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Abstract—A generalized higher-order FDTD rendition of the
covariant and contravariant vector component theory for the
accurate modeling of complex waveguides in 3-D nonorthogonal
curvilinear coordinates, is presented in this paper. The novel algo-
rithm, which postulates conventional and nonstandard concepts,
embodies a spatially-localized Wavelet-Galerkin formulation in
order to efficiently deal with fast field variations in the vicinity
of arbitrarily-angled wedges. The proposed method is combined
with a pulsed excitation and enhanced unsplit-field PMLs thus,
achieving significant accuracy and suppression of all discretiza-
tion errors with a simultaneous diminishment of computational
resources, as indicated by various numerical results.

Index Terms—Curvilinear nonorthogonal coordinates, FDTD
methods, higher-order schemes, waveguides, wavelet transforms.

I. INTRODUCTION

WAVEGUIDE structures with arbitrarily-curved
cross-section, irregular shape and complex cou-

pling discontinuities, constitute an indispensable class of
components in many microwave device applications. The con-
tinuously increasing design requirements, render the advanced
numerical simulation of these systems an issue of intensive
scientific research [1], [2]. The FDTD method has been
implemented for the treatment of such devices, however the
method’s classical restriction to staircase approximations and
second-order differencing leads to inadequate discretization
and dispersion errors. For instance, the accurate modeling of
circular cross-section waveguides or arbitrarily inclined slots
by means of the usual Yee cells demands a highly refined mesh.
On the other hand, the traditional ways of excitation necessitate
the use of long uniform parts and therefore, excessive require-
ments in memory capacity and CPU time. Various efficient
techniques in combination with the FDTD method have been
introduced, using conformal mapping [3], generalized lattices
[4] and wavelet-based configurations [5], [6], although they do
not completely overcome the above shortcomings.

In this paper a new, fully nonorthogonal higher-order
FDTD methodology, founded on curvilinear conventional and
nonstandard concepts, is introduced for the accurate analysis
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of complicated 3-D waveguides. By postulating a higher-order
covariant/contravariant strategy, the technique implements a
self-adaptive compact central difference procedure to treat
the inevitably widened spatial stencils. For the simulation
of rapidly-varying local field disturbances near conductive
wedges, a Wavelet-Galerkin (WG) formulation is developed,
attaining advanced geometric versatility and coarse lattices
in the vicinity of demanding discontinuities. Furthermore, a
pulsed excitation performs remarkable grid savings by enabling
the use of enhanced unsplit-field PMLs sufficiently close to
any structural discontinuity. Performance verification of the
proposed method is accomplished via various microwave
device problems with complex cross-sections and coupling
slots. Their main goal is the accurate calculation of the cut-off
frequencies and the-parameters.

II. HIGHER-ORDERNONORTHOGONALFDTD CONCEPTS

A. Construction of the Higher-Order Schemes

The essential premises of the new FDTD methodology are
the higher-order (HO) finite-difference formulae, conventional
or nonstandard, the latter of which approximate the spatial and
temporal derivatives via the following operator

(1)

where belongs to the general coordinate system and
( ) is the 3-D nonstandard operator, given by

(2)

The is a correction function (of sinusoidal form) se-
lected to minimize the inevitable error generated by the deriva-
tive approximation in (1), as well as to significantly enhance
the technique’s dispersion and dissipation features. For a pre-
cise and consistent simulation of the continuous physical space
in terms of its discretized counterpart, the difference operators

in (2) are expressed by the following forms which completely
exploits the geometry of the elementary cell, as shown in Fig. 1,

(3)
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Fig. 1. The curvilinear finite difference operators. The numbers at the cell
faces determine the sign of summation.

(4)

(5)

For brevity, in (3)–(5) only the respective lattice space incre-
ments toward the directions are indicated (i.e., the no-
tation means ). The anal-
ogously significant parameters, mainly responsible for the
stable and well-posed profile of the algorithm, are calculated
via

(6a)

(6b)

with

(7a)

(7b)

while the coefficients , and are mathematically de-
scribed as functions of the wave number components, as

(8a)

(8b)

(8c)

According to the nonstandard regime, temporal discretization
receives the subsequent form

(9)

where denotes third-order time differentiation and
is the respective correction function. Time integration (except of

the leapfrog scheme) is performed by means of the fourth-stage
Runge–Kutta integrator, generally given by

(10)

in which is the spatial discretization matrix and the order of
the integrator. Being conditionally stable and unaffected by the
incorporation of compact operators, as its second-order coun-
terpart, this integrator performs 1.4 times more efficiently than
the fourth-order leapfrog one.

Another prominent attribute of the HO curvilinear FDTD
schemes is the widened spatial stencil near perfectly con-
ducting interfaces and absorbing walls. To circumvent this
difficulty, a general class of self-adaptive compact operators is
presented, which guarantees the thorough modeling of complex
applications. Specifically, they can be expressed (in central or
nonsymmetric version) by the Hermite formula

(11)

where , , are unknown calculable real coefficients.

B. Treatment of the Curvilinear Div–Curl Problem

The strong dependence of every field quantity—involved in
the curvilinear form of Maxwell’s equations—on the choice
of the basis system plays a crucial role in the consistency of
the numerical solution, since an improper selection may give
rise to Cristoffel symbols, that cannot be accurately computed
[7]. To derive a consistent solution of this strenuous div–curl
problem, we develop a new algorithm incorporating a fully
conservative HO rendition of the covariant/contravariant theory,
which considers all metric terms. Its main idea is the use of
a Helmholtz-type decomposition that computes the desired
electric or magnetic vector via the projection of the curl onto
the space of divergence-free vectors [8].

Assuming that the computational domain is described by
a general nonorthogonal right-handed curvilinear coordinate
system and that this mapping is smooth enough, any
vector can be decomposed with respect to the contravariant

, , or the covariant , , base system. Therefore,
the curl of vector can be computed as

(12)
The quantities denote respectively the contravariant and
covariant components of which, due to their reciprocity, sat-
isfy the relation ( is the Kronecker’s delta).
The metrical coefficients of the coordinate system are
defined by , and

with a cyclic permutation of indices .
Therefore, the curl of vector can be computed

(13)
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Derivative approximation in (13), yields an accurate HO
curvilinear FDTD curl operator which is subsequently applied
to Maxwell’s equations. For illustration, the general matrix
form of Ampere’s law becomes

(14)

where denotes the unknown covariant electric components
and derivative and metric tensor operators, respectively.
Thus, the curvilinear div–curl problem which consists of finding
a vector field assuming that its curl and its divergence are
known, is efficiently treated by our method.

Finally, the stability criterion of our method becomes

with

(15)

III. FDTD–WAVELET-GALERKIN FORMULATION

The novel algorithm also allows accurate treatment of field
singularities, such as conductive wedges, since it embodies the
spatially-localized FDTD–Wavelet-Galerkin technique [9]. Ac-
cording to the latter, the computational domain is divided into
regions of sharp (in the vicinity of the discontinuities) and re-
gions of smooth field transitions (rest of the domain). Each
field component in the former area, analyzed by the Wavelet-
Galerkin technique, is expanded in a set of Daubechies’ scaling
functions [10] as

(16)

where the terms correspond to any ( , ,
) node of the grid at , is an appropriate

scaling function, herein selected to be Daubechies’, and
the Haar scaling function. Substitution of (16) into Maxwell’s
curl equations and implementation of the Galerkin Weighted
Residuals procedure lead to a set of WG equations that are very
similar to those of the FDTD method. For example, the 3-D
expression (similarly for the others) at time step is

(17)

In (17), are coefficients that depend only on the scaling
function selected [9]. On the contrary, the rest of the computa-
tional domain, where singularities are absent, is treated by the
more convenient, linear FDTD method.

The coexistence of these two efficient techniques at the inter-
face is straightforward, on condition that spatial and temporal
increments are equal, an issue that is easily attained. Thus, up-
dates of field components near the interface requires samples
from both FDTD and WG areas. Such a treatment causes no in-
consistency or instability, avoids unnecessary complications and

Fig. 2. Variation of the relative error vs grid size. An increase in the number
of vanishing moments,N , enhances the solution’s accuracy.

maintains the enhanced accuracy. Thus, the overall time needed
for the new scheme to obtain an accurate solution, is notably
decreased compared to the one needed for the pure WG or the
standard FDTD methods.

Evidently, when the FDTD–WG technique is efficiently
combined with the proposed HO method, an even greater
reduction of the computational resources—with simultaneous
significant suppression of dispersion, dissipation and anisotropy
errors—is attained. Particularly, the lattice becomes very coarse
without loss of accuracy, since the hybrid scheme allows
significant reduction of the grid around the discontinuities and
the HO method decreases that of the rest of the domain. This is
extremely important in 3-D waveguide structures, which for an
accurate analysis, normally require dense grids and very long
FDTD simulation procedures.

IV. NUMERICAL RESULTS

The implementation of the proposed technique to diverse 2-D
and 3-D waveguide problems where discontinuities occur, ver-
ified its merits and enhanced accuracy. It is to be mentioned
herein that the excitation of the 3-D structures is performed by a
pulsed modulated process which imposes the source plane sev-
eral cells away from the ABC’s plane in order to fully separate
incident and reflected fields. Considering a distance ofcells,

is expressed as

FDTD

(18)
where represents the pulse’s spatial profile.

The first application involves a 2-D structure (embedded pic-
ture in Fig. 2), the TM (Fig. 2) and TE (Fig. 3) mode reso-
nant frequencies of which are computed via several FDTD and
FDTD–WG formulations. The essential reduction of the grid
size and hence of the overall computational time is obvious as
compared to the FDTD method, given a constant error level.
Furthermore, indicative time reduction factors (rf) clearly reveal
the decrease of the computational resources.
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Fig. 3. Error comparison of resonant frequencies as a function of time: FDTD
(circles), DB2 (triangles), DB4 (squares).

TABLE I
RELATIVE ERROR FOR THEANGLED-WEDGE CASE

Fig. 4. Coupling coefficient of an inclined-slot coupled waveguide.

Next, a rectangular waveguide structure having the same
format as that of Figs. 2 and 3, but with two perfectly con-
ducting wedges of angle is analyzed. Results of the
relative error, are presented in Table I. Obviously, the proposed
technique is equally efficient as in the degenerate case.

The coupling coefficient, , of an inclined-slot junction
(3-D structure) is, also, computed via the proposed technique.
In Figs. 4 and 5 the coupling from port 1 to port 3 defined as

Fig. 5. Coupling coefficient of an inclined-slot coupled waveguide.

Fig. 6. TheS-parameters of a six port junction.

is demonstrated and compared to the results of [1].
The remarkable agreement for various inclinations of the slot
and grid dimensions is obvious.

Additionally, the magnitude of various -parameters of
a six-port cross junction, mm,

mm) is illustrated in Fig. 6. Finally,
the variation of -parameter for a curvilinear iris-coupled
resonator, is analyzed in Fig. 7. The promising accuracy and
memory savings (almost 80% of Yee scheme) achieved by the
HO FDTD scheme, are easily realized. The structures are, also,
terminated by HO versions of existing PMLs [11], [12].

V. CONCLUSIONS

A novel methodology combining accurate higher-order
curvilinear conventional and nonstandard FDTD concepts
with a spatially-localized wavelet-based technique, has been
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Fig. 7. TheS -parameter of an iris-coupled resonator.

presented in this paper. Implementing the former at the nondis-
continuity regions and the latter close to singularities, the
novel scheme has the ability to efficiently deal with waveguide
discontinuity problems achieving high accuracy, significantly
reduced dispersion errors and remarkable resource savings.
Verification of the above merits is attained via numerical
treatment of various complex waveguides.
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