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Nondiagonally Anisotropic PML: A Generalized
Unsplit Wide-Angle Absorber for the Treatment of

the Near-Grazing Effect in FDTD Meshes
Nikolaos V. Kantartzis, Student Member, IEEE, Traianos V. Yioultsis, Theodoros I. Kosmanis, Student Member, IEEE,

and Theodoros D. Tsiboukis, Senior Member, IEEE

Abstract—A new generalization of the PML with wide-angle ab-
sorption is presented, for the efficient truncation of FDTD lattices.
The proposed unsplit-field layer uses a nondiagonal symmetric
tensor anisotropy and via an appropriate parameter selection
achieves notable attenuation rates in the case of near-grazing
angles. Hence, it can be placed much closer to large structures.
Improved accuracy and lower dispersion errors are attained via
higher-order FDTD schemes with regular and non-Cartesian
lattices constructed by hexagonal or tetradecahedral cells. Finally,
Ramahi ABC’s are invoked for the absorber’s termination. Nu-
merical results, addressing wave attenuation at grazing incidence,
prove the efficiency of the proposed PML.

Index Terms—Electromagnetic scattering, FDTD methods, nu-
merical analysis, perfectly matched layers.

I. INTRODUCTION

T HE ADVENT of the Perfectly Matched Layer (PML) [1]
for the treatment of electromagnetic scattering and radi-

ation problems, had a decisive impact on the quality and per-
formance of numerical algorithms and specifically the FDTD
method [2], [3]. However, several shortcomings have been de-
tected, like the inadequate absorption of evanescent waves, the
dispersion and anisotropy errors, as well as the near-grazing in-
cidence effect. Over the recent years, various techniques have
been introduced. The physical interpretation of the PML using
complex coordinate stretching is given in [4], [5]. Moreover,
other schemes based on uniaxial tensor PML mapping in rect-
angular cells, have been presented for the FEM [6], [7] and the
FDTD method [8]–[12], while [13] introduces an interesting
noncubic absorbing layer. Finally, a higher-order reflectionless
sponge layer is discussed in [14].

Lately, a generalized nondiagonal PML with wide-angle ab-
sorption has been introduced and applied in FEM scattering
analysis [15]. The fundamental attributes of this novel absorber
are the fully nondiagonal symmetric complex tensors and its
ability to model waves with grazing incidence. In this paper,
we propose a new completely Maxwellian formulation of this
anisotropic PML for the 3-D FDTD method, to avoid the non-
physical field splitting. Theoretical analysis reveals that an ap-
propriate choice of its parameters yields significant absorption
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in the case of grazing incidence, where existing approaches lack
to provide acceptable annihilation. The dispersion errors are
suppressed via efficient higher-order FDTD (conventional or
nonstandard) schemes in regular and non-Cartesian grids with
hexagons [13] and tetradecahedra. Temporal integration is alter-
natively performed by the Runge–Kutta integrator, while Com-
plementary Operators (COM) [16] are used for the termination
of the absorber. Finally, the proposed PML is validated through
diverse simulations.

II. THEORY OF THENONDIAGONALLY ANISOTROPICPMLS

The novel PML is composed of an artificial anisotropic ma-
terial, characterized by fully nondiagonal symmetric complex
constitutive tensors, written in the form of

(1)

The parameters in (1) must be defined, so that the medium
is reflectionless for plane waves of any incidence angle. In the
uniaxial PML, parameters are obtained by requiring that the re-
flection coefficient is zero for every angle of incidence [6]. In
the case of nondiagonal tensor, the explicit derivation of this co-
efficient is a complicated task, though. We overcome this by en-
forcing thea priori reflectionless character of the layer, which
along with the boundary conditions and the dispersion relation,
results in the unknown PML parameters.

We begin with Maxwell’s curl equations, which, due to
the nondiagonal tensor, are strongly coupled. Their solution
in terms of the wave number, is very difficult, and leads to
odd and even modes to be considered. Hence, we assume no
reflection from the interface (Fig. 1) and then apply the proper
tangential/normal continuity conditions. For a TE wave, the
incident and transmitted electric fields are

with (2)

(3)

in which the reflected field is by definition zero and the nondi-
agonal tensor introduces a-component in (3). If tangential
components are phase matched, we obtain

(4)

0018–9464/00$10.00 © 2000 IEEE
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Fig. 1. Plane wave incidence on the medium-PML interface.

Substitution of (2) and (3) to Maxwell’s equations provides
the magnetic incident and transmitted waves

(5)

(6)

where the primed symbols are the elements of tensor, ar-
ranged in a way similar to (1). Likewise, boundary conditions
are enforced to the magnetic field intensity(tangential con-
tinuity) and flux density (normal continuity). Amplitude and
phase matching, give

(7)

The dispersion relation can now be found by decomposing
(5) along with the aforementioned boundary conditions. Since
a diagonal decomposition is not feasible due to algebraic com-
plexity, the whole procedure can be further simplified if we ex-
ploit thea priori expressions (2), (3). Consequently,

(8)

Enforcing (7) to (8) the set of constraints among the PML
parameters is fully completed with the relations

(9)

The final form of tensor (1), which renders the medium re-
flectionless, is derived by combining (8) with (7) and (9),

(10)

For clarity, we have set in order to have the same layer
properties toward directions on the transversal plane. As it can
be observed, (10) involves two complex parameters (four real

(a) (b)

Fig. 2. (a) Structure of the PML regions. (b) Hexagonal staggered lattice.

degrees of freedom) which can be properly selected, without
loss of generality, to be of the following form

with (11)

where can be considered the layer’s conductivity anda
parameter controlling the angle of propagation. Transmission
inside PML is proven to be described by

(12)

with an angle of .
Parameter plays an important role in the PML annihilation

mechanism. If , the damping factor in (12) is further
enhanced. Contrary to standard PML’s, where the cosine
term is negligible for near-grazing incidence, the proposed
scheme achieves considerable attenuation, since the new sine
term is maximized. Moreover, the PML behavior is improved
at all intermediate angles. Wide-angle absorption is very
advantageous in the analysis of large structures as it enables
the placement of PML closer to the scatterer, with an obvious
reduction of the computational burden.

III. FDTD I MPLEMENTATION OF THE NEWPMLS

Let us consider a linear, isotropic medium, surrounded by
nondiagonal PML’s, constructed in two different ways. First,
with the scheme of [8] and second with the one shown in
Fig. 2(a). Its merit is the absence of overlapping PML areas
such as edge or corners (requiring special treatment), thus
simpler FDTD analysis. From numerical simulations, both
techniques were found equivalently efficient. Since the former
is known, we will focus on the study of the latter.

A. Construction Procedure and Time-Domain Simulations

The PML layers in Fig. 2(a), are structurally similar. Their
difference is the cyclic permutation of the elements in (10). Con-
sider layer PMLz. Due to the nondiagonal form of the tensor,
Maxwell’s equations for the (or ) components result in a

linear system, the solution of which gives

(13)

(14)
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The FDTD analogues of (13), (14) are derived through the
proper Fourier transform and . Hence,

(15)

(16)

where and .
Notice that if , (15) and (16) reduce to the unsplit-field

PML expressions. The time integral, , of the -component
of , can be viewed as a field-dependent source. Its numerical
computation is performed via the trapezoidal rule

(17)

in which superscripts denote the time at which the respec-
tive quantity is calculated. For instance, (15) becomes

(18)

where is defined and updated by

with

(19)
As an alternative, the auxiliary two-step equation technique

was also utilized. According to this algorithm, the evaluation
of the time integral is avoided, at the expense of an additional
equation which updates the respective flux density component
introduced for the substitution of the integral term.

B. Non-Cartesian Lattices and Higher-Order Schemes

The basic feature of the non-Cartesian grids is the approxima-
tion of spatial operators by data located not only along the axes,
but also on other positions. Thus, derivatives are precisely cal-
culated. We consider the 2-D hexagonal mesh based on 7-point
stencils (tetradecahedral in 3-D), as in Fig. 2(b). The primary
grid is discretized into hexagons, composed of equilateral trian-
gles at the edge centers of which three normalcomponents
are defined. The dual grid comprises canonical hexagons too
and components are placed at face centers. By relating the
six nearest neighbors, we obtain the equation as shown in (20)
at the bottom of the page.

To achieve superior accuracy, higher-order conventional
and nonstandard FDTD schemes are combined with the above
grids. Their advantages are the introduction of additional
attenuation terms, toward different directions, in the PML, and

the drastically limited number of points per wavelength (almost
1/250 that of Yee). The nonstandard derivatives are

where the new 3-D operator is defined as

(21)
The , are proper correction functions,are pa-

rameters which render stability and well-posedness, whileare
difference forms constructed for error minimization. The wider
spatial stencils are treated by compact operators, whereas the
fourth-order Runge–Kutta integrator is used as an alternative
time integration scheme. It is mentioned that one of the motives
for the choice of the higher-order (HO) FDTD schemes is the
efficient treatment of the resulting odd and even modes. Finally,
the accurate COM is imposed on the outer PML boundaries in-
stead of the usual PEC walls.

IV. NUMERICAL RESULTS

The proposed PML’s are verified via 2-D and 3-D FDTD sim-
ulations regarding scattering from different materials. Compu-
tations are performed in a finite domain, embedded in the
center of a much larger reference domainterminated by the
second-order Ramahi ABC’s. Excitation is provided by a com-
pact smooth pulsed electric source (TM case)

(22)
supported in with nsec. Domain is dis-
cretized by an initial cubic grid with a cell size of 0.012 m and a
time step of 85% the Courant limit. It is stated that the HO and
hexagonal FDTD concepts enable the use of coarser grids.

In Figs. 3 and 4 we show the global and local errors induced
by uniaxial (D) and nondiagonal (ND) PML’s for a domain

with a scatterer of electrical size 1.7 and
relative permittivity 2.5. Domain is large enough to allow for
a causal isolation. The scatterer-PML distance is initially .
As it can be observed, a proper choice of tensor parameters gives
a notable reduction of reflection. Such global errors ( or
better) are highly desirable, since they correspond to an actual
normalized local error of – . Moreover, although the
error is shown for 500 steps, we have not encountered any in-
stabilities for larger simulation times. We also emphasize that

(20)
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Fig. 3. Global error created by uniaxial (D) and nondiagonal (ND) PML’s for
different numbers of layers, higher-order (HO) schemes and COM backing.

Fig. 4. Local error created by the uniaxial and nondiagonal PML schemes for
different numbers of layers and PML parameters.

one of the most prominent attributes of PML is its remarkable
stability properties, as opposed to local ABC’s, without any ad-
ditional convergence requirement, except of that imposed by the
Courant condition.

The behavior of the proposed PML’s versus their distance
from the scatterer, is studied in Fig. 5, where the maximum value
of the global error is shown for every simulation. A 2-D domain

is considered and a PEC scatterer of electrical
size 1.8 is incorporated. The combination of the HO nonstan-
dard schemes together with the hexagonal meshes, are used for
the PML realization. Results demonstrate a serious reduction of
the error especially with the non-Cartesian lattices. We stress the
improvement of maximum global error at , which implies
remarkable savings in computational resources. As a result, the
use of the ND-PML, especially with HO differencing schemes
can decrease its distance from the scatterer at the very low level
of , i.e. one cell only. However, a suggested distance would
be , where the error is one or two orders of magni-
tude lower.

Scattering from a PEC cube of electrical size equal to 2, illu-
minated by a plane wave, is also examined. The distance of the

Fig. 5. The maximum global error vs. distance from the scatterer for various
numbers of layers and diverse differencing (HO, hexagonal) schemes.

Fig. 6. Normalized surface current distribution along anE-plane loop.

absorber from the cube is and the near-field surface current
distribution, along an -plane loop, is given in Fig. 6. The HO
ND-PML is proven to be very powerful, stable and convergent
especially at the back of the cube (point D), where the accurate
field computation (with the ABC so closely imposed) would be,
otherwise, very difficult.

Finally, the high near-grazing incidence absorption of the
ND-PML’s is investigated in the following experiment. By
properly adjusting the simulation time, we assume reflection
from one side of a 2-D domain and neglect it from its other
sides. The source (22) is positioned two cells above the
boundary and an observation point is selected so that waves
impinge on the boundary with highly oblique angles (greater
than 84 degrees). The depth of the absorber is . It is
evident from Fig. 7 that the ND-PML presents a very promising
performance for a wide range of frequencies.

V. CONCLUSIONS

A new generalized nondiagonally anisotropic PML for
wide-angle absorption in FDTD scattering analysis has been
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Fig. 7. Frequency spectrum of the global error for various PML’s and different
discretization (HO, hexagonal) or lattice termination schemes.

presented in this paper. The absorber is constructed through a
Maxwellian formulation, while its properties can be selected to
provide high attenuation even for the case of the near-grazing
incidence, thus being suitable for the treatment of large ob-
jects. Higher-order FDTD concepts and non-Cartesian lattices
enhance its accuracy and alleviate grid deficiencies. Numer-
ical results prove that the proposed PML offers an essential
reduction of domain truncation errors, exhibits sufficient

applicability to a variety of irregular boundaries, and requires
fairly low computational resources.
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