A Common Sense Approach to Defining Data, Information, and Metadata

Dimitris A. Dervos

I.T. Dept., Alexander Technology Educational Institute, Thessaloniki, Greece (dad@it.teithe.gr)

Anita Coleman

School of Information Resources & Library Science,
University of Arizona,
Tucson, USA
(asc@u.arizona.edu)

Defining Data

- Data have no meaning or value, because they are without context and interpretation
- Data are discrete, objective facts or observations, which are unorganized and unprocessed, and do not convey any specific meaning
- Data items are an elementary and recorded description of things, events, activities and transactions
- Data are the raw material for building information

Defining Information

- Information is formatted data... defined as a representation of reality
- Information is data which adds value to the understanding of a subject
- Information is data that have been shaped into a form that is meaningful and useful to human beings
- Information is data that have been organized so that they have meaning and value to the recipient
- Information is any physical form of representation (or surrogate) of knowledge (Faradane)

Divergence across disciplinary perspectives

Anonymous, 2005
International
Conference on
Knowledge
Management, Charlotte,
N.C., U.S.A.

... gets in the way of true interdisciplinary collaboration between computer scientists, library/information scientists, etc.

Debons' "living species" approach

Two Preconditions

- 1. Social/organizational systems are not addressed at this stage. Technology is ignored. The focus is on the individual living organism.
- 2. Reasoning builds upon a finite number of simple assumptions made initially

Human Mind (HM): Favors Associations

Five years after Iro Fifth day of month One month earlier...

	Name	Birthday	Day of Birth
J			
_	Antonis	05 April 1988	Monday
	Claudine	15 February 1991	Thursday
	David	27 November 1982	Saturday
_	Iro	05 May 1983	Thursday
	Jaakko	13 July 1995	Thursday
	Jose	8 January 1993	Thursday
	Kathleen	24 March 1980	Monday
	Maria	30 December 1982	Thursday

Fifth day of week Fifth day of month Fifth month of year

HM: Favors Shortcuts

ER Diagram

HM: Favors Normalization

Problem 1:

Select 20 people at random. What is the probability that two of them celebrate their birthdays on the same day in the year?

Problem 2:

365 "killer" traffic junctions. What is the probability of having two accidents take place at the same junction for every 20 accidents that occur?

Same Model (One Solution):

Place 20 balls into 365 "urns", with replacement

The Common Sense Approach (CSA): Two Assumptions

- 1. Information is at a higher level than data
- 2. Knowledge is at a higher level than information

...as in the DIKW hierarchy

(R.L. Ackoff, From Data to Wisdom, Journal of Applied Systems Analysis, 16, 3-9, 1989)

CSA: Data

Definition:

Data Represent Real World Facts

Examples:

Rainfall measurements over time, for a given set of geographical regions,
Attribute values registered with a database application, etc.

CSA: Information

Definition:

Information is revealed each time data are interpreted successfully in the direction of increasing benefit, profit, or pleasure, as the latter are realized by some intellectual activity

Examples:

A plot that occupied 1/3 of an A4 page,

An ER diagram,

A rule, e.g. Heavy smokers have a high probability to develop lung cancer,

An association, e.g. People who purchase potato chips tend to also purchase beer,

Raw data, e.g. Global Getaways offer their Chalkidiki package for 1/3 of the regular price, this week

CSA: Metadata

Definition:

Metadata are tags/labels assigned to data instances and structures that make them comprehensible and/or facilitate the processing that extracts information from data corpora

Examples:

Student ID, Department, Year of Entry, Course ID, Grade, etc. Format, Form, Creator, Title, etc. Process, Object, Phenomenon, etc.

CSA Discussion: Data

- 1. Concept well defined, fully understood
- 2. Quantified: size remains invariant from system to system, provided the representation technology remains the same
- 3. Unit of measurement: the bit
- 4. In the developed part of the world, today: everyday human activity is shaped, to a great extent, by technology-assisted data storing/processing /management operations

CSA Discussion: Information

- 1. Concept realized only indirectly, not directly
- 2. Not yet quantified, except from in special cases.
- 3. Unit of measurement: ? (infotron?)
- 4. Everyday human activity is still far from utilizing technology in a way that machines: (a) model user interests/preferences, (b) sense the current context of the user, (c) compute information relevant to the context and user profile, and (d) proactively offer 'just-in-time' information in a subtle, non-intrusive way⁽¹⁾

CSA: Two Corollaries

Corollary-1

Information remains to be quantified, modeled, and be fully understood as a concept

Corollary-2

The forefront of our civilization is still in the data processing age. More research and technology advances are required for the information society to come of age

CSA: The Information Society

(1) P. Mayes, Just-in-Time Information, Key Note Speaker, ASIS&T 2005 Annual Meeting, Charlotte, N.C., November, 2005

Conclusion

- Competing and divergent definitions for data, information, and metadata are noted to exist today
- The above get in the way of true interdisciplinary collaboration
- As a consequence, they hinder the development of systems that can truly move us into the information society era

- A Common Sense Approach is adopted that meets the two preconditions set forth by Prof. Debons:
 - (a) A 'living species' approach is established, and
 - (b) Reasoning builds upon a finite number of simple assumptions made initially

Data, Information, and Metadata are defined in a way making it clear that:

- (a) We are still in the data processing era
- (b) The concept of information remains to be fully understood and quantified/measured
- (c) Concept(s) in higher levels (e.g.: knowledge) remain to be defined.

Information as Entropy

Appendix

Appendix: A Special Setup

The event: a bit of data arrives

- (a) how much information is there to the given event?
- (b) how much knowledge does an observer have with regard to the bit's (1/0) value PRIOR to seeing it?

Two (extreme) cases:

- (a) The event is unbiased (i.e. unclassified): the bit carries the maximum possible amount of information, and it is equally probably for the observer to see a '1' or a '0'
- (b) The event is 100% biased (classified): the observer knows the bit's value prior to seeing it: the bit carries no information (it does not need to arrive, actually)

Appendix: Information as Entropy

Let $I[p_1, p_2]$ be the function that calculates information:

- p₁ is the probability the bit has to be a '1'
- Analogously, p₂ is its probability to be a '0'
- Constraint: $p_1+p_2=1$
- I[1,0]=I[0,1]=0 ← requirement-1
- $MAX(I[p_1,p_2]) = I[0.5,0.5] \leftarrow requirement-2$

Generalization (say: for three possible states)

- I[p₁, p₂, p₃]
- $p_1+p_2+p_3=1$
- $I[1,0,0] = I[0,1,0] = I[0,0,1] = 0 \leftarrow requirement-1$
- $MAX(I[p_1,p_2,p_3]) = I[1/3, 1/3, 1/3] \leftarrow requirement-2$
- Multistage decision property \leftarrow requirement-3: $I[p_1,p_2,p_3] = I[p_1,p_2+p_3] + (p_2+p_3) I[(p_2/(p_2+p_3), p_3/(p_2+p_3)]$

It turns out that entropy is the only one function that meets all three set requirements:

 $entropy(p_1,p_2,...,p_n) = -p_1logp_1 - p_2logp_2 - ... - p_nlogp_n$

Appendix: Information is Measured in bits!

- Back to the one-bit event
- Calculating the logarithm in base 2
- p₁: the probability for the event to turn out having the value '1'

When the event is biased (classified) to turn out to be 1(0) with a probability of 20%(80%), then it carries information equivalent to that of a 0.72 (un-biased) bit.

The 20%(80%) bias is said to represent an *information gain* of 0.28 bits for the observer.

References (for definitions – slides 2 and 3)

- E.M. Awad & HM Ghaziri, Knowledge Management, Pearson Educational International, Upper Saddle River, NJ, 2004
- P. Bocij, et al., Business Information Systems: technology, development and management for the e-business, 2nd Ed., FT Prentice Hall, Harlow, 2003
- D. Buddy, A. Boonstra, and G. Kennedy, Managing information systems: an organizational perspective, 2nd Ed., FT Prentice Hall, Harlow, 2005
- D. Chaffey & S. Wood, Business information management: improving performance using information systems, FT Prentice Hall, Harlow, 2005.
- T.R. Croft and T.P. Jones, Introduction to Knowledge Management: KM in business, Butterworth Heinemann, Amsterdam, 2003
- J. Faradane, The Nature of Information, Journal of Information Science, 1: 13-17, 1979
- L.M. Jessup & J.S. Valacich, Information Systems Today, Prentice Hall, Upper Saddle River, NJ, 2003
- K.C. Laudon & J.P. Laudon, Management information systems: managing the digital firm, 9^{tth} Ed., Pearson Prentice Hall, Upper Saddle River, NJ, 2006
- F. McCrank, Historical Information Science, Medford, N.J.: Information Today, 2002
- K.E. Pearson and C.S. Saunders, Managing and using information systems: a strategic approach, Wiley, New York, 2004
- F. Turban, R.K. Rainer, and R.E. Potter, Introduction to information technology, 3rd Ed., New York, Wiley, 2005