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Nondiagonally Anisotropic PML: A Generalized
Unsplit Wide-Angle Absorber for the Treatment of
the Near-Grazing Effect in FDTD Meshes

Nikolaos V. KantartzisStudent Member, IEEHTraianos V. Yioultsis, Theodoros |. Kosman#tudent Member, IEEE
and Theodoros D. TsiboukiSenior Member, IEEE

Abstract—A new generalization of the PML with wide-angle ab- in the case of grazing incidence, where existing approaches lack
sorption is presented, for the efficient truncation of FDTD lattices. tgo provide acceptable annihilation. The dispersion errors are
The proposed unsplit-field layer uses a nondiagonal symmetric g,,5rassed via efficient higher-order FDTD (conventional or
tensor anisotropy and via an appropriate parameter selection tandard) sch : | q _Cartesi ids with
achieves notable attenuation rates in the case of near-grazing nonstandard) schemes in regular and non _ar eS|an_ grl_ swi
angles. Hence, it can be placed much closer to large structures. hexagons [13] and tetradecahedra. Temporal integration is alter-
Improved accuracy and lower dispersion errors are attained via natively performed by the Runge—Kutta integrator, while Com-
higher-order FDTD schemes with regular and non-Cartesian plementary Operators (COM) [16] are used for the termination

lattices constructed by hexagonal or tetradecahedral cells. Finally, ; ; ;
Ramahi ABC's are invoked for the absorber’s termination. Nu- g{igg:g‘?’;ﬁ:’ioﬁga”y’ the proposed PML is validated through

merical results, addressing wave attenuation at grazing incidence,
prove the efficiency of the proposed PML.

Index Terms—Electromagnetic scattering, FDTD methods, nu- ll. THEORY OF THENONDIAGONALLY ANISOTROPICPMLS

merical analysis, perfectly matched layers. The novel PML is composed of an artificial anisotropic ma-
terial, characterized by fully nondiagonal symmetric complex

l. INTRODUCTION constitutive tensors, written in the form of

HE ADVENT of the Perfectly Matched Layer (PML) [1] _ a g u
for the treatment of electromagnetic scattering and radi- egr=p.=A=|g b h (2)
ation problems, had a decisive impact on the quality and per- w h ¢

formance of numerical algorithms and specifically the FDTD
method [2], [3]. However, several shortcomings have been de-The parameters in (1) must be defined, so that the medium
tected, like the inadequate absorption of evanescent waves,igheflectionless for plane waves of any incidence angle. In the
dispersion and anisotropy errors, as well as the near-grazingifiaxial PML, parameters are obtained by requiring that the re-
cidence effect. Over the recent years, various techniques h#gstion coefficient is zero for every angle of incidence [6]. In
been introduced. The physical interpretation of the PML usirtge case of nondiagonal tensor, the explicit derivation of this co-
complex coordinate stretching is given in [4], [5]. Moreove€fficientis a complicated task, though. We overcome this by en-
other schemes based on uniaxial tensor PML mapping in ref§rcing thea priori reflectionless character of the layer, which
angular cells, have been presented for the FEM [6], [7] and tB®ng with the boundary conditions and the dispersion relation,
FDTD method [8]-[12], while [13] introduces an interestingesults in the unknown PML parameters.
noncubic absorbing layer. Finally, a higher-order reflectionlessWe begin with Maxwell's curl equations, which, due to
sponge layer is discussed in [14]. the nondiagonal tensor, are strongly coupled. Their solution
Lately, a generalized nondiagonal PML with wide-angle atid terms of the wave number, is very difficult, and leads to
sorption has been introduced and applied in FEM scatteringd and even modes to be considered. Hence, we assume no
analysis [15]. The fundamental attributes of this novel absorb@flection from the interface (Fig. 1) and then apply the proper
are the fully nondiagonal symmetric complex tensors and #&&ngential/normal continuity conditions. For a TE wave, the
ability to model waves with grazing incidence. In this papeificident and transmitted electric fields are
we propose a new completely Maxwellian formulation of this ik (sin 8 mdcos B2 e
anisotropic PML for the 3-D FDTD method, to avoid the non- i = £o¢ shein frpeor 820 with - &y = wy/ie, (2)
physical field splitting. Theoretical analysis reveals that an ap- '
propriate choice of its parameters yields significant absorption E, = Eo(§ — he™tg)e I kerthoythe2), 3)

in which the reflected field is by definition zero and the nondi-
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Medium (g, p)

PMILz

Fig. 1. Plane wave incidence on the medium-PML interface.

(@) (b)
o ) . Fig. 2. (a) Structure of the PML regions. (b) Hexagonal staggered lattice.
Substitution of (2) and (3) to Maxwell's equations provides

the magnetic incident and transmitted waves . .
9 degrees of freedom) which can be properly selected, without

H; = 7  Eo(— cos 6;% + sin eié)e—jks(sin biztcos 0:2) () loss of generality, to be of the following form

cl=q—jo with ¢, 0>0, (11)
Ht = (ksn)_lEO . ..
) wheres can be considered the layer's conductivity apé
. { [—a/kz + <h_9 +u/> kl} % parameter c_ontrolling the angle pf propagation. Transmission
¢ inside PML is proven to be described by

/ . . .
_ |:g/k'z + <@ + h/) kac:| @ Et _ E(t)e—kscrz(cos 6; —u sin Gi)e—]ksqz(cos 6; —u sin 07-)7 (12)
C

/ h s iCheatk ) with an angle of; = tan=!{sin 6;/[¢(cos 6; — u sin 6;)]}.

+ [—“ k. + <T + C) kw} ze ST } ) Parametet, plays an important role in the PML annihilation

(6) mechanism. Ifu < 0, the damping factor in (12) is further
enhanced. Contrary to standard PML's, where the cosine
term is negligible for near-grazing incidence, the proposed
r]scheme achieves considerable attenuation, since the new sine
Brm is maximized. Moreover, the PML behavior is improved
at all intermediate angles. Wide-angle absorption is very
advantageous in the analysis of large structures as it enables
the placement of PML closer to the scatterer, with an obvious
k. = k,(cos 6; +u sin 8;)/a’. @) reduction of the computational burden.

where the primed symbols are the elements of teﬁsolr, ar-
ranged in a way similar to (1). Likewise, boundary conditio
are enforced to the magnetic field intenshly (tangential con-
tinuity) and flux densityB (normal continuity). Amplitude and
phase matching, give

uwh = gc,

The dispersion relation can now be found by decomposing !l FDTD IMPLEMENTATION OF THE NEWPMLS

(5) along with the aforementioned boundary conditions. Since| et us consider a linear, isotropic medium, surrounded by
a diagonal decomposition is not feasible due to algebraic coRpndiagonal PML's, constructed in two different ways. First,
plexity, the whole procedure can be further simplified if we exyith the scheme of [8] and second with the one shown in
ploit thea priori expressions (2), (3). Consequently, Fig. 2(a). Its merit is the absence of overlapping PML areas
such as edge or corners (requiring special treatment), thus
simpler FDTD analysis. From numerical simulations, both

i i techniques were found equivalently efficient. Since the former
Enforcing (7) to (8) the set of constraints among the PMig known, we will focus on the study of the latter.

parameters is fully completed with the relations

ak? + ck? + 2uk, k. = k2c ' (ac — u?) (be — R?).  (8)

5 2 A. Construction Procedure and Time-Domain Simulations
ac—u- =1, bc—h” =1. 9) o o .
The PML layers in Fig. 2(a), are structurally similar. Their
The final form of tensor (1), which renders the medium redifference is the cyclic permutation of the elements in (10). Con-
flectionless, is derived by combining (8) with (7) and (9), sider layer PMLz. Due to the nondiagonal form of the tensor,
Maxwell's equations for thés (or H) components result in a

(1+u?)ct w?e! u 3 x 3 linear system, the solution of which gives
A= u?ct (1+uH)c™t wl. (10) X 1
” ” c Jjwec T Ey y = (VX H)y y— Eu(V x H)., (13)

For clarity, we have sét = « in order to have the same layer . 1 2
properties toward directions on the transversal plane. As it can Jwek; = E(l +2u) (V x H).
be observed, (10) involves two complex parameters (four real —u[(V x H)z +(V x H),]. (14)
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The FDTD analogues of (13), (14) are derived through thbe drastically limited number of points per wavelength (almost

proper Fourier transform and = ¢’ /w. Hence, 1/250 that of Yee). The nonstandard derivatives are
WOuBny+ o' Bay = L[Fay —ul(®) —ugF.), (@5)  pmeg) = — (g - poo?) S gy
’ Tooen su(6t) \7 12 e 24t Tl
1
O E, = g{(l +2u?)[qF . + I(H)] —u[F. + F,]}.  (16) LS™'[f] = HLYL 1+ 3
hereF” = . : N o (A gy~ Fasay)
whereF = V x H andI(t) = o’ [ (V x H)_ dt'. , 35 5z \Jla—(52/2) o—(352/2) ) |

Notice that ifu = 0, (15) and (16) reduce to the unsplit-field
PML expressions. The time integrdk¢), of the z-component where the new 3-D operatds;;; (§h=éx, 36x) is defined as
of F', can be viewed as a field-dependent source. Its numerical

computation is performed via the trapezoidal rule L;,sth[f] = sk(léh) (Clpg)éh[f] + C2P§;2,)5h[f] + Czpff)gh[f]) )
nét n—1 (21)
/ F.dt! =) Flst+ 3F6t, (A7) Thes,(6t), si(Sh) are proper correction functionsare pa-
0 m=0 rameters which render stability and well-posedness, vyrale
in which superscripts:, » denote the time at which the respecdifference forms constructed for error minimization. The wider
tive quantity is calculated. For instance, (15) becomes spatial stencils are treated by compact operators, whereas the
fourth-order Runge—Kutta integrator is used as an alternative
E;L,JLI =(q— alét)E;L,y time integration scheme. It is mentioned that one of the motives
s¢ [Fm+o5 <0’5t 4 ) 0.5 for the choice of the higher-order (HO) FDTD schemes is the
+ = ¥ 2 # (18) efficient treatment of the resulting odd and even modes. Finally,
€ the accurate COM is imposed on the outer PML boundaries in-

—uo’ StWn—0-5
stead of the usual PEC wallls.

whereW, is defined and updated by
IV. NUMERICAL RESULTS

n—0.5
W05 = 3" FT with WIS = W08 4 oS, The proposed PML's are verified via 2-D and 3-D FDTD sim-
m=0 (19) ulations regarding scattering from different materials. Compu-

As an alternative, the auxiliary two-step equation techniqﬁ@t'Ons are performed in a finite domaiy embedded in the

was also utilized. According to this algorithm, the evaluatiofiS"te" of a much larger reference domairterminated by the

of the time integral is avoided, at the expense of an additiorrctﬁcond'order Ramahi ABC.:,S' Excitation is provided by a com-
equation which updates the respective flux density compon(i?t"f}ct smooth pulsed electric source (TM case)
introduced for the substitution of the integral term. 1 o 4r 6r
E,=— <12— 15 cos —t+ 6 cos —t — 3 cos —t) ,

B. Non-Cartesian Lattices and Higher-Order Schemes 320 T T T 22)

The basic feature of the non-Cartesian grids is the approxinsapported it € [0, 7] with 7 = 1 nsec. DomainA is dis-
tion of spatial operators by data located not only along the axesgtized by an initial cubic grid with a cell size 0of 0.012 m and a
but also on other positions. Thus, derivatives are precisely ctine step of 85% the Courant limit. It is stated that the HO and
culated. We consider the 2-D hexagonal mesh based on 7-ptiexagonal FDTD concepts enable the use of coarser grids.
stencils (tetradecahedral in 3-D), as in Fig. 2(b). The primary In Figs. 3 and 4 we show the global and local errors induced
grid is discretized into hexagons, composed of equilateral trigmy uniaxial (D) and nondiagonal (ND) PML's for a domain
gles at the edge centers of which three nordatomponents A = 2X x 2X\ x 2 with a scatterer of electrical size 1.7 and
are defined. The dual grid comprises canonical hexagons tedative permittivity 2.5. DomaiB is large enough to allow for
and E components are placed at face centers. By relating theausal isolation. The scatterer-PML distance is initi@ly .
six nearest neighbors, we obtain the equation as shown in (2@)it can be observed, a proper choice of tensor parameters gives
at the bottom of the page. a notable reduction of reflection. Such global errd&° or

To achieve superior accuracy, higher-order conventioriadtter) are highly desirable, since they correspond to an actual
and nonstandard FDTD schemes are combined with the aboegmalized local error 0£0—*-10—°. Moreover, although the
grids. Their advantages are the introduction of additionafror is shown for 500 steps, we have not encountered any in-
attenuation terms, toward different directions, in the PML, arstabilities for larger simulation times. We also emphasize that

OB, _ 2 | Hirare,i-oveo) = Hii-a/e, e T Herwm . | (20)
ot 3e0bh | —Ha(—(12), 5 + Hyrmy, i4v374) — Hae—1 4y, i—(v3/4)
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F_ig. 3. Global error created by uniaxial (D) and nondiagonal (ND) PML"s for
different numbers of layers, higher-order (HO) schemes and COM backing. Fig. 5. The maximum global error vs. distance from the scatterer for various
numbers of layers and diverse differencing (HO, hexagonal) schemes.

—2
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Position . 0.0 | I L | ! | !

A B C D

Fig. 4. Local error created by the uniaxial and nondiagonal PML schemes for

different numbers of layers and PML parameters. . . T
y P Fig. 6. Normalized surface current distribution alongieiplane loop.

one .o.f the most_ prominent attributes of PML, IS 't.s remarkabIelosorberfrom the cubelsl A and the near-field surface current
stability properties, as opposed to local ABC's, without any ad-

. . . istribution, along art’-plane loop, is given in Fig. 6. The HO
ditional convergence requirement, except of that imposed by :
Courant condition -PML is proven to be very powerful, stable and convergent

The behavior of the proposed PML's versus their distan eespemally at the bac_k of the cube (point D?’ where the accurate
. LT . 1eld computation (with the ABC so closely imposed) would be,

from the scatterer, is studied in Fig. 5, where the maximum valu . e
otherwise, very difficult.

of the global error is shown for every simulation. A 2-D domain Finally, the high near-grazing incidence absorption of the

A=22Xx%x2.2)is considered and a PEC scatterer of electrith:)_pl\/”_,S is investicated in the following experiment. B
size 1.8 is incorporated. The combination of the HO nonstan- 9 g exp - BY

dard schemes together with the hexagonal meshes, are use&%?erly ad_Justmg the S|mulat_|on time, we assume r_eflectlon
rﬁm one side of a 2-D domain and neglect it from its other

the PML realization. Results demonstrate a serious reductlon? es. The source (22) is positioned two cells above the

the error especially with the non-Cartesian lattices. We stress Ene . S
. ) S oundary and an observation point is selected so that waves
improvement of maximum global error &tl A, which implies .

remarkable savings in computational resources. As a result, kﬁglnge on the boundary with highly oblique angles (greater

use of the ND-PML, especially with HO differencing schemes an 84 degre_es). The depth of the absorbe0.is\. It IS
o ewpent from Fig. 7 that the ND-PML presents a very promising
can decrease its distance from the scatterer at the very low leve . :
. : rformance for a wide range of frequencies.

of 0.1}, i.e. one cell only. However, a suggested distance wouﬁg
be0.15 + 0.2\, where the error is one or two orders of magni-
tude lower.

Scattering from a PEC cube of electrical size equal to 2, illu- A new generalized nondiagonally anisotropic PML for

minated by a plane wave, is also examined. The distance of thiele-angle absorption in FDTD scattering analysis has been

V. CONCLUSIONS
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(1]

] [2

3]

[4]

[8]

=03, 6'=3.5, g=1.5 (6]
-1 N P L R PR S SO SN S RS

T 05 1.0 15 2.0 25 3.0 35 [7]

Frequency (GHz)
[8l

Fig. 7. Frequency spectrum of the global error for various PML'’s and different [9]
discretization (HO, hexagonal) or lattice termination schemes.

[10]
presented in this paper. The absorber is constructed through[lall
Maxwellian formulation, while its properties can be selected tg12]
provide high attenuation even for the case of the near—grazin[q3]
incidence, thus being suitable for the treatment of large ob*
jects. Higher-order FDTD concepts and non-Cartesian latticeig4]
enhance its accuracy and alleviate grid deficiencies. Numer-

) 4351
ical results prove that the proposed PML offers an essenti
reduction of domain truncation errors, exhibits sufficient[16]

911

applicability to a variety of irregular boundaries, and requires
fairly low computational resources.
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