only reliable technique for mesh truncation.
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