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Abstract— This report describes our joint work on implemen-
tation of effective numerical routines for two-variable polyno-
mial matrices in the MATHEMATICA software. New functions
are connected to the already created program package, being
developed at the Czech Technical University in Prague, which
calculates only with polynomial matrices in one variable. As the
first step, new polynomial object for 2-D polynomial matrix was
created in the MATHEMATICA programming language. This
was essential for good integration with the polynomial package
mentioned above. Implementation of a bunch of efficient and
reliable numerical routines followed.

I. INTRODUCTION

In recent years the problematic of systems featuring para-
metric uncertainties has appeared in the center of many papers
and books focused on robust control, see [1] for instant. One
of the basic problems of this field is analysis of stability
with respect to parameters that perform polynomially. Curing
this case by new attractive numerical methods for polynomial
matrices is the subject of this report.

More precisely, the task to be solved is defined as follows:
Consider the 2-D scalar or matrix polynomial

P (s, q) = P0(s) + qP1(s) + q2P2(s) + · · · + qdPd(s),

where
Pi(s) = Pi0 + Pi1s + · · · + PiNsN

P (s, q) can be thought of as an uncertain polynomial in
the variable s: for each value of q within a given region
one obtains a fixed polynomial P (s, .). This polynomial can
become stable or unstable depending on the particular q 1. It
can be proved [1] that if P (s, 0) is stable and P (s, q) has
invariant degree for all q real, then there exist such numbers
qmin ≤ 0, qmax ≥ 0 that P (s, q) remains stable for all
q ∈ 〈qmin, qmax〉. Finding such bounds on q via a fast
and numerically reliable procedure is exactly the goal of this
contribution.

1We consider the Hurwitz stability here, i.e. a polynomial p(s) is said to
be stable if all its roots lie in the strict complex left half plane.

II. THEORETICAL SOLUTION AND NUMERICAL ASPECTS

The solution described in (Barmish, 1994) relies on the
Hurwitz stability matrix and its properties.

A. Scalar Case

Let us consider the scalar case first. It can be shown
(Barmish, 1994) that the Hurwitz matrix H(P ) related to the
polynomial P (s, .) can be expressed for each q as

HP = HP0
+ qHP1

+ · · · + qdHPd

and that it has full rank unless some roots of P (s, qi) lie
on the imaginary axis. If the invariant degree of P (s, q) is
preserved for all q, then the motion of the roots of P (s, .)
depends continuously on the changes of the parameter q and
the desired values qmin, qmax can be found among the set
r = {q1, q2, . . .} of roots of det(H(q)). As P (s, 0) is stable
by assumption, all the roots are nonzero. qmin equals the
negative root smallest in absolute value whereas qmax is the
largest nonnegative root. If the roots of H(q) are all positive,
qmin = −∞. And on the contrary, if all qi are negative,
qmax = ∞.

In the literature, the computation of these values is typically
transformed to the generalized eigenvalues problem for the
companion matrix related to H(q) (Barmish, 1994). However,
a new algorithm for the polynomial matrix determinant based
on FFT has been developed recently and has proved to be
numerically reliable and very fast (Hromčı́k and Šebek, 1999)
and can be proposed to be utilized here:

Algorithm 1: Determinant of Polynomial Matrix

Input:Square polynomial matrix P (s) of size n and degree
N .

Output: Polynomial p(s) - the determinant of P (s).
Step 1 (Result’s degree estimation)

Compute the upper bound for the degree of the
determinant:

Ndet = min{

n
∑

i=1

degci
(P (s)),

n
∑

i=1

degri
(P (s))}



where degci
(P (s)) and degri

(P (s)) are the i-th
column and row degrees of P (s) respectively.

Step 2 (Evaluation of the input matrix at the Fourier
points si)
Perform direct FFT at Ndet + 1 points on the set
{P0, P1, . . . , PN} of coefficient matrices of P (s) and
obtain the set {Yk|k = 0, 1, . . . , Ndet}.

Step 3 (Constant matrix manipulation)
Compute the vector z = [z0, z1, . . . , zNdet

], where
zk = det(Yk), k = 0, 1, . . . , Ndet. If P (s) is real,
evaluate the determinants zk = det(Yk) only for k =
0, 1, . . . , dNdet/2e. The remaining values zi can be
assigned according to Theorem 2.2 as zNdet+1−k =
det(Y ∗

k ) = z∗k.
Step 4 (Interpolation through [si, zi])

Perform inverse FFT on z to obtain the coefficient
vector p = [p0, p1, . . . , pNdet

] of the determinant
p(s) = p0 + p1s + · · · + pNdet

sNdet . �

Using this algorithm to evaluate the determinant of HP (q)
and employing a traditional routine for subsequent computa-
tion of its roots [5], instead of the traditional procedure with
generalized eigenvalues computation, helps to avoid numerical
difficulties during evaluation of large size problems on a com-
puter and also decreases the computational time considerably
[6].

B. MIMO Case

The ideas of the introduced algorithm can be easily ex-
tended to cover also the evaluation of 2-D polynomial matrix
determinant - formally, just the (one-dimensional) FFT’s in
the first and third step of the algorithm above are replaced
by 2-D FFT’s [4], and indexing in the Step 2 becomes two
dimensional as well.

Algorithm 2: Determinant of 2-D Polynomial Matrix

Input: Square 2-D polynomial matrix P (s, t) of size n and
degrees ds and dt.

Output: 2-D scalar polynomial p(s, t) - the determinant of
P (s, t).

Step 1 Compute the upper bound for the degrees of the
determinant:

ddets
= n · ds, ddett

= n · dt

Step 2 Using FFT algorithm, perform direct
2-D DFT at (ddets

+ 1) × (ddett
+ 1) points on the

set P = {Pm,n} of coefficient matrices of P (s, t)
and obtain the set Y = {Yk,l|k = 0, 1, . . . , ddets

, l =
0, 1, . . . , ddett

}.
Step 3 Compute the set z = {zk,l|k = 0, 1, . . . ,

ddets
, l = 0, 1, . . . , ddett

}, where zk,l = det(Yk,l)
Step 4 Perform inverse 2-D DFT on z using the FFT al-

gorithm to obtain the coefficient set p = {pm,n|m =
0, 1, . . . , ddets

, n = 0, 1, . . . , ddett
} of the determi-

nant

p(s, t) =

ddets
∑

m=o

ddett
∑

n=o

pm,nsmtn

�

Combining both the methods for one- and two-dimensional
polynomial determinants can be used to treat the multi-variable
case of the problem: if P (s, q) is a matrix of uncertain poly-
nomials, computing its 2-D polynomial determinant p(s, q) =
det(P (s, q)) = p0(s) + qp1(s) + · · · + qDpD(s)) reduces
the matrix problem to the scalar case which in turn can be
efficiently solved via 1-D polynomial determinant computation
using the algorithm listed above.

III. NEW POLYNOMIAL OBJECTS FOR 2-D POLYNOMIAL
MATRICES IN MATHEMATICA

New objects are connected to the already created program
package [2] , which calculates only with polynomial matrices
in one variable.

Similarly as in [2], also here the new functions were
created which are used to input 2-D polynomial matrices. New
polynomial objects join a polynomial matrix or a polynomial
with their variables. 2-D polynomial matrixes could be entered
in three fundamental forms using the following functions:

• Polynomial Matrix Form
The command PM[pm2d,{var1,var2}] (Polynomial
Matrix) creates a new polynomial matrix object. Input
arguments are a rectangular matrix (list) pm2d with
polynomial entries (in standard MATHEMATICA notation
or in scalar polynomial object form) and its considered
variables {var1,var2}.
The function PM[] for 2-D polynomial matrices is sim-
ilar 1-D polynomial matrices. The only difference is a
statement of the list with two variable instead of one.
Example 1. 2-D polynomial matrix

(

1 + 2 s z 3 s2 + 4 z
5 + 7 s2 + 6 z 8 s2 z

)

in PM[] representation.
In[1] :=

PM[{{1 + 2s z, 3 sˆ2 + 4z},
{5 + 6z + 7sˆ2, 8sˆ2 z}}, {s, z}]

Out[1] =
(

1 + 2 s z 3 s2 + 4 z
5 + 7 s2 + 6 z 8 s2 z

)

{s,z}

• Polynomial Matrix Coefficients I.
The command PMC[pmc2d,{var1,var2}] (Polyno-
mial Matrix Coefficients) creates a new polynomial ma-
trix object. Input arguments are a list of lists of rectan-
gular constant matrix with numbers or symbols pmc2d.
The second argument are related variables {var1,var2}.
Example 2. 2-D polynomial matrix from example 1 in
PMC[] representation.
In[2] :=



PMC[{
{{{1,0},{5,0}},{{0,4},{6,0}}},
{{{0,0},{0,0}},{{2,0},{0,0}}},
{{{0,3},{7,0}},{{0,0},{0,8}}}

}, {s,z}];

• Polynomial Matrix Coefficients II.
Can be used the command PMC[{pm1, pm2, ...},
var1], where as first argument is placed list with 1-D
polynomial objects {pm1, pm2, . . .} in variable var2 and
the second argument is variable var1.
In[3] :=

PMC[{
PM[{{1, 4z},{5 + 6z, 0}}],
PM[{{2z, 0},{0, 0}}]
PM[{{0, 3},{7, 8z}}]

}, s]

2-D scalar polynomials can be set in two forms similarly:
• Scalar Polynomial

The command P[pol2d, {var1,var2}] (Polyno-
mial) creates a new scalar polynomial object. Input ar-
guments are a 2-D scalar polynomial pol2d in standard
MATHEMATICA notation and its variables {var1,var2}.
Example 3. 2-D scalar polynomial

1 + 2sz + 3s2z + 4z2

in P[] representation.
In[4] :=

P[1 + 2s z + 3 sˆ2 z + 4 zˆ2, {s,z}]

Out[4] =
(

1 + 2 sz + 3 s2z + 4 z2
)

{s,z}

• Polynomial Coefficients I.
The command PC[pol2d, {var1,var2}] (Polyno-
mial Coefficients) creates a new scalar polynomial object.
Input arguments are a list of lists of scalar polynomial
coefficients and its considered variables {var1,var2}.
Example 4. Scalar polynomial from Example 3 in PC[]
representation
In[5] :=

PC[{{1,0,4}, {0,2,0}, {0,3,0}},
{s, z}];

• Polynomial Coefficients II.
Analogously to polynomial matrix coefficients it is pos-
sible to use by the command PMC[{p1, p2, ...},
var1], where first argument {p1, p2, ...} is list
with 1-D scalar polynomial objects in variable var2 and
the second argument is variable var1.
Example 5.
In[6] :=

PC[{
P[{1+4zˆ2}],
P[{2z}]
P[{3z}]

}, s]

The conversion of 1-D polynomial matrix with one linear
parameter to 2-D polynomial matrix in which the given
specific parameter represents the second variable is easy.
In[7] :=

a = PM[{{1 + 3qˆ2 + 4s, 5q + 6sˆ2},
{7 + 8s, 9qˆ2}}, s];

a2d = PM[a, {s,q}]

Out[7] :=
(

1 + 3 q2 + 4 s 5 q + 6 s2

7 + 8 s 9 q2

)

s

Out[8] :=
(

1 + 3 q2 + 4 s 5 q + 6 s2

7 + 8 s 9 q2

)

{s,q}

A. Implementation in MATHEMATICA

Function PM[] returns the 2-D polynomial
matrix object which is represented by the function
PolyMat[pmc2d,{var1,var2},{deg1,deg2}].
If input 2-D polynomial matrix is

P = P0(s) + qP1(s) + · · · + qdqPdq
,

where P0(s) = P 0
0 + P 0

1 s + . . . + P 0
ds0

sds0 and P1(s) =

P 1
0 + P 1

1 s + . . . + P 1
ds1

sds1 , . . ., then pmc2d is list of lists
of scalar matrices in this form

{{P 0
0 , P 0

1 , . . . , P 0
ds
}, {P 1

0 , P 1
1 , . . . , P 1

ds
}, . . .

, {P
dq

0 , P
dq

1 , . . . , P
dq

ds
}},

where ds = max{ds0
, ds1

, . . . , dsdq
}.

Preview of MATHEMATICA code for function PM[] which
create 2-D polynomial matrix object.

PM[pm_?MatrixQ, {var1_Symbol, var2_Symbol}]
/; PMTest2D[pm, {var1, var2}]:=

Module[{coef, dimcoef, maxrc, plc},
coef = Map[

CoefficientList[#, {var1, var2}]&
,pm, {2}

];
dimcoef = Map[Dimensions, coef, {2}];
maxrc = Max/@Transpose[Flatten[dimcoef,1]];
plc = Map[ExpandDim[#,maxrc]&, coef, {2}];
PolyMat[

Transpose[plc, {3, 4, 1, 2}],
{var1, var2}, maxrc - 1]

];



Function PMC[] has the identical output as PM[], it’s
function PolyMat[].

Preview of MATHEMATICA code for definition function
PMC[] (in variant II.) which crate 2-D polynomial matrix
object.

PMC[
pms:{PolyMat[_, var2_Symbol, TypeDeg]...},
var1_Symbol] /; PMCTest2D1[pms, var1]:=

Module[
{degs = Deg /@ pms, maxdeg2, repms, r,
c, adeg},
If[Not[SameQ @@ (Size /@ pms)],
Message[pmc2d:errsize]; Return[Null],
{r, c} = Size[First[pms]]];
maxdeg2 = Max[degs];
PolyMat[

If[Not[SameQ @@ degs],
If[(adeg = Deg[#]) < maxdeg2,
Join[#[[1]],

PrepMat[r,c,maxdeg2-adeg,0]
],
#[[1]]

]& /@ pms,
#[[1]]& /@ pms

]
, {var1, var2}
, {Length[pms] - 1, maxdeg2}

]
];

B. Implementation of 2-D polynomial matrix determinant

The routines implemented in MATHEMATICA for our new
2-D polynomial objects include the determinat computation.
For the polynomial matrix with numerical coefficients the
implemented algorithm is adopted from [3] and is described
in Algorithm 2. It is the most efficient published method for
polynomial matrix determinant computation. Non-numerical
polynomial matrices are resolved by standard MATHEMATICA
function for symbolic determinant.

Example 6.

In[8] := A=PM[

(

2.3 + 8.1 s2 − 5.7 s z2 −5.6 + 7.4 s z
9.3 s + 5.2 z −7.4 z2

)

];

Det[A]

Out[8] :=

( 52.08 s + 29.12 z − 68.82 s2 z + . . . + 42.18 s z4 ){s,z}

C. Experimental testing

As expected, the implemented methods specifically tailored
for 2-D polynomial objects are considerably faster than the
general symbolic routines incorporated in MATHEMATICA.

A star (*) in tables means that the execution time exceed
2000 seconds.

TABLE I
TIME - CONSUMPTION. SQUARE TEST MATRICES OF SIZE n AND DEGREE

{d, d} HAVE RANDOM REAL COEFFICIENTS.

Input sq. mat. Poly Standard
n {d, d} Det[A] Map[Expand,Det[sA],{2}]

3 2 0.03 0.01
5 3 0.06 0.8
7 5 0.4 78.8
9 6 1.7 1590.3
10 8 4.53 *

IV. PRACTICAL EXAMPLE: UNCERTAIN SYSTEM ANALYSIS

The following MATHEMATICA session illustrates the use of
our polynomial package with its 2-D determinat solver.

Consider an uncertain polynomial matrix P (s, q) = P0(s)+
qP1(s) + q2P2(s) where
In[9] :=

P0 = PM[

(

5 + 2 s + 5 s2 s
4 s + 3 s2 5

)

];

P1 = PM[

(

1 1 + s + 2 s2

8 6 + 6 s

)

];

P2 = PM[

(

4 0
7 + 6 s + 6 s2 5 + 5 s + 9 s2

)

];

Direct test says that for q = 0 the matrix P (s, 0) = P0(s)
is stable. The desired bounds qmin ≤ 0, qmax ≥ 0 such that
P (s, q) remains Hurwitz stable for qmin < q < qmax with
respect to s can be achieved according to the considerations
in section II.

First the determinant of P (s, q) is computed.
In[10] :=

Psq = PM[P0+P1*P[q,s]+P2*P[qˆ2,s], {q,s}]
(* Psq = PM[{P0,P1,P2}, q]] *)
p = Det[Psq]

Out[10] =
(

5 + q + . . . + 5 s2 q + . . . + 2 q s2

8 q + 7 q2 + . . . + 6 q2 s2 5 + 6 q + . . . + 9 q2 s2

)

{q,s}

Out[11] =

( 25. + 35. q + 43. q2 + . . . + 45. q2 s4 − 12. q3 s4 ){q,s}

The Hurwitz matrix related to this uncertain polynomial
equals
In[11]:=

Hq = Hurwitz[p,q]

Out[11] =






−3 + . . . + 18 s3 10 + . . . 0 0
−6 s + . . . + 12 s3 21 + . . . 25 + . . . 0

0 −3 + . . . 10 + . . . 0
0 −6 s + . . . 21 + . . . 25 + . . .







q

Finite zeros of P (q) with respect to q are the roots of its
determinant:



In[12]:=

hq = Det[Hq]

Out[12]=

(−21000. + 75000. s + . . . + 73000. s11 + 18000. s12 )q

and its roots equal
In[13]:=

roots = Roots[hq]
{qmin, qmax} =
{-Abs[Min[Select[roots, Negative]]],

Min[Select[roots, Positive]]}

Out[13] =

{−1.4,−0.51− 0.02 I, . . . , 0.12, 0.75, 7.43}}

Out[14]=
{−1.4, 0.125}

Eventually, qmin and qmax follow directly:

qmin = −1.4, qmax = 0.125.

V. CONCLUSION

The 2-D polynomial derminat solver of the polynomial
package for MATHEMATICA, being developed at the Czech
Technical University in Prague, has been presented. The
algorithm used was explained, the implementation issue have
been discussed, and finally, the routine was used to solve a
robust control analysis problem.
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