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Abstract—A generalized higher-order FDTD rendition of the of complicated 3-D waveguides. By postulating a higher-order
covariant and contravariant vector component theory for the covariant/contravariant strategy, the technique implements a
accurate modeling of complex waveguides in 3-D nonorthogonal gef adaptive compact central difference procedure to treat

curvilinear coordinates, is presented in this paper. The novel algo- the | itabl id d tial stencils. Eor th imulati
rithm, which postulates conventional and nonstandard concepts, € Inévitably widened spalial stenciis. rFor the simulation

embodies a spatially-localized Wavelet-Galerkin formulation in Of rapidly-varying local field disturbances near conductive
order to efficiently deal with fast field variations in the vicinity = wedges, a Wavelet-Galerkin (WG) formulation is developed,
of arbitrarily-angled wedges. The proposed method is combined attaining advanced geometric versatility and coarse lattices
with a pulsed excitation and enhanced unsplit-field PMLs thus, i, the vicinity of demanding discontinuities. Furthermore, a
achieving significant accuracy and suppression of all discretiza- S . . .
tion errors with a simultaneous diminishment of computational pulsed excitation performs rgm_arkable grid savings by enabling
resources, as indicated by various numerical results. the use Of enhanced Unsp“t'ﬂeld PMLs SUﬁ|C|ent|y Close to
any structural discontinuity. Performance verification of the
proposed method is accomplished via various microwave
device problems with complex cross-sections and coupling
slots. Their main goal is the accurate calculation of the cut-off
. INTRODUCTION frequencies and th&-parameters.
AVEGUIDE structures with  arbitrarily-curved
cross-section, irregular shape and complex cou- Il. HIGHER-ORDER NONORTHOGONALFDTD CONCEPTS

pling discontinuities, constitute an indispensable class gf construction of the Higher-Order Schemes
components in many microwave device applications. The con-

tinuously increasing design requirements, render the advanced € €ssential premises of the new FDTD methodology are

numerical simulation of these systems an issue of intensit¢ higher-order (HO) finite-difference formulae, conventional
scientific research [1], [2]. The FDTD method has beef’ nonstandard, the latter of which approximate the spatial and

implemented for the treatment of such devices, however tifgnPoral derivatives via the following operator
method’s classical restriction to staircase approximations amis”s![f|*] = % D™t [fIL] + 2_14

Index Terms—Curvilinear nonorthogonal coordinates, FDTD
methods, higher-order schemes, waveguides, wavelet transforms.

second-order differencing leads to inadequate discretization o 1t L
and dispersion errors. For instance, the accurate modeling of <D3555u[f|2] + u—du/2 u3éu/2>7
circular cross-section waveguides or arbitrarily inclined slots ’ bu
by means of the usual Yee cells demands a highly refined mesh. Q)
On the other hand, the traditional ways of excitation necessitatﬁ .

whereu belongs to the general coordinate systemv, w) and

the use of long uniform parts and therefore, excessive requiﬁ;m (8h = Su. 36u) is the 3-D nonstandard operator, given by

ments in memory capacity and CPU time. Various efficient « é%

techniques in combination with the FDTD method have been .., .7 1 (1) . (2) .
introduced, using conformal mapping [3], generalized lattices DLl = ma (kSh) (md“:éhm“’] +ad, s ]]

[4] and wavelet-based configurations [5], [6], although they do 1 2d® " ]) @)
not completely overcome the above shortcomings. B, onlllul ) -

In this paper a new, fully nonorthogonal higher-order Them, (kéh) is a correction function (of sinusoidal form) se-
FDTD methodology, founded on curvilinear conventional angcted to minimize the inevitable error generated by the deriva-
nonstandard concepts, is introduced for the accurate analyie approximation in (1), as well as to significantly enhance

the technique’s dispersion and dissipation features. For a pre-
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the leapfrog scheme) is performed by means of the fourth-stage

Sh
dag g, a2, Runge—Kutta integrator, generally given by
M
(=6t2)™
fEdh=20 I (10)
m=1 :

25h inwhichZ is the spatial discretization matrix add the order of
‘ the integrator. Being conditionally stable and unaffected by the
incorporation of compact operators, as its second-order coun-

terpart, this integrator performs 1.4 times more efficiently than
Fig. 1. The_curviline_ar finite diﬁergnce operators. The numbers at the cghe fourth-order Ieapfrog one.
faces determine the sign of summation. Another prominent attribute of the HO curvilinear FDTD
schemes is the widened spatial stencil near perfectly con-
A1 ) ducting interfaces and absorbing walls. To circumvent this
difficulty, a general class of self-adaptive compact operators is

f|(t5h/2, Sh, (5h+f|gh/27§h7_(5h+f|(t5h/27 —6&h,6h . R
presented, which guarantees the thorough modeling of complex

=1 t ] L fIt. |t ) ) S . )
2 Jrf|0h/2, —6h, —5h f|70h/2,éh,bh f|70h/2,éh, —sh |+ applications. Specifically, they can be expressed (in central or

t t i i i

1 b1 2, —sn. 60~ F\s1)2, —on. —sn, nonsymmetric version) by the Hermite formula
4) L
! 11
d(3) t Z (aposfi+pos + bpos itpos T CpOSfH—pOS) =0 (11)

U, 6h[f|u, 'U:'LU] pos=—1

t t t .

f|6h/2, 6h,0+f|6h/2, —6h,0+f|6h/2, 0,5h wherew,, b;, ¢; are unknown calculable real coefficients.

1

=+ Mnsno —sn=F snszsno=Ssns2 snol- ()
4 5h/2,0, =8k bh/2,8h, 0 b1/2, ~8h. 0 B. Treatment of the Curvilinear Div—Curl Problem

ot ot
T s2,0,6n = =n/2,0,-0 The strong dependence of every field quantity—involved in

For brevity, in (3)—(5) only the respective lattice space incrghe curvilinear form of Maxwell’s equations—on the choice
ments toward the, v, w directions are indicated (i.e., the nof the basis system plays a crucial role in the consistency of
tation —6h/2, 0, 6h meansu — 6h/2, v, w + 6h). The anal- the numerical solution, since an improper selection may give
ogously significant; parameters, mainly responsible for thejse to Cristoffel symbols, that cannot be accurately computed
stable and well-posed profile of the algorithm, are calculatgd|. To derive a consistent solution of this strenuous div—curl
via problem, we develop a new algorithm incorporating a fully
q=p+s(1—p)/3, g2 = s(1 - p)/3, (6a) conservativg HO rendition of the covariant{cqntrav_ariant theory,
which considers all metric terms. Its main idea is the use of
3 =1-p—2s5(1-p)/3, (6b) a Helmholtz-type decomposition that computes the desired
electric or magnetic vector via the projection of the curl onto

with ;
the space of divergence-free vectors [8].
s(k) = pRa+ (1 —p)Rp —(cos k — 1)7 (7a)  Assuming that the computational domain is described by
(p— 1)(Ra+ Rp — 2Rc) a general nonorthogonal right-handed curvilinear coordinate
cos k, cos k, — cos k system(u, v, w) and that this mapping is smooth enough, any
p(k) = 1+ cos k, cos k, — cos k, — cos k,’ ( vectorF can be decomposed with respect to the contravariant

al, aZ, a® or the covarianhy, a,, a; base system. Therefore,

while the coefficients? 4, Rp and R are mathematically de- the curl of vectofF can be computed as

scribed as functions of the wave number components, as
3 3

3 3
R4 =cosk, +cos k, +cos k, — 3, 8a) F— Z (a; F) al = Z fial= Z (a - F)a; = Z Fia,.
=1

=1 =1

Rp = cos k, cos k, cos ky, — 1, (8b) =1 (12)
The quantitiesf?, f; denote respectively the contravariant and
covariant components @& which, due to their reciprocity, sat-
isfy the relationa; - a’ = i (65 is the Kronecker’s delta).
According to the nonstandard regime, temporal discretizatidfie metrical coefficients of the coordinate systgm ¢' are
receives the subsequent form de/ﬂned bygi; = g5 = a; - a;, g¥ = ¢ = a*-al, and
1/2 = a;-(a; x a;,) with a cyclic permutation of indice’s j, k.

Therefore, the curl of vectdr can be computed
= (FIE22 — FIE02) S (wét) — (682/24) O [,
©) B N v ow )t Jw du 2

whered;,;; denotes third-order time differentiation and, (5t) N <8f2 8f1> ag}

Re =0.5(cos ky, cos k, + cos k,, cos ky,
+ cos k;, cos ky, — 3). (8¢c)

(13)

is the respective correction function. Time integration (except of u Ov
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Derivative approximation in (13), yields an accurate H( ™
curvilinear FDTD curl operator which is subsequently applie \
to Maxwell’s equations. For illustration, the general matri '?
form of Ampere’s law becomes
1
(T+ 4 A)EI = (T- L A)E? + G,DS™ [HI/2). \
(14) £ \
-3
E [standwrd FOTD
where ¢ denotes the unknown covariant electric componer= os {2082 ] e e
andA,, G, derivative and metric tensor operators, respectivel L [0 cats.0B3 | \ /
Thus, the curvilinear div—curl problem which consists of findin: e« {7a00 ceie Db
a vector fieldF assuming that its curl and its divergence ar \;\ ¥ 2500 cefe, B4 § ECETA|
known, is efficiently treated by our method. 02 L) Ny o <
Finally, the stability criterion of our method becomes @F—l‘_@ ]L_—j\.\:,
o | Grid size f—— 3600 celis, DBS -
st < 3sin71(0.7) with Cl: "™ v w [} 500 1000 1500 2000 2500 3000 3500
i 1 27 - ? ? N
5.8 glm / Fig. 2. Variation of the relative error vs grid size. An increase in the number
m Z Z 5C15Cm of vanishing momentsy, enhances the solution’s accuracy.
I=1m=1

(15)
maintains the enhanced accuracy. Thus, the overall time needed
IIl. FDTD-WAVELET-GALERKIN FORMULATION for the new scheme to obtain an accurate solution, is notably

Th | algorithm al I te treat t of fi Idecreased compared to the one needed for the pure WG or the
e novel algorithm also allows accurate treatment of field - -4 F5TD methods.

singularities, such as conductive wedges, since it embodies t %vidently when the FDTD-WG technique is efficiently

spatially-localized FDTD—-Wavelet-Galerkin technique [9]'Acéombined with the proposed HO method, an even greater

) £ sh in the vicinity of the di finuit d Rduction of the computational resources—with simultaneous
regions of sharp (in the vicinity of the discontinuities) an re'ignificantsuppression of dispersion, dissipation and anisotropy

glons of smooth_fleld transitions (rest of the domain). Eac rors—is attained. Particularly, the lattice becomes very coarse
field component in the former area, analyzed by the Wavel%’ithout

Galerkin techni . ded i ¢ of Daubechies’ ) loss of accuracy, since the hybrid scheme allows
alerkin technique, 1s expanded in a set ot Daubechies: sca IQﬂnificant reduction of the grid around the discontinuities and
functions [10] as

the HO method decreases that of the rest of the domain. This is
F(z,y, 2, t) = Z Z Flooi(@)0;(@)er(2)ha(t)  (16) extremely important in 3-D waveguide structures, which for an

accurate analysis, normally require dense grids and very long
FDTD simulation procedures.

i,k n

where thef7;; terms correspond to any: (= 6z, y = joy,

z = kéz) node of the grid at = nét, ¢.(£) is an appropriate
scaling function, herein selected to be Daubechies’,/ar(d)

the Haar scaling function. Substitution of (16) into Maxwell's The implementation of the proposed technique to diverse 2-D
curl equations and implementation of the Galerkin Weightethd 3-D waveguide problems where discontinuities occur, ver-
Residuals procedure lead to a set of WG equations that are vigd its merits and enhanced accuracy. It is to be mentioned
similar to those of the FDTD method. For example, the ZD herein that the excitation of the 3-D structures is performed by a

IV. NUMERICAL RESULTS

expression (similarly for the others)ati- 1 time step is pulsed modulated process which imposes the source plane sev-
5t eral cells away from the ABC'’s plane in order to fully separate
EZ|;”J;1k =B .+ Z r(p)— incident and reflected fields. Considering a distancé.afells,
- . ) £0 E, is expressed as
n40.5 n+0.5
. Hy|i+p+0.6,j,k i Hl‘|i,j+p+0.5,k ) (17) N
bx oy EZ:'_'(}F =FDTD  wupdate+ L(u, v) Z sin(2x fst — Bsw),
s=1
In (17), x(p) are coefficients that depend only on the scaling (18)

function selected [9]. On the contrary, the rest of the computathereL(«, v) represents the pulse’s spatial profile.
tional domain, where singularities are absent, is treated by theThe first application involves a 2-D structure (embedded pic-
more convenient, linear FDTD method. ture in Fig. 2), the TM (Fig. 2) and TE (Fig. 3) mode reso-
The coexistence of these two efficient techniques at the int@ant frequencies of which are computed via several FDTD and
face is straightforward, on condition that spatial and tempoaDTD-WG formulations. The essential reduction of the grid
increments are equal, an issue that is easily attained. Thus, sipe and hence of the overall computational time is obvious as
dates of field components near the interface requires samptesmpared to the FDTD method, given a constant error level.
from both FDTD and WG areas. Such a treatment causes nokxthermore, indicative time reduction factors (rf) clearly reveal
consistency or instability, avoids unnecessary complications aheé decrease of the computational resources.



KANTARTZIS et al: ANONORTHOGONAL HIGHER-ORDER WAVELET-ORIENTED FDTD TECHNIQUE FOR 3-D WAVEGUIDE STRUCTURES 3267

403 -1.0 LB S EL A S S AL S R |
W8 FDTD method (565x14x37), 8h=1.123
20 F &—A FDTD method (102x20x72), 5h=0.765 -
&—© HO method (60x15x35), 8h=1.275
0% 3 -3.0 | ®—® Reference [1] _
E -4.0
@
)
2-107% . -5.0
o
&
-6.0
-2
10} E 7.0
’IE] *.‘.",- g=30°
f=2.16 80 .
Time/[s] —» i
07! . ) f[GHz] ———
100 101 102 103 -8.0 [ VT SR R S WS N G
. . . . . 9.2 9.4 9.6 9.8 10.0
Fig. 3. Error comparison of resonant frequencies as a function of time: FD1 v
(circles), DB2 (triangles), DB4 (squares). Fig. 5. Coupling coefficient of an inclined-slot coupled waveguide.
TABLE |
RELATIVE ERROR FOR THEANGLED-WEDGE CASE 200 T T T T T T T
: o---o HO method for S 1;
Technique TE, TE; 17.5 | &---a HO method for S13 .
Hybrid (DB3, 50x50) -0533%  -0.089 % @8 HO method for Sss
Hybrid (DB3, 100x100) -0.0582%  -0.014% 150 [ ¢—e Reference [1] 7.7 .
FDTD (50x50) 0567%  -0.126 % —
FDTD (150x150) -0.063 % -0.033 % 125
1.0 T " 10.0
HO method Reference [1]
20 F - . 5—=e — 7.5
C A a—a
3.0 | [dB] *—e O - 5.0
40 X S s e
f[GHz — = s
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-6.0 Fig. 6. TheS-parameters of a six port junction.

20log|S13| is demonstrated and compared to the results of [1].
The remarkable agreement for various inclinations of the slot

3

-8.0 - and grid dimensions is obvious.
[GHZ] o Additionally, the magnitude of various-parameters of
8.0 das o a e a six-port cross junctiongy; = as = az = 15.799 mm,
9.0 9.2 9.4 9.6 9.8 100 b = by = by = 7.899 mm) is illustrated in Fig. 6. Finally,
Fig. 4. Coupling coefficient of an inclined-slot coupled waveguide. the variation ofS»;-parameter for a curvilinear iris-coupled

resonator, is analyzed in Fig. 7. The promising accuracy and
memory savings (almost 80% of Yee scheme) achieved by the
'O FOTD scheme, are easily realized. The structures are, also,

ducting wedges of angla = 5° is analyzed. Results of thentermmated by HO versions of existing PMLs [11], [12]

relative error, are presented in Table I. Obviously, the proposed
technique is equally efficient as in the degenerate case.

The coupling coefficientC, of an inclined-slot junction A novel methodology combining accurate higher-order
(3-D structure) is, also, computed via the proposed techniqeervilinear conventional and nonstandard FDTD concepts
In Figs. 4 and 5 the coupling from port 1 to port 3 defined asith a spatially-localized wavelet-based technique, has been

Next, a rectangular waveguide structure having the sal

V. CONCLUSIONS
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Fig. 7. TheS.;-parameter of an iris-coupled resonator.

(9]
presented in this paper. Implementing the former at the nondis-
continuity regions and the latter close to singularities, the
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