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ABSTRACT 
 

Course timetabling is a multi-dimensional NP-Complete problem encountered virtually in every educational institute 

throughout the world.  Evolutionary Algorithms (EAs) have been applied to the course-timetabling problem since early 90s. 

Solving this problem with EAs, selection traditionally operates on the entire population. This paper studies the effects of local 

selection EAs on the course-timetabling problem. Here the decision for parent choice is performed locally only. Local 

selection algorithms operate in parallel on small overlapping neighborhoods. We tested a lot of different configurations in 

order to enhance our understanding of the effects of neighborhood size and shape. 
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1. INTRODUCTION 

The problem of creating the proper course timetable can be viewed as a multi-dimensional 

assignment problem in which students, teachers (or faculty members) are assigned to courses, course 

sections or classes; events (individual meetings between students and teachers) are assigned to classrooms 

and times. Problem definition and terminology varies from one institute to another (Carter and Laporte , 

1998). The timetable must satisfy a number of constraints that concern the capacity and suitability of the 

rooms, the availability and suitability of the instructors, the relation with other courses, etc. 

There have been several attempts to solve this type of problem with Evolutionary Algorithms (EAs) 

(Adamidis and Arapakis (1999); Burke, Newall, and Weare (1996); Paechter et al. (1998); Paechter, 

Rankin and Cumming (1994); Ross, Corne and Fang (1994)). 

Selection in EAs usually operates globally on the entire population. In nature we rarely find global 

mating pools. This leads to the introduction of a continuous population structure that is a population of 

uniformly distributed individuals over a geographic region, which might be linear planar or spatial. In this 

context, the selection of parents for recombination and the selection of individuals for survival are 

restricted to a neighborhood i.e. geographically nearby individuals. Genetic information propagates 

through overlapping neighborhoods and thus this model is also referenced as diffusion model to reflect 

this process. They‟re also referred as finely-grained or massively parallel EAs since they can be easily 

implemented on a massively parallel system. 

Diffusion models have already been introduced in EAs; some examples of these can be found in 

Collins and Jefferson (1991); De Jong and Sarma (1995); Gorges-Schleuter (1998); Sarma and De Jong 

(1996, 1997). Besides their nice properties concerning parallelization, the local selection EAs have a 

different behavior compared to their global selection counterparts. It is claimed that they promote global 

diversity and especially in those cases where we have a multi-modal, nonlinear environment frequently 

give better results Collins and Jefferson (1991); Gorges-Schleuter (1998). 



 4 

In order to implement such systems one must decide on the neighborhood size, its shape, and the 

particular selection algorithm to be used. Only little research has been done on diffusion models applied 

to timetabling problems. For example, Turner et al. (1996) describe the “tribe method”, a system that 

improves the efficiency with which an EA can obtain multiple distinct solutions to a timetabling problem. 

 

2. PREVIOUS WORK ON EVOLUTIONARY COURSE TIMETABLING 

The basic element of a course timetabling problem is a set of events E = {e1, e2,...,en}. There are 

also a set of times T = {t1, t2,...,ts }, a set of places P = {p1, p2,...,pm }, and a set of „agents‟ A = {a1, a2,...,at 

}. Each member of E is a unique event requiring assignment of a time, a place, and an agent (lecturer, 

tutor, technician etc.). An assignment is a four-tuple (e,t,p,a) such as e  E, t  T, p  P, and a  A, with 

the interpretation “event e starts at time t in place p involving agents a”. A lecture timetable is simply a 

collection of n assignments, one for each event. The problem is to find a timetable that satisfies, or 

minimally violates a collection of constraints Ross, Corne and Fang (1994). 

There are several kinds of constraints, the most common being an „edge constraint‟ between two 

events, which states that a given pair of events must not overlap in time. There are several other kinds of 

constraints such as unary, capacity, and agent constraints (Corne, Ross and Fang (1994); Ross, Corne and 

Fang (1994)). 

In applying an EA to a problem, central considerations are the choice of representation, the design 

of the fitness function and the genetic operators used to evolve the population. 

There are essentially two different types of representation that have been used in evolutionary 

timetabling. The direct representation encodes the actual timetable, where an individual is a vector of 

symbols nxe, where e is the number of events and n is the number of genes for each event (Corne, Ross 

and Fang (1994); Ross, Corne and Fang (1994)). The implicit representation, on the other hand, encodes a 

set of instructions as to how the timetable should be build (Corne, Ross and Fang (1994); Ross, Corne and 

Fang (1994)). 
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The algorithm used has its origins in our work presented in Adamidis and Arapakis (1999), where 

we used a “panmictic” population. The problem remains the same i.e. the course timetable of the Dept. of 

Informatics of Alexander TEI of Thessaloniki. 

In brief, each individual represents an entire weekly timetable and is initially assigned random 

values within some range. An individual is an array nxe, where e is the number of events and n is the 

number of genes for each event. There are 180 different events to be scheduled (columns of the array). An 

individual may be created using both recombination and mutation, or one of them, or no operator at all. 

We use multiple-point recombination and the number of cutting points depends on the number of events.  

The mutation operator used has the advantage of avoiding creating unfeasible solutions. It replaces the 

value of a gene with some allelic value within the proper range. We‟ve also used elitism. 

 

3. LOCAL SELECTION EVOLUTIONARY ALGORITHMS 

One way to think of the local selection methods is that they introduce a rather crude distance bias in 

which individuals within the neighborhood are “visible” and those outside “invisible” from the point of 

view of interaction. One can imagine other forms of distance bias in which the probability of interaction 

decreases as a function of the distance. This induces both a neighborhood size and shape. 

There are a variety of local selection EAs that have been proposed and studied (see, for example 

Collins and Jefferson (1991); De Jong and Sarma (1995); Gorges-Schleuter (1998); Sarma and De Jong 

(1996, 1997)). In these EAs the population is distributed over a grid-like topology, and selection, mating, 

reproduction, etc. operate in a distributed fashion within local overlapping neighborhoods. These spatially 

structured EAs behave quite differently than the more familiar and better understood “panmictic” EAs 

where interactions are allowed between any individuals. The main source of these differences is due to 

the effects of local (rather than global) selection (Sarma and De Jong (1996, 1997)). 

We assume a two-dimensional toroidal grid as the spatial population structure. Each grid point 

contains one individual of the population. The EA selects parents from the neighborhood of that grid 
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point in order to produce offspring, which replace the current individual assigned to that grid point. The 

overlapping neighborhoods offer a means for migration of genetic information throughout the whole 

population. The amount of overlap (and as a result the flow of information) is a function of the 

neighborhood size and shape. 

 

FIGURE 1: NEIGHBORHOOD SHAPES 

 

Figure 1 illustrates three neighborhood shapes used in this paper. The number in parenthesis gives 

the size of the neighborhood. We used several neighborhood sizes ranging from 5 to 19 for cross-shaped 

neighborhoods, 9 to 100 for square-shaped and 3 to10 for line-shaped neighborhoods. 

The selection methods used on the local neighborhoods are typically the same ones used for 

“panmictic” EAs. In this paper we use tournament selection. 

 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

4.1 Implementation 

Some problem constraints are already encoded in the representation of the problem (Adamidis and 

Arapakis (1999)). The constraints used and the penalty values for each constraint violation are given in 

Table 1. A view of the interface and the whole set of available constraints (some of them used and some 

not) are shown in Figure 2. 

The algorithm terminates when a number of generations is completed, or the global optimum is 

reached (i.e. no constraints are violated), or when the best individual is not improved for a certain number 

of generations. In all our experiments the algorithm terminates when the best individual does not improve 

for 500 generations. 
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TABLE 1: CONSTRAINTS AND PENALTY VALUES 

 

Description Penalty values (0-1) 

Agent 1 is the same as agent 2 0.8 

Different agents in couple teachings 0.9 

Couple teachings on the same day 0.6 

Two events of the same semester overlap in time 0.5 

Place overlap 0.9 

More than one event assigned to an agent at the same time 0.9 

Each hour that exceeds an agent‟s weekly hour limit 0.5 

An empty hour in the daily schedule of a semester 0.1 

 

 

 

FIGURE 2: THE USER INTERFACE 

 

We use integer-valued encoding of each gene, with values within some range. The genetic operators 

used are recombination and mutation. We also use multiple-point recombination. The mutation operator 

used here replaces the value of a gene with some allelic value within the proper range for the specific 
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assignment. More on the representation and the operators used in this paper, as well as on the evaluation 

function can be found in Adamidis and Arapakis (1999). 

The neighborhood shapes that we used here as mentioned earlier are: Cross, Square, and Line (see 

Figure 1). For each shape we used 8 different sizes (24 different neighborhood configurations): 

 Cross: 5, 7, 9, 11, 13, 15, 17, 19 

 Square: 9, 16, 25, 36, 49, 64, 81, 100 

 Line: 3, 4, 5, 6, 7, 8, 9, 10 

 

FIGURE 3: SETTING NEIGHBORHOOD SHAPE AND SIZE 

 

Figure 3 shows the programming interface that allows us to choose the neighborhood shape and 

size. For each neighborhood configuration we used 4 different recombination and mutation rates. Table 2 

gives the different operator configurations. 

 

TABLE 2: CONFIGURATIONS OF OPERATOR RATES 

Rate configuration Mutation Recombination 

1 0.2 0.8 

2 0.4 0.6 

3 0.6 0.4 

4 0.8 0.2 

 

4.2 Experimental Results 

We used three different population sizes: 50, 100, 150 individuals. (The population size with 50 
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individuals can be tested only for the first three neighborhood sizes). 

The results from the different local selection configurations are compared with the global selection 

(“panmictic”) algorithm. 

Figures 4, 5, and 6 show the effect of different operator rates and different population sizes on the 

behavior of the three neighborhood shapes, for half of the used neighborhood sizes. The behavior is the 

same for the rest neighborhood sizes as well. The results are the average of 50 runs. We observe that we 

get better results with the fourth operator rate configuration, which has a high mutation rate and a small 

recombination probability. This agrees with the behavior of the global selection algorithm (“panmictic” 

population), which has also been reported by Adamidis and Arapakis (1999). Better results are also 

obtained using the bigger population size with 150 individuals. 

 

FIGURE 4: BEHAVIOR OF THE CROSS SHAPED NEIGHBORHOOD 
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FIGURE 5: BEHAVIOR OF THE SQUARE SHAPED NEIGHBORHOOD 

 

FIGURE 6: BEHAVIOR OF THE LINE SHAPED NEIGHBORHOOD 
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A question that we can ask is: “Is it better to use dense or sparse neighborhood shapes?” Figure 7 

illustrates the behavior of the three neighborhood shapes with the same size (9 individuals), for the two 

operator rate configurations with best performance (i.e. 3 and 4), and for two population sizes (100 and 

150 individuals). We observe that the average performance of sparse neighborhood shapes is better since 

line neighborhood has a better performance than cross and square shaped neighborhoods. The densest 

shape (square) has the worse performance. 

 

FIGURE 7: BEHAVIOR OF THE LINE SHAPED NEIGHBORHOOD 

 

Another issue is the neighborhood size. Our results (Figure 8) show no clear advantage of the use of 

a large or small neighborhood size, and this is true for all neighborhood shapes either sparse or dense. 

Even more, local selection algorithms do not show a better performance over global selection algorithms 

on the timetabling problem. 
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FIGURE 8: EFFECT OF NEIGHBORHOOD SIZE 

 

 

5. DISCUSSION 

This paper presents an experimental study of the effects of local selection EAs on a real course 

timetabling problem using three different neighborhood shapes (square, cross and line). Usually selection 
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is studied alone i.e. no mutation or recombination is active. In this paper we also studied the effects of 

different operator configurations on the different local selection schemes. We tested a lot of different 

genetic operator probabilities. Our results indicate that it‟s better to use a high mutation rate and a small 

recombination probability and this holds for all three neighborhood shapes and all neighborhood sizes 

that we have studied. 

The analysis of the three local selection neighborhood shapes, suggest the use of sparser 

neighborhood shapes. Of the three neighborhood shapes studied, the line shaped neighborhood appears to 

have the best performance. 

The analysis of our results on the neighborhood size is not clearly in favor of a large or small 

neighborhood size. This is something that seems to need more experimentation. 

In this paper we used constant mutation rate and recombination probabilities. An interesting open 

question is what will be the effect of adaptive operator probabilities on the performance of the different 

neighborhood shapes and sizes. In addition, it would also be interested to experiment on the effects of 

population re-initialization to local selection. 
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