
ΜΕΤΡΙΚΕΣ ΣΤΙΣ ΕΥΕΛΙΚΤΕΣ ΜΕΘΟΔΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ, ΜΙΑ ΕΚΤΕΤΑΜΕΝΗ

ΕΡΕΥΝΑ ΠΕΔΙΟΥ

ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΡΟΣΜΠΟΓΛΟΥ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ, ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΑΛΕΞΑΝΔΡΕΙΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΕΙΣΑΓΩΓΗ

 Ο επιστημονικός τομέας της ανάπτυξης λογισμικού έχει υποστεί πολλές

αλλαγές τα τελευταία πενήντα χρόνια οι οποίες είναι σχεδόν αδύνατο να

κατηγοριοποιηθούν αλλαγές αυτές και η επίδρασή τους στην εξέλιξη του

προαναφερθέντος τομέα. Παραδείγματα αποτελούν οι εισαγωγές νέων μεθόδων

ανάπτυξης λογισμικού, τα νέα τεχνολογικά επιτεύγματα και η παλαίωση παλιών

μεθοδολογιών, που συχνά λαμβάνει χώρα καθώς οι πολυάριθμες αλλαγές τις

καθιστούν μερικά ή ολικά ανεπαρκείς.

 Οι «παραδοσιακές» αυτές μέθοδοι, όπως ονομάζονται στους

επιστημονικούς κύκλους, που περιλαμβάνουν μακροσκελή και αναλυτική

τεκμηρίωση και χρήση προκαθορισμένων διαδικασιών ανάπτυξης λογισμικού έχουν

χαρακτηριστεί ανελαστικές λόγω του ότι είναι συχνά ανίκανες να ανταπεξέλθουν

στις αλλαγές που είναι σίγουρο ότι θα προκύψουν. Σαν μέτρο ενάντια στον κίνδυνο

αυτό, οι παραδοσιακές μέθοδοι επενδύουν ένα πολύ μεγάλο κομμάτι του χρόνου

ανάπτυξης λογισμικού στην ανάλυση και τον σχεδιασμό, προσπαθώντας να

εικάσουν και να προλάβουν τις αλλαγές αυτές. Η πρακτική αυτή έχει χαρακτηριστεί

μη παραγωγική, ένα γνώρισμα που έχει πλέον γίνει αναγκαίο κακό στις μεθόδους

αυτές, κάτι που τόσο οι πελάτες όσο και οι προγραμματιστές έχουν μάθει να

ανέχονται.

 Όμως, μια ενδιαφέρουσα αλλαγή επήλθε στα δεδομένα της ανάπτυξης

λογισμικού πριν από δέκα χρόνια περίπου, όταν εισήχθηκε μια νέα μεθοδολογία

που ονομάστηκε Ευέλικτες Μέθοδοι (Agile Methods, Agile Methodology). Με την

πρώτη τους παρουσίαση στο Agile Manifesto το 2001, η νέα αυτή μεθοδολογία

ήρθε να απαντήσει στα υπάρχοντα προβλήματα και να προσφέρει

προσαρμοστικότητα απέναντι στις αλλαγές, καθώς και βελτίωση της

παραγωγικότητας, της ποιότητας και άλλων τομέων της διαδικασίας ανάπτυξης

λογισμικού.

 Λαμβάνοντας υπόψη ότι μια από τις κυριότερες αιτίες που εμφανίζονται
τόσο συχνά αποτυχημένες εργασίες (projects) ανάπτυξης λογισμικού, είναι ότι
υπάρχουν πολλά επικοινωνιακά προβλήματα αυξημένης σημαντικότητας, ώστε να
δημιουργείται αστάθεια και αποτυχία μέσα σε μια ομάδα ανάπτυξης. Η ευέλικτη
μεθοδολογία εστιάζει στην συλλογικότητα και όχι στον κάθε προγραμματιστή
ατομικά, καθιστώντας έτσι την ομάδα σαν μια ενιαία οντότητα που μπορεί να
υφίσταται και να λειτουργεί σε ένα περιβάλλον που περιλαμβάνει επιπρόσθετες
τέτοιες όμοιες οντότητες που συνεργάζονται μεταξύ τους, προφέροντας στον κοινό
στόχο.
 Οι παραδοσιακές μέθοδοι αντιμετωπίζουν τις αλλαγές και την
διόρθωση/επανεργασία (rework) σαν τα ποιο ακριβά τμήματα της ανάπτυξης
λογισμικού. Προσπαθούν λοιπόν, όπως προαναφέρθηκε, να τις περιορίσουν, ή
ακόμα και να τις αποτρέψουν μέσω ενδελεχούς αρχικού σχεδιασμού. Οι Ευέλικτη
φιλοσοφία όμως, βλέπει την αποτυχία (failure) σαν το πιο δαπανηρό κομμάτι της
διαδικασίας ανάπτυξης λογισμικού. Υποστηρίζει ότι η αλλαγές συμβαίνουν πάντα

και, σαν ένα αναπόσπαστο κομμάτι της διαδικασίας, θα πρέπει να διαχειριστούν
και όχι να αποφευχθούν. Κρατώντας τον σχεδιασμό και την τεκμηρίωση σε πολύ
χαμηλά επίπεδα, εστιάζει στο να παραδίδει λειτουργικό λογισμικό στον πελάτη όσο
το δυνατόν γρηγορότερα, αναπτύσσοντας επιπλέον υποσυστήματα και
επανεξετάζοντας τον κώδικα για να τα υποστηρίζει, στην πορεία. Αυτό γίνεται με
τον καταμερισμό της εργασίας σε σύντομους επαναληπτικούς (iterative) κύκλους,
διαπροσωπική επικοινωνία μεταξύ προγραμματιστών, συντονιστών, διοίκησης και
πελατών. Με τον τρόπο αυτό ο πελάτης λαμβάνει ένα πρόγραμμα που
ανταποκρίνεται στις απαιτήσεις του κι έτσι επιτυγχάνεται ο κύριος σκοπός μιας
επιχείρησης, που είναι η ικανοποίηση των πελατών της.

 Η προγραμματιστική πολυπλοκότητα, που συχνά αναφέρεται και ως
πολυπλοκότητα λογισμικού (Software Complexity), είναι ένας όρος που περικλείει
τις πολυάριθμες ιδιότητες ενός λογισμικού. Καθώς το πλήθος των οντοτήτων
αυξάνεται ο αριθμός των σχέσεων και αλληλεπιδράσεων μεταξύ τους αυξάνεται
εκθετικά και συχνά φτάνει σε σημεία που είναι αδύνατο να γνωρίζουμε και να
μπορούμε να κατανοήσουμε όλο το φάσμα τους. Επιπροσθέτως όμως, αυξάνεται
και η πιθανότητα να παρουσιαστούν ελαττώματα κατά τις αλλαγές. Τέτοιοι
παράγοντες, στις προχωρημένες περιπτώσεις ανάπτυξης λογισμικού καθιστούν τον
μετασχηματισμό πολύ δύσκολο ή ίσως και αδύνατο.
 Για να αντιμετωπιστεί λοιπόν το παραπάνω ζήτημα εφαρμόζονται οι
μετρικές λογισμικού (software metrics). Μετρική είναι μια διαδικασία μέτρησης
ενός τμήματος του λογισμικού ή των επιμέρους χαρακτηριστικών του. Έχουν
προταθεί πολλές μετρικές για πολλές περιπτώσεις λογισμικού και όχι μόνο και
συχνά οργανώνονται σε κατηγορίες ανάλογα με το είδος των αποτελεσμάτων που
προσφέρουν. Μια τέτοια κατηγοριοποίηση είναι το εξής παράδειγμα:

 Πληροφοριακές Μετρικές, οι οποίες παρέχουν πληροφορίες για τα
διάφορα τμήματα της διαδικασίας ανάπτυξης λογισμικού, όπως ο
αριθμός των προβλημάτων που έχουν λυθεί σε κάθε κύκλο.

 Διαγνωστικές Μετρικές, που υποδεικνύουν σημεία στα οποία
χρειάζεται βελτίωση, όπως ο χρόνος στον οποίο λύνονται τα
προβλήματα που προκύπτουν, κατά μέσο όρο

 Παρακινητικές Μετρικές, ο σκοπός των οπίων είναι να τονώσουν το
ηθικό των προγραμματιστών αναφέροντας τα ποσοστά επιτυχίας,
όπως το ποσοστό ολοκλήρωσης των εργασιών της ομάδας σε κάθε
επαναληπτικό κύκλο.

 Ο σκοπός της εργασίας αυτής είναι η διεξαγωγή μιας εκτεταμένης έρευνας
πεδίου πάνω στο θέμα των μετρικών για τις ευέλικτες μεθόδους. Ακολουθώντας τα
πρότυπα και τις ερευνητικές μεθόδους που έχουν τεθεί από σημαντικούς
ερευνητές, στα πλαίσια της εργασίας αυτής εξετάστηκαν μελέτες περίπτωσης,
έρευνες πεδίου και τυπικά/ελεγχόμενα πειράματα που δημοσιεύτηκαν έως το 2010.
Τα δεδομένα που αντληθήκαν από την έρευνα επεξεργάστηκαν ώστε να προκύψουν
χρήσιμες πληροφορίες και συμπεράσματα, τα οποία παρουσιάζονται σε ένα paper
που είναι πιστό στις διεθνείς επιστημονικές προδιαγραφές και είναι συνταγμένο
στην Αγγλική γλώσσα.

Empirical Studies on Metrics and Agile Development: A Systematic Literature
Review

Panagiotis Sfetsos

Department of Informatics,

Alexander Technological Educational Institution,

Thessalonki, Greece

sfetsos@it.teithe.gr

Konstantinos S. Rosmpoglou

Department of Informatics,

Alexander Technological Educational Institution,

Thessalonki, Greece

kostasok@hotmail.com

Abstract

Agile software development is, since its birth almost ten years ago, evolving rapidly,
undergoing changes, modifications and improvements. In order to keep track of the
current state of agile software development, measurements and studies are
required. Measurements provide qualitative and quantitative insights to the solidity
of the process, enabling researchers, developers, managers and agile coaches to plan
their actions more efficiently. A systematic literature review of empirical studies on
quality and metrics of agile software development up to and including 2010 was
concluded. The initial search identified 871 articles that had relevance to the subject,
of which only 72 were taken under consideration. This study attempts to provide an
adequate walkthrough of the research conducted, classify many of the metrics used
in the industry and provide useful information for both current and future
researchers and analysts.

1. INTRODUCTION

 Since the beginning, the turbulent and unsure field of software development

has been undergoing continuous evaluations, trial and testing in order to deliver
software solutions that are cheaper, faster and of higher quality, thus providing
increased customer satisfaction. Over the years, many ideas and suggestions have
sought to bring the aforementioned development process and one of those waves of
ideas was the Agile methodology [72, 74]. This movement, although treated with
skepticism at first, proved to evolve and grow and today we can see that it has
affected thousands of developers and had a huge impact on how software is
developed worldwide [77, 73], by introducing evolutionary changes affecting
positively software quality assurance, control and management, forming a
disciplined process with built-in quality [75]. It is only natural for the adoptability and

mailto:sfetsos@it.teithe.gr
mailto:sfetsos@it.teithe.gr

overall utilization of agile methods to be predated by numerous studies, research
and of course, metrics. Agile methods are quite different from traditional established
methods and incorporate development procedures and practices that call for
different metrics and measurements such as frequency of product delivery and
iterative development cycles [76]. Developers use measurements to help them
understand and manage their progress, while customers use measurements to help
determine the quality and functionality of products. Quality Assurance teams,
composed of testers and maintenance specialists, also use measurements to ensure
quality, reliability and reusability of the final delivered software. Plenty of methods
such as maturity models, measurement frameworks, goal-directed paradigms,
process languages etc. have been proposed to support this idea [31].

 Empirical studies are very common nowadays when applied to the
investigation of evolution and changes in the field of software engineering.
Individual studies however, cannot offer significant results due to their limited in
scope or population, nature. A consequence of the growing number of empirical
studies in software engineering is the need to adopt systematic approaches to
assessing and aggregating all the research outcomes in order to provide a balanced
and objective summary of research evidence for a particular topic.[78] This
systematic literature review seeks to evaluate, synthesize, and present the empirical
findings on agile software development regarding to metrics and quality and provide
an overview of topics researched, their findings and implications for research and
practice.

 This paper is organized in seven sections. Section 2 features some results of
previous relevant studies and describes the overall methodology utilized to create
this review. Section 3 presents an overview of the studies and the individual results
in an easily understandable format. Section 4 proceeds to discuss the impressions
derived from each study in conjunction with the aforementioned findings. Section 5
offers the overall conclusion of our review. Section 6 offers the necessary
acknowledgements and references, respectively, while Section 7 presents the
research data synthesis table.

2. SYSTEMATIC LITERATURE REVIEW METHODOLOGY

2.1 Related work and context

 Previous to this dissertation there have been several findings of related work,

which were examined thoroughly and provided significant results, base information

and inspiration for this study. Therefore, it is important that some of these past

findings are provided here.

 In 2003, a survey conducted by [47] reported that 93% of participants

believed that correct measurement and application of agile methods offered their

enterprise increased productivity, over 83% stated that quality and business

satisfaction had increased significantly and 46% remarked that costs were

unchanged with implementation of agile. The next year, a survey transacted

Thoughtworks researchers, brought to public view that over 40% of the individual

persons’ opinions valued quality and productivity related metrics, whereas near 65%

of the organizations’ points of view found metrics related to project and cost

management very valuable and stated that there is initiative to improve such metrics

within the respective companies. Furthermore by a survey enacted by [68] in 2006

with more than four thousand participants we have learned that although 54% of

participants had little knowledge or familiarity with agile, around 60% of the total

responders stated that productivity and quality had increased, along with 58% of

their respective stakeholders satisfaction. Last but not least, the important annual

surveys of VersionOne [43, 44, 45] in the years 2006 - 2008 with significantly more

participants each following year (percentage of participants was incremented by

+321% in the second year and a further +72% in the third), shows us that the most

important barriers on the road to agile adoption are the unwillingness to change,

usually because the companies’ principles are contrary to agile practices and

disciplines (near 44% of participants), and the lack of up-front planning (20% of

responders, increased to 37% within two years) and loss of management control

(37%) . Nevertheless, 84% stated that their companies had adopted agile methods in

some or all parts of their software development process and in particular, 37% of

those enterprises have embraced agile in over 75% of all their projects which can be

viewed as a significant number. Nearly 40% are measuring Velocity and Testing

metrics. Furthermore, Iteration Planning and Unit testing have increased by +17% in

the course of one year and Burndown was popular in 60% of participants. Finally,

over 60% of the organizations utilize Microsoft Project or Microsoft Excel as their

preferred agile tool.

 In order to assess and aggregate the research outcomes of the growing

number of studies on measurement and metrics in agile methods and to provide a

balanced and objective summary of research evidence, we applied the systematic

literature review approach inspired by [78]. This review examines a variety of case

studies, experiments and literature published up to 2010 and attempts to present

and evaluate the empirical findings regarding metrics and quality in agile practices.

The study was completing in steps, from inception to realization. These steps are:

initial planning and protocol development, establishment of research questions,

institution of the inclusion and exclusion criteria, organization of our sources,

selection of primary studies, quality assessment, data extraction and synthesis.

2.2 Initial Protocol

 When planning to perform our systematic literature review we wanted to

adhere to the guidelines and procedures that are used and suggested by [79, 78, 77,

75] and include all of the aforementioned stages and steps. We believe that these

practices offer a rigorous research framework and useful techniques.

2.3 Establishment of Research Questions

Answering the following research questions is the main concern of our effort.

 What is the state and the critical success factors in agile software development

implementation?

 What is the state of the metrics used in the industry in terms of validity,

utilization and producing results?

2.4 Institution of the Inclusion and Exclusion Criteria

 In order to discover which of the primary studies were eligible in our review

we took under consideration the following criteria:

 Studies must present empirical data on agile software development and must

adhere to the requirements of our quality assessment procedure.

 Studies should be written in the English language.

 Research studies should be published up to 2009.

 Studies could be of professional developers and researchers as well as of

students.

 However we ought to establish some exclusion criteria so that our search

would be more refined. Such criteria were:

X Studies did not present empirical data or their focus was not on agile

software development.

X Studies did not have a research design and goal.

X Studies only presented the opinions of the researchers or provided only

simulation data.

2.5 Sources Organization

 The scope of the search was broad. We examined electronic databases and

journals, as well as the proceedings of international conferences in agile methods

and the web pages of some important agile practitioners. In order to provide a

balanced and objective summary of research evidence for measurement and metrics

in agile methods we followed the systematic literature review. We focused on the

journals and electronic databases of the ACM Digital library, IEEE Xplore and

ScienceDirect - Elsevier, SpringerLink, the proceedings and newsletters of the

international conferences in agile methods, such as XP and Agile Universe, and the

web pages and blogs of some important practitioners in agile methods.

2.6 Selection of Primary and Secondary Studies

 This process was performed in three distinct stages. In the first stage, we

used simple but relevant keywords in order to search the articles that were included

in the electronic databases and online proceedings. These keywords sought to match

words in the titles, abstracts and key words sections of the online articles.

 In specific, we used the following search terms:

A. Agile AND Software

B. Agile AND Development

C. Agile Practices AND Metrics

D. Agile AND Metrics AND Experiment

E. Agile AND Metrics AND Case Study

F. Agile AND Metrics AND Survey

G. Agile AND Empirical AND Study

The entirety of these search terms were also combined utilizing the “OR”

Boolean operator in hopes that our results would include any articles that contained

only one of the terms we sought. As [77] put very simply, we searched

A OR B OR C OR D OR E OR F OR G

 All 871 articles that were retrieved were stored and sorted in a database with

their matching search criteria in display. After some refining in order for the articles

to assume a similar title, filename and date formats, they were inserted into Excel in

order to make the following stage easier and modular.

 In the second stage, both the authors worked together and reviewed all the

studies derived from the previous stage in an effort to exclude the articles that were

outside the research scope or had no relevance with agile methodology and

practices whatsoever. Such excluded examples were articles that contained only

abstracts, introductions and prefaces, interviews, discussions and comments,

tutorials, presentations, advertising posters. A total of 725 articles and files were

excluded.

 In the third and last stage the authors collaborated and focused on the

remaining 146 articles trying to flesh them out and find the ones that would be used

to contribute in our review. Many articles were discovered to be of little to no

relevance to agile software development despite the fact that their title said so.

These files that were passed in the second stage were excluded here. Those that

remained underwent our quality assessment procedure.

2.7 Quality Assessment

 In order to better define our research we have set a number of questions

which are to be used a guidelines for this review in order to refine our search on the

existing literature and produce valid results. This way our goal can be clarified and

defined properly. To screen through our 146 studies that passed through the net of

stage two, we adapted a well used, proven and very effective procedure, in which

the articles in study were assessed by the authors to see if they met requirements of

rigor, credibility and relevance, which can be broken down to the following criteria:

1. Does the study in question answer to our review’s questions?

2. Does the study present an empirical research and not summary or

 individual points of view?

3. Are the objectives of the research clearly stated and explained?

4. Is the context of the study explained in adequate detail?

5. Is the design of the study adequate to address the aims of the

 research?

6. Was the methodology followed to collect data described adequately?

7. Were the results affected by the relationship between researchers

 and participants?

8. Were the findings clearly expressed and provided?

9. Does the overall study contribute to future research?

 Taken into consideration and cross-referenced, the above criteria ensured

that the studies that passed quality assessment would make valuable contributions

to our research. Of the total of 871 articles gathered in stage one, only 146 were

forwarded to stage two for further examination and quality assessment, which were

reduced to 72 valid studies which were taken under consideration for this review.

Stage 1 : 871

Stage 2: 146 Stage 3: 72

Figure 1. The number of studies deemed worthy of inclusion via the three stages.

Stage 1 : 100%

Stage 2: 16.7% Stage 3: 8.2%

Figure 2. The percentage of studies that remained as they were diluted in each step.

2.8 Data Extraction

 After we had narrowed down the scoped of our research, we reviewed each

study individually and extracted information, which was entered in Excel for our

convenience. Thus, a large table was formed in Excel where we stored every bit of

information we found useful. For each study, the information gathered was:

1) Authors. Referring to the people who collaborated to bring their

study to bear.

2) Year. Referring to the year the study was published and/or retrieved

from the internet.

3) Topic. Referring to the exact Title of each study.

4) Institution/Company. Referring to the name and/or brand of the

institution or company where the study has taken place, or failing

that, the place of work of the authors, if the study was

not…”distributed”.

5) Country. Referring to the country of the company or institution.

6) Type of study. Referring to what type of study was examined. We

have split the studies into three categories:

 Experiments

 Case Studies

 Surveys

7) Approach. Referring to which approach of agile practices was utilized.

Examples are eXtreme Programming (XP) and Scrum. If more than one

methodologies were utilized we report it as Combined. If it is unclear

as to the methods we left it as it was.

8) Population. Referring to the number of participants in experiments

and surveys, as well as the number of case studies researched and

mentioned in the studies.

9) Remarks. Referring to individual points of interest found and

gathered from the studies, many of which were considered to

produce our results.

The results of the above methodology can be viewed in appendix A.

3. RESULTS

 Metrics are quantitative measures of performance or production used to

indicate progress or achievement against strategic goals. In other words, a metric is a

measurable element of a service, process or function. The real value of metrics is

seen over time, as they evolve and change. Reliance on a single metric is not

advised, especially if it has the potential to affect the behavior of developers and

teams in an undesirable and counter-productive manner[50]. Therefore one must

have collected knowledge of the different types of metrics and their qualities.

 Following the examination of 72 studies several useful segments of

information have been extracted which will be presented in this section.

3.1 Metrics Quality

 As far as the quality of metrics is concerned, the familiar Iron triangle is used

by many practitioners as an example of better understanding it. An individual

metric’s quality is affected by three factors. Time, Cost and Scope. In order to

achieve the highest quality possible of a metric use the organization must first assess

its Quality attribute by considering these factors. An example would be:

a. Cost: The amount of resources it will take to apply the metric in a

project (are these resources available?).

b. Time: The time that measurement will take up (will it hamper the

project’s schedule?)

c. Scope: Does this metric contribute to the measurement result that

the organization wishes to receive?

Figure 3. The Iron Triangle, showing the factors that affect quality in agile metrics.

 However the above approach is theoretical and simple, lacking the required
flexibility to be used by organizations in the industry mainly because from enterprise
to enterprise the differences are many. Thus, as suggested mainly by [35, 37, 50],
there have been established some criteria in order to assess the quality of a metric.
By referencing to these criteria, each individual enterprise can collect data about
their respective metrics and judge whether they want to use them or not.

An agile metric is considered of good quality if it:

I. Affirms and reinforces Agile principles.

Supports the customer-intimate traits and value focused traits that reinforce
and strengthen Agile principles. This requires that people who understand Agile
participate in metrics design. The truism "you get what you measure"[37]
reminds us that behaviors which are counterproductive and contrary to the
principles may appear if the wrong things like overtime and paperwork are
enforced.

II. Measures outcome, not output.

In Agile practices, one of the principles promoted is to “reduce the overall
mount of work not done” and the most impressive outcome might be achieved
by reducing planned output while maximizing delivered value. Outcomes are
measured in terms of delivered Customer value.

III. Follows trends, not numbers.

Measures "one level up" to ensure that aggregated information is measured and
not sub-optimized parts of a whole. In addition, it Aggregates above the
individual team level for upper management use.

IV. Belongs to a small set of metrics.

A "just enough" metrics approach is recommended: too much information can
obscure important trends.

V. Is easy to collect.

For team-level diagnostics the most suitable is "one button" automation - where
data is drawn from operational tools (i.e. the Product Backlog, acceptance test
tools, code analyzers). For management use, avoid rework and manipulation of
lower level data, aggregation is preferable.

VI. Reveals, rather than conceals, its context and significant variables.

 Should be visibly accompanied by notes on significant influencing factors, to
encourage improvement and discourage false assumptions.

VII. Provides fuel for meaningful conversation.

Face-to-face conversation is a very useful tool for agile process improvement. A
measurement isolated from its context loses its meaning.

VIII. Provides feedback on a frequent and regular basis.

To amplify learning and accelerate process improvement, metrics should
preferably be available at each iteration retrospective, and at key periodic
management meetings.

IX. May measure Value (Product) or Process.

Depending on where problems lie, diagnostics may measure anything suspected
of inhibiting effectiveness. Consider the appropriate audience for each metric,
and document its context and assumptions to encourage proper use of its
content.

X. Encourages "good-enough" quality.

The definition of what's "good enough" in a given context must come from that
context's Business Customer, not the developers or management.

3.2 Metrics Classifications

 There appear to be quite enough cases in the industry where the same

metrics have been utilized in both traditional and agile methods, but often with a

different name or under a different strategic category. Therefore, we collected all

the metrics we surveyed and classified them into different categories adhering to the

Metrics Educational Toolkit (METKIT 1993), which proposed a rigid framework of

classification values, so that metrics will be easily categorized and retrieved. To that

we have added a few more categories and fleshed out the existing ones in an effort

to point out their respective attributes and incorporate new classifications.

PROCESS METRICS

 Maturity Metrics

 Organization metrics

 Resource, personnel and training metrics

 Technology management metrics

 Documented standards metrics

 Process metrics

 Data management and analysis metrics

 Management Metrics

 Project Management Metrics

 Quality Management Metrics

 Configuration Management Metrics

 Life Cycle Metrics

 Problem definition metrics

 Requirement analysis and specification metrics

 Design metrics

 Implementation metrics

 Maintenance metrics

PRODUCT METRICS

 Size Metrics

 Number of elements

 Development metrics

 Size of components

 Architecture Metrics

 Components metrics

 Architecture characteristics

 Architecture standard metrics

 Structure Metrics

 Component characteristics

 Structure characteristics

 Psychological rules metrics

 Quality Metrics

 Functionality metrics

 Reliability metrics

 Usability metrics

 Efficiency metrics

 Maintainability metrics

 Portability metrics

 Complexity Metrics

 Computational complexity metrics

 Psychological complexity metrics

RESOURCES METRICS

 Personnel Metrics

 Programming experience metrics

 Communication level metrics

 Productivity metrics

 Team structure metrics

 Software Metrics

 Performance metrics

 Paradigm metrics

 Replacement metrics

 Hardware Metrics

 Performance metrics

 Reliability metrics

 Availability metrics

Table 1. Agile metrics categorization according to METKIT

 Another classification suggested by [50] of a collection of specific metrics is

presented below

 Build

 Frequency of Builds
 Average Duration of Builds
 Number of Broken Builds per Iteration
 Number of Builds per Iteration
 Average Duration of Broken Build

 Tests

 Unit Tests per Story
 Functional tests per story
 Defects carried over per iteration
 Defects per story

 Development

 Cyclometric Complexity Measures
 Distribution of Method and Class Levels
 Rate of Change of Source
 Proportion of Source Code that is Test Code

 Scope

 Scope Change (stories removed or added from scope due to

redundancy of rewrite per iteration)
 Scope Changes not caused by additional stories per iteration
 User Stories Carried Forward (Hangover) per Iteration
 Number of Stories held in Analysis, Development, testing per

Iteration.

Table 2. Agile metrics classification

 One additional classification of metrics suggested by [4] can be viewed in the

following table, along with the appropriate tools to measure them.

Metrics Tools

o Business Metrics

 Running Tested Features
 Earned Business Value
 Net Present Value
 Internal Rate of Return
 Return of Investment

 Agile task management
tool/plug-in

 Issues management system

 Microsoft Excel

o Code Metrics

 Cyclomatic Complexity
 Best Practices Violation
 Coding Standards Violation
 Possible Bugs
 Code Duplication
 Code Coverage
 Dead Code
 Tests Quality

 Checkstyle

 PMD/CPD

 Jester

 Findbugs

 Simian

 Maven website plug-in

 Intellij IDEA Inspections

o Design Metrics

 Code Dependencies
 Incoming (Affering Coupling)
 Outgoing (Efferent Coupling)

 Abstractness
 Number of Abstract Classes and

Interfaces
 Number of Concrete Classes

 JDepend

 Eclipse CAP plug-in

o Process Metrics

 Agile Practice Maturity
 Impediments Cleared per Iteration
 Impediments Carried Over the Next

Iteration
 User Stories Carried Over the Next

Iteration
 Defects Carried Over the Next Iteration
 Team Member Loading
 Velocity
 Backlog Size

 Issues Management System

 Special Agile tools/plugins

 Physical Task Management
Tools

 Microsoft Excel

o Automation Metrics

 Code Coverage
 Number of Builds per Day
 Time Taken per Build
 Number of Failes/Successful Builds
 Trends in Core Metrics

 Continuous Integration Tools
 CruiseControl
 TeamCity
 Bamboo
 Hudson
 Continuum

 Cobertura

 Clover

 Maven Dashboard plug-in

o Testing Metrics

 Acceptance Tests per Story
 Defects Count per Story
 Tests Time to Run
 Manual Tests per Story
 Automation Percent
 Time to Fix Tests

 FitNesse

 Concordion

 Selenium

 Issues Management System

 Testing Automation Tools

Table 3. Metrics and Tools by category

3.3 Other Metrics

 In addition here we will present the remaining metrics that we have

encountered [9, 10, 13, 14, 15, 16, 17, 21, 22, 24, 26, 28, 30, 52, 53, 56, 57] that are

used by today’s practitioners and are not included in any of the presented

classifications.

Metric Description

Sprint effort factor [26]
Sprint effort factor = (Items in current sprint/total
feature list) +[∑ (change requests from previous
sprints)].

Sprint complexity factor [26]
Sprint effort factor = ƒ (modules it interacts with # of
interface points with other modules.

Change request effort [26]
Change request effort = ƒ (adding new features +
changing previously defined features - deliberate
elimination of features).

Customer expectation baseline [26]
Customer expectation baseline = (minimal set of
expectation features from the sprint).

Impact on budget [26]
Impact on budget = ƒ (change request effort, customer
expectation baseline.

Reusability Factor X [26]
Identifying reusable components in system = # of
components added to library.

Reusability Factor Y [26] Reuse of reusable components in system = # of

components reused from library.

Facetime [26]
Facetime = ƒ (time each developer is with business
person and with other developers on whom their
work is dependant).

Budget at Complete [15, 16]
What is the targeted budget for the release? This can
be expressed in either dollars or hours

Iteration Length [15, 16]
How long are each of your iterations or Sprints,
assuming that planned iterations are of the same
length?

Planned Iterations [15, 16]
How many iterations are planned to be included for
this release?

Planned Release Story Points [15, 16]
How many Story points have you estimated to be
included in the release?

Product Size [9] Presents the amount of complete work

Pulse [9] Measure how continuous the Integration is

Burn-Down [9, 21]
Shows the project’s remaining work versus the
remaining human resources

Faults [9] Counts faults per iteration

Number of Process Improvements
Requiring Organizational Support [10]

Counts improvement requests that passed
through management to organizational support

Number of Process Improvements Not
Requiring Organizational Support [10]

Counts improvement requests that did not
demand support outside of the teams.

Total Lines of Test Code [13, 14, 17]

Counts the total number of test points in the
system. One test point is defined as one step in
an automatic acceptance testing scenario or as
one non-blank, non-comment line of unit test
code.

Source Lines of Code [13]

Counts the number of lines in the text of the
program's source code. SLOC is typically used to
predict the amount of effort that will be required
to develop a program, as well as to estimate
productivity or effort once the software is
produced.

Weighted Methods per Class [14, 17]
Measures the complexity of classes in an object-
oriented system

Class Size [14]
Counts the total number of non-blank,
non-comment lines of a class in the system

Number of Commits [14]
Counts the total number of individual commits to
the source control repository.

Number of Lines Changed [14]
Counts the total number of lines (not only source
code) added, removed, and updated in the source
control repository.

Number of Delivered Stories [14]
Counts the total number of stories implemented
in an iteration and approved by the customer.

TeamMorale [14]
Empirical way of assessing the team’s morale
state

Schedule Variance [22] Indicates the deviation from the planned

schedule for development

Budget Variance [22]
Indicates the deviation from the initial budget
appointed to the software development

Cost of Defect Correction [22]
Measures the total extra cost derived from effort
to fix and address to defects.

Effort Estimation Accuracy [10]
Measures the deviation of the total effort after
production from the initial effort estimation.

Function Points [28, 52, 56, 57]

Express the amount of business functionality a
software product provides to a user, introduced
and used by the IFPUG Functional Size
Measurement Method.

Time to market [30]

Measures the total time spent from a product’s
development until it reaches its destination.

New Product Sales [30]

Considered by enterprises as one of the most (if
not the most) popular metrics.

Requirements Volatility [53]
Measures the number of changes (added or
deleted) to the requirements of a project.

Resource Use [53]
Indicated the percentage of available resources
utilized during the software development cycle.

Number of Defects [44, 56]
Measures the defects in number in the overall
software development cycle, or per iteration.

Table 4. Additional Metrics

 One more point of interest is the differences between traditional Earned

Value Management and Agile EVM [15, 16, 41] as far as their terms are concerned,

as presented by Sulaiman [16]. The terms in question are Performance

Measurement Baseline (PMB), Schedule Baseline (SB, often integrated in PMB),

Budget at Completion (BAC), Planned Percent Complete (PPC), Actual Percent

Complete (APC).

 Traditional EVM AgileEVM

PMB

The sum of all work package
schedule estimates (duration and
effort)

Total number of story points planned
for a release

SB

The sum of all work packages for
each time period calculated for the
total duration

The total number of planned sprints
multiplied by sprint length

BAC

The planned budget for the release

The planned budget for the release

or project

PPC

Percentage of completion
expected to be achieved at a
specific point in the project. Can be
a subjective estimate, or a
calculation of the dollar value of
the cumulative tasks planned to be
complete by this point in time
divided by the performance
baseline

The number of the current sprint
divided by the total number of
planned sprints

APC

The dollar value of work packages
actually completed divided by total
dollar value of the budget at
complete

The total number of story points
completed (potentially shippable
increments) divided by the total
number of story points planned

Table 5. Distinction between Traditional EVM and Agile EVM

3.4 Metrics and Diagnostics

 In response to increased demand on correct and accurate metrics for agile

projects, Hartmann and Dymond [35, 37] have introduced a different classification

of metrics, the Diagnostics. Based upon the principle that too many metrics applied

leads to unnecessary waste of time, cost and hampering of the teams’ efforts, this

strategic definition helps to understand which metrics should be used and where

should they be applied to measure.

 Except from the key metric(s), the goal that the organization will set,

individual teams will need to support the aforementioned goal, by defining and

performing their own localized measurements. Because these metrics support the

main metrics by helping to diagnose and improve them, they are identified as

Diagnostics. Usually, it is proposed by [35] that a key metric should be chosen, and

all the remaining supplementing metrics should be regarded as means to improve

and support this key metric. The key metric should be tied closely to the economics

of investment and therefore the Business Value Delivered is recommended.

 They are valid in the context of particular Processes and their inherent

constraints (for example: a software development team). In order to avoid

unnecessary measurements and maintain the focus to the key metric(s), it is strongly

advised that diagnostics should be designed carefully and when they are applied to

measure, they should be done so with a set termination parameter, such as

predetermined length of time of measurement or some conditions that allow their

discontinuation. Perhaps the realization of this distinction between metrics and

diagnostics will be difficult to implement by teams at first glance but once everyone

has adopted the principle, the teams will be able to design and utilize god metrics

that improve the agile processes. Always the diagnostics should be used in

conjunction with metrics to produce valuable results, when operating in this context.

 An easy way to distinguish diagnostics from metrics has been proposed by

Hartmann and Dymond [37] and has the form of a question.

Figure 4. Distinction between Metrics and Diagnostics.

 To wrap it all up, Metrics measure something that has direct value to the key

metric, which as proposed in this case is Earned Business Value and diagnostics

measure factors that are related to the ability of producing the above value. A list of

important diagnostics is given below.

Diagnostics

o Agile Practice Maturity
o Obstacles Cleared per Iteration
o Team Member Loading
o Obstacles Carried Over Into Next Iteration
o User Stories Carried Over Into Next Iteration
o Iteration Mid Point Inspection
o Unit Tests Per User Story
o Functional Tests Per User Story
o Builds Per Iteration
o Defects Carried Over to the Next Iteration
o Velocity

Table 6. Some of the most important Diagnostics

Does the metric measure

how much is contributed to

the organization’s bottom

line?

YES

NO

METRIC

DIAGNOSTIC

3.5 Metrics Suites

 Last but not least it is noteworthy to report the metrics suites that we
encountered along with their respective metrics. The ckjm metrics suite utilizes
object-oriented metrics and was studied by [13]. Chidamer and Kemerer’s Metric
Suite, Fernando Brito e Andreu’s MOOD Metric Suite and Bansiya and Davis’ QMOOD
Metsics Suite were applied and studied in a case study by [1, 12].

Metrics Suite Metrics utilized

ckjm

 Afferent Couplings (CA)

 CBO Coupling between Class Objects (CBO)

 Java specific CBO (CBOJDK)

 Depth of Inheritance Tree (DIT)

 Number of Children (NOC)

 Number of Public Methods (NPM)

 Lack of Cohesion in Methods (LCOM)

 Response for a Class (RFC)

 Weighted Methods per Class (WMC)

CK

 Weighted Methods per Class (WMC)

 Depth of Inheritance Tree (DIT)

 Coupling Between Objects (NOC)

 Response for a Class (RFC)

 Lack of Cohesion of Methods (LCOM)

MOOD

 Attribute Hiding Factor (AHF)

 Method Hiding Factor (MHF)

 Attribute Inheritance Factor (AIF)

 Method Inheritance Factor (MIF)

QMOOD

 Average Number of Ancestors (QMOOD_ANA)

 Cohesion Among Methods (QMOOD_CAM)

 Class Interface Size (QMOOD_CIS)

 Data Access Metric (QMOOD_DAM)

 Direct Class Coupling (QMOOD_DCC)

 Measure of Aggregation (QMOOD_MOA)

 Measure of Functional Abstraction (QMOOD_MFA)

 Number of Methods (QMOOD_NOM)

Table 7. Complete Metrics Suites

 As we can see, since the model that Pressman suggested in 1994 has not only

evolved, but even more models and frameworks have been suggested.

Figure 5. Pressman’s Model, 16 years ago.

 Some of the studies we reviewed suggested several metrics that were of
reduced use and effectiveness due to various reasons. Many of them do not operate
in alignment with agile principles; others are redundant or pointless and measured
data for measurement’s sake [37]. We will present them below.

Metric Disadvantage

Checklist of Documents
Completed [37]

Does not provide adequate information of working
software produced.

Lines of Code, Total
Lines of Code [1, 37]

Works against refactoring for quality design

Number of Tasks
Completed [37]

Measures tasks, which can include things other than
working software scope

Story Points per Person
per Iteration [37]

Advocates competition instead of collaboration

Lines of Code per
Developer [37]

Advocates competition instead of collaboration

Bugs Fixed [37] Does not contribute to the improvement of the software
development process.

Table 8. Ineffective and Useless metrics.

4. DISCUSSION

 In order to develop real-time software benchmarking and estimation models,

measurement specialists must work with and build upon the knowledge and result

that has been achieved by others over the years and not start anew with their own

set, or interpretation, of rules. In order to surpass this problem, the industry should

agree on a set of measurement rules so that everyone is working with the same basis

and each individual's results are valid and comparable data that can be utilized by

others in the years to come. Considering the ever changing rhythms in which

software engineering is evolving nowadays, there are bound to be differences in the

practices and procedures applied that make the classification of some new metrics a

very complicated process. The iterative development cycles, frequent delivery of

product, the continuous requirements adjustments and changes, the test-driven

development and pair programming, require different metrics selection and

measurement methods. Taking all the above in to consideration the following

classification of metrics can be suggested in an attempt to categorize the reviewed

metrics in accordance with some core attributes that they share either referring to

their utilization or to the nature and application of the results they offer.

Code Metrics
 Mean-Time to Repair
 Mean-time Before Failure

 Cyclomatic Complexity
 Class Size
 Coupling Between Class Objects
 Depth of Inheritance Tree
 Weighted Methods per Class
 Dead Code
 Code Duplication
 Coding Standards Violation
 Response for a Class
 Code Quality

Process Effectiveness Metrics

 Iteration length
 Planned Iterations
 Planned release story points
 Pulse
 Burn Down
 Faults
 Rework %
 Open and Closed Issues
 Changing Request Effort
 Defects Carried Over to Next Iteration
 User Stories Carried Over to Next Iteration
 Obstacles Carried Over to Next Iteration

 Obstacles Cleared per Iteration
 User Stories Completed per Iteration
 Defects Cleared per Iteration
 Number of Builds per Iteration
 Unit Tests per User Story

Test Efficiency Metrics

 Unit tests per Story
 Functional Tests per Story
 Test Code %
 Acceptance Tests per Story
 Tests Time to Run
 Manual Tests per Story
 Time to Fix Tests

Administration Efficiency Metrics

 Earned Value Management
 Number of Process Improvements Requiring Organizational Support
 Number of Process Improvements Not Requiring Organizational Support
 Number of Other Improvements Requiring Organizational Support
 Number of Process Improvements Not Requiring Organizational Support
 Schedule Variance

 Facetime
Team Efficiency Metrics

 Velocity
 Team Morale
 Number of Delivered Stories
 Team member Loading
 Surveys
 Interviews

Business Related Metrics

 Earned Business Value
 Budget at Complete
 Return of Investment
 Resource Use
 Budget Variance
 Potential Value Delivered
 Product Size
 Requirements Volatility
 Running Tested Features
 Impact of Budget

Table 9. New Metrics Classification

 Of all the metrics that were encountered during the conduction of the study
there was a small number of them that captivated the attention and left positive or
negative impressions upon the researchers. A presentation of the above is offered
below in detail.

 Earned Business Value (EBV) was definitely a metric around which there is
much speculation and discussion. EBV offers a percentage value for each item that
the customer has received which represents the relative business value of the said
item as defined by the customer. The actual value is defined by the customer
according to their conception of delivered software importance. Since the
organization’s interest is to satisfy the customer through swift and frequent delivery
of valuable software, this metric should be of great importance to any organization,
for it is closely tied to the customer, showing customer contentment. However, in
order for EBV to work and offer its substantial rewards the project’s scope must be
well known from the beginning of the procedure and often visible to the customer
(who will assign his values to the individual parts to be completed. If such an
endeavor is not possible then EBV should be avoided because if the scope deviates
or numerous changes are added in the process at some point, the previous
measurements will not be compatible with the new ones and this may lead to very
unpleasant and false results. One last but important aspect of this metric is that it
provides great inspiration and motivation for teams, because they can perceive that
they are delivering something of value and are contributing towards the
organization’s goals. For a more complete picture [41] suggests that EBV is useful to
agile projects especially when coupled with Earned Value Management (EVM). The
Agile Earned Value Management metrics method's validity in accordance to Scrum
projects is established both empirically and mathematically [16]. This allows The
teams utilizing the Scrum agile method to be able to obtain accurate cost analysis
and return of investment estimates and therefore steer the teams efforts more
accordingly, in order to better achieve their goals.
 Velocity. This very useful metric measures the amount of software that a
development team can deliver per iteration. Usually counting story points, velocity
can be a very useful metric if applied correctly. There is a thin line between proper
and productive use of this metric and many of the organizations fail to discern it.
Because velocity is closely tied to the particular team it observes, its results are
useful within the team and almost never outside the team scope. It is primarily
based on the team’s own estimation of how much time they will spend working on
said tasks and should not be used as a Time Estimation metric. It forecasts the
team’s ability to complete their work per iteration and should not be used as a goal
to aim for or a comparison between teams. Velocity should be only applied once per
team per project and its results should be questioned if changes are made to the
team dynamics. Many agile practitioners couple Velocity with Burn Charts when in
need to motivate their team. By combining Burn-Down and Burn-Up charts they can
present the ratio of work completed / work remaining, which has proven to be an
excellent motivator because team members take pride by seeing their velocity charts
with high values and aim to retain them.
 Facetime. Not considered as a metric by few, Facetime measures the amount
that each developer spends with someone else, for example another team member,
the team manager or a business representative or stakeholder. This metric, although
not in direct numerical value to the organization, represents the main Agile Principle
of personal interaction and collaboration. By tracking Facetime, each organization
can see whether its software development process is actually following the agile
methodology. It is obvious to say that this metric can be used only with co-located

teams and not with dispersed, since communication via electronic means is not an
easily or valid measuring factor.

 It was thought useful for reference to create a listing of the existing metrics

collection tools that were reported earlier, so that referencing can be made easier.

 Agile task management tool/plug-in

 Issues management system

 Microsoft Excel

 Checkstyle

 PMD/CPD

 Jester

 Findbugs

 Simian

 Maven website plug-in

 Intellij IDEA Inspections

 JDepend

 Eclipse CAP plug-in

 Issues Management System

 Special Agile tools/plugins

 Physical Task Management Tools

 CruiseControl

 TeamCity

 Bamboo

 Hudson

 Continuum

 Cobertura

 Clover

 Maven Dashboard plug-in

 FitNesse

 Concordion

 Selenium

 Issues Management System
Testing Automation Tools

 UnitMetrics

Table 10. Measurement tools listing

 The UnitMetrics measurement tool which was developed and implemented

into the integrated development environment (IDE) Eclipse, has made the

aforementioned able to support agile development. With over 100 downloads and

utilizations, initial assumptions can be made as to how to better support agile

software development and, in particular, it’s possible refactoring. [31]

 Past analysis showed that it is actually possible to measure both the quality

of a product and the stability of a maintenance process with the use of risk, reliability

and test metrics. Since then, many methodologies and ways of applying such metrics

have been developed and in our times, almost ten years later, we have the luxury of

being able to choose the one best suited for our projects without having to modify

(or with minimal modification) factors. Thus, many organizations proceed to obtain a

metrics suite instead of deciding first hand which metrics should be used and for

what reason. It is natural to observe a tendency towards solid, organized and ready

to use metrics, even if that implies the loss of some valuable information that the

various packages might not include.

 The CMM and CMMI methods typically do utilize formal design and code

inspections, which are more than 65% efficient in finding bugs or defects, a value

close to twice the efficiency of most forms of testing, which on average can identify

only 30% of the errors present. In 2007 research has showed that the average

number of cumulative defect removal efficiency is only about 85% in the US, so both

the Agile and CMM ratings are better. The CMM method sports a little higher value

than Agile, mainly due to formal inspections, testing specialists, and a more formal

quality assurance approach, which agile does not (appears not to) have. The CMM

and CMMI are cumbersome when applied to small projects for because they were

designed to be used in applications of larger size and scope. They may be tailored or

subset to fit small projects, but primarily, they are not effective [11].

 The case study conducted by [12] indicate that the CK and QMOOD Object-
Oriented (OO) class metrics suites are useful in developing quality classification
models to predict defects in agile software development processes for both initial
delivery and for multiple, sequential releases. The UBLR analysis for the MOOD
metrics indicated that in general, they were not useful as a means to predict the
error proneness of object-oriented classes. From the three metrics CM, MOOD and
QMOOD, the fist one has proven to be more effective and liable. However, it is also
noteworthy that these metrics will not continue to be as reliable throughout time, as
the software itself matures over continuous iterations.
 Analysis shows that there is not a single methodology that is adequate

enough to be universally utilized so that it can bring the required results,

guaranteed. There are lots of variables that need to be taken under consideration

before deciding which methodology to use, such as project size, time limits and team

size and skill [12].

 Another interesting fact is the conclusion that application of Extreme
Programming to a team of developers for the army [9] showed that despite the fact
that the army is a solid and hard to change organization with specific procedures and
ways of operation, it is possible to introduce successfully a new methodology which,
as it turned out, increased the unit's confidence and ability to make short and long
term decisions as well as the management's disposition regarding agile methods. It is
surely difficult to apply new methodologies to unwilling recipients as many
aforementioned surveys have indicated but if it can be applied in the army, then it
can be applied almost anywhere.
 In the experiment of [13], cross-referencing the results of Object Oriented
and Secure Line of Code metrics when they are both applied to examine the same
project we find that with the knowledge of the actual development cost of a project
or component, we can view an accurate estimate of the development cost that
would occur if we had given a different set of imports and therefore be able to
consider if the new parameters are hampering the development process as far as
cost is concerned.
 According to [43], configuration management and version control metrics
applied to an agile environment raise two main concerns: Firstly, agile
methodology's approach with very small feedback loops which occur frequently
makes for a lot of complex details to attempt to measure in order to gain valid
results and secondly, favoring "people and interactions" over "process and tools"
makes it very hard to acquire successfully such metrics transparently and
unobtrusively. This is doubly true if the organization does not know which metrics to

use and just measures everything in hopes of getting positive results, or when the
projects are constantly changing scope and have uncertain goals.
 By combining a metric and decision trees one can successfully locate and
predict modules with significantly large numbers of undetected faults. Identifying
these modules and devoting some additional effort to maintain, enhance and test
them out, leads to greater quality and reliability of the software in whole [23].
 The Application Development (AD) Metrics are smartly introduced with the
Balanced Scorecard model [33], which organizes them into four categories and gives
the opportunity for the clients to choose which metrics to use form across them. This
way, although appearing costly in the business level, the metrics work very well in
the application development level and offer a very realistic and to the point model
for metrics selection and definition. In addition it is emphasized that data collection
should be as unobtrusive as possible because it is relatively easy for developers to
"fake" data in order to get their job done easier and circumvent the process which
does not affect them per se.
 Many Agile practices such as pair programming, test driven development and
planning, offer good techniques and mechanisms to improve agile software
development as well as to implement and further test activities of the ISO 12207
development process [19]. Although in almost all cases a significant difference in
quality metrics of software developed in the various phases and systematic
improvement of software quality metrics, occurred when agile practices are
thoroughly used by skilled developers [1] as higher quality and more efficient
development led to a reduction in overall project duration, defects and rework. This
resulted in reduced costs to build, change and support a new development and
production platform [6]. The tracking techniques of agile methodology are not
necessary to projects with short-release cycles whereas they are valuable to projects
with long iterations. Nevertheless they should be taken under consideration in every
project where the control and management shifts from one person to a whole team.
Even then however, there is need for a Project Manager, a person who should be
able to plan correctly often in the middle of the project's cycle, guide and lead the
team to the desired result.
 Analysis of environmental programs indicates that there is a very important
connection between environmental performance and profitable returns that needs
to be further examined and calls for the development of more sophisticated metrics
[34]. By using metrics to measure and factor this connection is the only way to show
that environmental programs are not a necessary burden. They are not decreases in
profitability that must be tolerated for the greater good. They should be viewed as
(sometimes) radical innovations that add to profit instead of decreasing it by
reducing and minimizing the costs and planning more efficient use of resources.
 Process-Oriented Metrics for Software Architecture Adaptability (POMSAA) is
a process-oriented framework which calculates the necessary metrics for
Adaptability by tracing metrics to their respective requirements, analyzing the
reasons for strategic strengths and weaknesses in metrics, evaluates and suggests
improvements on the architecture of the framework. These observations are based
in an initial study and application of the aforementioned framework which suggests
that a lot of research and work is in due in order to certify the operational validity
and reliability of POMSAA.

 Another metric that should be briefly discussed is the equally loved and
frowned upon, Function Points. Throughout the study we have encountered this
particular metric in many a case and we saw that it is not one of the metrics that are
used en large or at will by organizations and analysts. However here are some
noteworthy observations. The Function Point metric when applied should not only
focus on the end product of the measurement system but in each step of the
process, which most likely will provide new information. It can also identify which
intermediate step is more meaningful and important by measuring the information
lost (instead of added) in each step [57]. It is also possible (and effective) to measure
Function Points from a system which is expressed in entity relationships(ER) and
data flow diagrams (DFD). This automatic measuring process saves lot of human
work hours and results are in accord with the traditional human counters, while the
IFPUG counting rules are made more solid and rigorous, which helps avoiding
confusion between the different counters of the same project [56].
 Admittedly, we should not exclude the Naked Objects framework. Naked
Objects allow the fast realization of user-stories, which allows better understanding
of the demands and changes need to be done. Its experimental implementation [66,
67] has offered some interesting data. Development duration was significantly
reduced by -50% while the total effort in hours was reduced by -64%. The total size
of the software's code was decreased by -39% and the team productivity
substantially increased by 54%. Although these are impressive results, naked objects
is still an untested framework and further work is required to assess its overall
benefits. Being not yet mature, it should not be considered for application with
multiuser security requirements and lots of objects. Additionally, implementation
requires high throughput and has been considered difficult.
 While agile development is by no means an adequate solution for all projects,
findings of [4] indicate that there are a number of different cases where agile
development can result in a significant advantage in terms of driving efficiency into
the application development process and increasing the time to benefits by reducing
errors and changes brought about by unforeseen changes in business requirements.

The threat of mendacity.

 The danger of error in the extracted data and deviation in the synthesis of the
results is ever present and lurking. In order to uphold the existing research standards
and to strengthen our research’s framework against this danger, we have developed
the research protocol detailed in section two, based upon the guidelines of [77, 78.
79]. Our effort was focused on the goal to set the correct questions that the studies
answer to and the various criteria through which the literature we reviewed was
filtered. Nevertheless it must be noted that although both authors went through this
demanding and arduous procedure, room for data inaccuracy might still exist. This
threat to the review’s internal or external validity might occur due to some elements
such as the inability to accurately and properly compare studies that have notable
differences in their respective attributes, or the lack of parts of the attributes of
studies what were deemed too important to be discarded.

5. CONCLUSIONS

 Metrics are globally utilized in order to help planning the organizations’

market strategies, including product development and release. They are effective in

estimating and assessing new projects, also identifying and mitigating risks. They

offer regular and frequent feedback, and if applied correctly do not pose threats to

team collaboration and unity.

 When applying metrics it is best to be as clear as possible and consider the

transparency degree, if any, and its possible implications on the developers. Metrics

should be used as basis for discussion and not to compare developers or teams with

each other. The teams may frown upon the usage of metrics and feel monitored and

controlled, which could lead to gradual decrease in morale. Therefore it is suggested

that team state should be strongly considered along with careful metrics selection

that are easy to measure and will not hamper the development process. As [4]

suggests. The object of the measurements should be preferred to be outcomes over

outputs and results over activity. Last but not least, it is counter-productive to follow

numbers instead of trends. Measuring in agile methodology is not a means of

corporate control but a useful tool that helps understand the progress of our

projects, compare it with other measurements and provide significant information,

which can be used to inspire, to motivate and usher a way of acting and thinking that

is in accord not only with the organizations’ goals but with each individual team’s as

well.

 The cornerstone of successful and beneficial bonding of agile methods within

an organization is the communication and collaboration between the organizational

level and the project-developing teams, in a constant and uninterrupted basis. Many

times, and often while the developing process is still underway, the organization

needs to make appropriate decisions and take action to address the problems

and/or mistakes that come up, and set the correct course that the developer's

actions should then take. It is suggested that the implementation of a project

Facilitator in each team would ensure that the team can successfully overcome any

obstacles they might find by always performing in tune with the organization's plans.

Be that as it may, team and project size are always relevant to whether agile

methods can be used.

 This systematic literature review offers two main contributions. The enacted
review and its presented summary on empirical studies considering agile metrics,
can be of importance and use in the industry to provide solid information on quality
and utilization of metrics, as well as their respective categories and measurement
tools. In addition to the current state of agile implementation and impact on
software development, it is hoped that the findings of this review will be useful to
future practitioners and researchers who want to stay in tune with and build upon
the development of agile procedures and methodologies.

6. REFERENCES

[1] Giulio Concas, Marco Di Francesco, Michele Marchesi, Roberta Quaresima,
Sandro Pinna: An Agile Development Process and Its Assessment Using
Quantitative Object-Oriented Metrics. XP 2008: 83-93

[2] John Erickson, The Total Economic Impact of ThoughtWorks’ Agile
Development Methodology. Single Company Analysis – Energy Services,
Forrester Consulting, securerespond.com/tworks/pettit/forrester.pdf,
etrieved 2009

[3] John Erickson, The Total Economic Impact™ Of Using ThoughtWorks’ Agile
Approach Single Company Analysis — An Australian Insurance Provider,
Forrester Consulting,
http://www.thoughtworks.com/sites/www.thoughtworks.com/files/files/forr
ester_tei_au.pdf, Retrieved 2008

[4] Forrester researchers, The Total Economic Impact™ of Using ThoughtWorks'
Agile Development Approach, Forrester Research Inc, Forrester Consulting,
http://www.thoughtworks.com/sites/www.thoughtworks.com/files/files/forr
ester_tei.pdf, Retrieved 2008

[5] John Erickson, The Total Economic Impact™ Of Using ThoughtWorks’
“Distributed Agile” Approach Single Company Analysis — Financial Services,
Forrester Consulting,
http://www.thoughtworks.com/sites/www.thoughtworks.com/files/files/forr
ester_tei_dist.pdf, Retrieved 2008

[6] Paul Devine, The Total Economic Impact™ Of Using ThoughtWorks’ Agile
Development Approach,
http://www.thoughtworks.com/sites/www.thoughtworks.com/files/files/TEI-
media.pdf, 2008. Retrieved 2009

[7] Bryan Campbell, Dr. Glenn Ray, Iterative Development Testing Approaches,
http://bryancampbell.com/Files/Iterative_Dev_Testing_Approaches.pdf,
Retrieved 2009

[8] Valery A. Martinez, Software Reliability Observations for Software Products
Relying on Agile Programming Practices, EEL6883 Software Engineering II.,
April, 2008

[9] Yael Dubinsky, David Talby, Orit Hazzan, and Arie Keren, Agile Metrics at the
Israeli Air Force, http://portal.acm.org/citation.cfm?id=1122089, Retrieved

2009

[10] Outi Salo, Pekka Abrahamsson: Integrating agile software development and
software process improvement: a longitudinal case study. ISESE 2005: 193-
202, 2005

[11] Capers Jones, Development Practices for Small Software Applications,
http://www.stsc.hill.af.mil/crosstalk/2008/02/0802jones.html, Retrieved
2009

[12] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, Stephen
Quattlebaum: Empirical Validation of Three Software Metrics Suites to Predict
Fault-Proneness of Object-Oriented Classes Developed Using Highly Iterative
or Agile Software Development Processes. IEEE Trans. Software Eng. 33(6):
402-419, 2007

[13] Wolfgang Holz, Rahul Premraj, Thomas Zimmermann, Andreas Zeller,
Predicting Software Metrics at Design Time,
http://www.springerlink.com/content/x3w4430557172vu4/, Retrieved 2009

[14] Danilo T. Sato, Hugo Corbucci, Mariana V. Bravo: Coding Dojo: An
Environment for Learning and Sharing Agile Practices. AGILE 2008: 459-464,
2008

[15] By Bachir Kane, Estimating and Tracking Agile Projects, Published in PM World
Today - May 2007 (Vol. IX, Issue V), 2007

[16] Tamara Sulaiman, Brent Barton, Thomas Blackburn: AgileEVM - Earned Value
Management in Scrum Projects. AGILE 2006: 7-16, 2006

[17] Danilo Sato, Alfredo Goldman, Fabio Kon: Tracking the Evolution of Object-
Oriented Quality Metrics on Agile Projects. XP 2007: 84-92, 2007

[18] Quentin Hart-Slater, APPLICATION OF THEORY OFCONSTRAINTS
METHODOLOGY TO SOFTWARE PROJECT MANAGEMENT,
http://www.docstoc.com/docs/2215698/APPLICATION-OF-THEORY-OF,
Retrieved 2008

[19] Minna Pikkarainen, Mapping Agile Software Development onto ISO 12207,
ITEA, http://www.agile-itea.org/public/deliverables/ITEA-AGILE-
D2.9_v1.0.pdf, Retrieved 2009

[20] Aldo Dagnino, Karen Smiley, Hema Srikanth, Annie I. Antón, Laurie A.
Williams: Experiences in applying agile software development practices in
new product development. IASTED Conf. on Software Engineering and
Applications 2004: 501-506, 2004

[21] Michael Karlesky, Mark Vander Voord, Agile Project Management (or, Burning
Your Gantt Charts), Embedded Systems Conference Boston (Boston,
Massachusetts) ESC 247-267, October 2008

[22] Harald Klein, Sabine Canditt, Using Opinion Polls to Help Measure Business
Impact in Agile Development, International Conference on Software
Engineering ,Proceedings of the 1st international workshop on Business
impact of process improvements Leipzig, Germany, 25-32, 2008

[23] Peter Kokol, Vili Podgorelec, Maurizio Pighin, Using software metrics and
evolutionary decision trees for software quality control ,
http://www.google.gr/url?sa=t&source=web&cd=3&ved=0CC0QFjAC&url=htt
p%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.
1.19.476%26rep%3Drep1%26type%3Dpdf&ei=TnOCTMfeEc-
TjAf4nJyOCA&usg=AFQjCNGTqz8kMQEFRfHV_W0vgqYpk6JshA&sig2=Zy3gL6T
O6OtkUQHGd-2SOA, Retrieved 2009

[24] David J. Anderson: Stretching Agile to fit CMMI Level 3 - the story of creating
MSF for CMMI Process Improvement at Microsoft Corporation. AGILE 2005:
193-201, 2005

[25] Norman F. Schneidewind: Measuring and Evaluating Maintenance Process
Using Reliability, Risk, and Test Metrics. IEEE Trans. Software Eng. 25(6): 769-
781, 1999

[26] Outi Salo, Minna Pikkarainen, Agile Software Deployment of Embedded
Systems, ITEA, http://www.agile-itea.org/public/deliverables/ITEA-AGILE-
D4.4_v1.0.pdf, Retrieved 2009

[27] Teodora Bozheva, Maria Elisa Gallo: Framework of Agile Patterns. EuroSPI
2005: 4-15, 2005

[28] Alain Abram et al, Full Function Points for Embedded and Real-Time Software,
UKSMA Fall Conference, London (UK) October 30-31 1998,
http://www.gelog.etsmtl.ca/publications/pdf/379.pdf, Retrieved 2008

[29] Jennitta Andrea, An Agile Request For Proposal (RFP) Process, Proceedings of
the Agile Development Conference (ADC’03) 0-7695-2013-8/03, 2003

[30] James P. Andrew, Measuring Innovation 2006, Boston Consulting Group,
http://www.scribd.com/doc/6604806/Innovation-2006, Retrieved 2008

[31] Martin Kunz, Reiner R. Dumke, Niko Zenker: Software Metrics for Agile
Software Development. Australian Software Engineering Conference 2008:
673-678, 2008

[32] Dr. Linda Rosenberg, Ted Hammer, Jack Shaw, SOFTWARE METRICS AND

RELIABILITY,
http://www.google.gr/url?sa=t&source=web&cd=2&ved=0CCYQFjAB&url=htt
p%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.
1.104.4041%26rep%3Drep1%26type%3Dpdf&ei=jm6CTLqSAZm8jAeWoaCbC
Q&usg=AFQjCNHZ9bW9j8rlhjKq6EU_GqDKYKHVXQ&sig2=ZDBwCDnOVBZUOY
IBtt019A, Retrieved 2009

[33] Liz Barnett, Metrics For Application Development, Forrester Research Inc,
http://www.forrester.com/rb/Research/metrics_for_application_developmen
t/q/id/35916/t/2, 2005

[34] Global Environmental Management Initiative, MEASURING ENVIRONMENTAL
PERFORMANCE: A Primer and Survey of Metrics In Use, GERMI,
http://www.gemi.org/resources/MET_101.pdf, Retrieved 2008

[35] Deborah Hartmann, Robin Dymond: Appropriate Agile Measurement: Using
Metrics and Diagnostics to Deliver Business Value. AGILE 2006: 126-134, 2006

[36] Mike Burba, Four Myths of Agile Development A Real-world “Enterprise Agile”
Case Study, Compuware,
http://www.agilejournal.com/articles/columns/case-studies/187-case-study-
four-myths-of-agile-development, Retrieved 2009

[37] Deborah Hartmann, Robin Dymond, Appropriate Agile Measurement.
http://www.berteigconsulting.com/AppropriateAgileMeasurement.pdf, both
retrieved 2009

[38] Abrahamsson, P., AGILE Software Development of Embedded Systems, ITEA2
symposium, Berlin, Germany, 18-19 October 2007 http://www.agile-
itea.org/public/papers/ITEA-Symposium_oct-07.pdf, Retrieved 2008

[39] Outi Salo, Pekka Abrahamsson: An iterative improvement process for agile
software development. Software Process: Improvement and Practice 12(1):
81-100, 2007

[40] Stephanie Moore, Liz Barnett, Offshore Outsourcing and Agile Development,
Forrester Research Inc,
http://www.xgenta.com/docs/Forrester04_AgileOffshoring.pdf, Retrieved
2009

[41] Daniel Rawsthorne, Monitoring Scrum Projects with AgileEVM and Earned
Business Value (EBV) Metrics, Danube Technologies,
http://danube.com/system/files/CollabNet_WP_AgileEVM_and_Earned_Busi
ness_Value_Metrics_032510.pdf, Retrieved 2009

[42] Brad Appleton, Robert Cowham,Steve Berczuk, Lean-based Metrics for Agile
CM Environments, cm crosroads http://www.cmcrossroads.com/agile-

scm/7820-lean-based-metrics-for-agile-cm-environments, Retrieved in 2009

[43] VersionOne, 3rd Annual Survey: 2008 “The State of Agile Development”,
VersionOne,
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf,
Retrieved 2009

[44] VersionOne, 2nd Annual Survey: The State of Agile Development, VersionOne,
http://www.versionone.com/pdf/StateOfAgileDevelopmet2_FullDataReport.p
df, Retrieved 2009

[45] VersionOne, Survey: The state of Agile Development, VersionOne,
http://trailridgeconsulting.com/surveys/state-of-agile-development-survey-
2006.pdf, Retrieved 2009

[46] Ade Miller, Distributed Agile Development at Microsoft patterns & practices,
Microsoft Corporation,
download.microsoft.com/.../distributed_agile_development_at_microsoft_pa
tterns_and_practices.pdf, Retrieved 2009

[47] Shine Technologies Pty Ltd, AGILE METHODOLOGIES Survey Results, SHINE
TECHNOLOGIES,
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-
17.pdf, 2003

[48] Mike Griffiths, Using Agile Alongside the PMBOK, Originally published as part
of 2004 PMI Global Congress Proceedings - Anaheim, California, 2004

[49] Michael James, An Agile Approach to “Metrics”: Applied Macromeasurements
to Ensure On-time Delivery: Copyright ©2007 – 2008 Danube Technologies,
Inc.
http://danube.com/system/files/CollabNet_WP_Macromeasurements_06171
0.pdf, Retrieved 2009

[50] Santhana Krishnan, Agile Workshop: Agile Workshop: Agile Metrics
http://www.slideshare.net/Siddhi/agile-workshop-agile-metrics, Retrieved
2009

[51] Mishkin Berteig, Agile Work Uses Lean Thinking, Berteig Consulting.
http://www.berteigconsulting.com/Whitepaper%20-
%20Agile%20Work%20Uses%20Lean%20Thinking.pdf, Retrieved 2009

[52] Carol Dekkers, Use Cases and Function Points -- Where's the Fit?, QUALITY
PLUS TECHNOLOGIES, INC. Software and Technology Solutions, Published in IT
Metrics Strategies, January 1999

[53] Rosenberg Linda, Parolek Frank and Botzum Steve, “The Role of Metrics in

Risk
Management across the Software Development Lifecycle”, NASA GSFC., 2001

[54] Nary Subramanian, Lawrence Chung: Process-Oriented Metrics for Software
Architecture Changeability. Software Engineering Research and Practice 2004:
83-89

[55] Robert C. Martin, PERT, CPM and Agile Project Management,
Objectmentor.com
http://www.objectmentor.com/resources/articles/PertCpmAgile.pdf,
Retrieved 2009

[56] Evelina Lamma, Paola Mello, Fabrizio Riguzzi: A System for Measuring
Function Points from an ER-DFD Specification. Comput. J. 47(3): 358-372,
2004

[57] Alain Abran, Pierre N. Robillard: Function Points Analysis: An Empirical Study
of Its Measurement Processes. IEEE Trans. Software Eng. 22(12): 895-910,
1996

[58] Nicole Rauch, Eberhard Kuhn, Holger Friedrich (2008) Index-based Process
and Software Quality Control in Agile Development Projects, Andrena Objects,
http://comparch2008.ipd.kit.edu/fileadmin/user_upload/comparch2008/iert-
rauch-andrena.pdf, Retrieved 2009

[59] James P. Andrew, Harold L. Sirkin, Knut Haanes, Davind C, Michael, Measuring
Innovation 2007, The Boston Colnsulting Group,
http://209.83.147.85/publications/files/Measuring_Innovation_Aug_2007.pdf
, Retrieved 2009

[60] O. Salo and P. Abrahamsson, “Empirical Evaluation of Agile Software
Development: A Controlled Case Study Approach,” 5th International
Conference on Product Focused Software Process Improvement, Japan, 2004.

[61] Salo, O. (2004) Improving Software Process in Agile Software Development
Projects: Results from Two XP Case Studies. In: EUROMICRO 2004, France.

[62] Abrahamsson, P. & Koskela, J. (2004) Extreme Programming: A Survey of
Empirical Data from a Controlled Case Study. In ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach,
CA, USA, 2004.

[63] Koskela, J. & Abrahamsson, P. (2004) On-Site Customer in an XP Project:
Empirical Results from a Case Study. In: EuroSPI 2004, Trondheim, Norway.,
2004

[64] Pikkarainen, M. and Passoja, U. "An Approach for Assessing Suitability of Agile

Solutions:A Case Study" The Sixth International Conference on Extreme
Programming and Agile Processes in Software Engineering, Sheffield
University, UK, 2005

[65] Pikkarainen, M., Salo, O. & Still, J. (2005). Deploying Agile Practices in
Organizations:
A Case Study. In: European Software Process Improvement and Innovation
(EuroSPI 2005), Budapest, Hungary, 9-11 November, 2005,

[66] Keränen, H., & Abrahamsson, P. (2005) Naked Objects versus Traditional
Mobile Platform Development: A comparative case study, Proceedings of the
2005 31st EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05, 2005

[67] Keränen, H., & Abrahamsson, P. (2005) A Case Study on Naked Objects in
Agile Software Development, XP 2005, Sheffield University, UK. H. Baumeister
et al. (Eds.): XP 2005, LNCS 3556, pp. 189–197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

[68] Scott Ambler, Survey Says: Agile Works in Practice, Dr.Dobb's Journal
http://www.drdobbs.com/architecture-and-
design/191800169;jsessionid=PKDAU11XXKSZPQE1GHOSKHWATMY32JVN?qu
eryText=Survey+Says%3A+Agile+Works+in+Practice, Retrieved 2009

[69] Erik Arisholm, Hans Gallis, Tore Dyba, Dag I.K. Sjøberg, Evaluating Pair
Programming with Respect to
System Complexity and Programmer Expertise, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 33, NO. 2, 2007

[70] Lucas Layman, Laurie Williams, Lynn Cunningham, Exploring Extreme
Programming in Context: An Industrial Case Study,
Proceedings of the Agile Development Conference (ADC’04) 0-7695-2248-
3/04, US, 2004.

[71] Matthias M. M¨uller Walter F. Tichy, Case Study: Extreme Programming in a
University Environment, Proceedings of the 23rd International Conference on
Software Engineering (ICSE’01), 2001
0270-5257/01

[72] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New Directions
on Agile Methods: A Comparative Analysis,” International Conference on
Software Engineering, 2003

[73] A. Cockburn, Agile Software Development. Boston: Addison-Wesley, 2002.

[74] P. Abrahamsson, "Extreme Programming: First Results from a Controlled Case

Study," presented at 29th Euromicro Conference, 2003.

[75] I. Stamelos and P. Sfetsos, “Agile Software Development Quality Assurance”,
IGI Publishing, 2007, ISBN: 978-159904216-9.

[76] Minna Pikkarainen, Outi Salo: A Practical Approach for Deploying Agile
Methods. XP 2006: 213-214

[77] Tore Dyba, Torgeir Dingsøyr, Empirical studies of agile software development:
A systematic review, 0950-5849/$ - see front matter 2008 Elsevier B.V. All
rights reserved. doi:10.1016/j.infsof.2008.01.006, 2008

[78] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner,
Mohamed Khalil, Lessons from applying the systematic literature review
process within the software engineering domain, 0164-1212/$ - see front
matter 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2006.07.009, 2006

[79] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John
Bailey, Stephen Linkman, Systematic literature reviews in software
engineering – A systematic literature review, Information and Software
Technology 51 (2009) 7–15

7. APPENDIX A

Systematic Literature Review Data Synthesis Table.

ID
Authors Topic Institutio

n/Comp
any

Count
ry

Type
of

study
Aproach

Popul
ation

Remarks

S1

Concas et al

2008

An Agile
Development

Process and Its
Assassment

Using
Quantitative

Object-
Oriented
Metrics

Universita
di Cagliari

Italy
Experi
ment

Combined N/A

• Significant difference in quality metrics of software developed duting the
various phases with agile implementation.
• Systematic improvement of software quality metrics when agile practices are
thoroughly used by skilled developers.

S2

John
Erickson

2008

The Total
Economic
Impact of

ThoughtWorks
’ Agile

Development
Methodology.

Single
Company
Analysis –

Energy
Services

North
American

-based
Energy

services
organisati

on

US
Case
Study

Combined 1

Within the five years of the application of Agile methodology the short iterative
development cycles, empowered teams, transparency, constant reprioritization of
requirements, and strong business participation, all lead to increased benefits:
• Increasing team efficiency reduced both development and maintenance costs,
and freed the development organization to address other
projects.
• Delivering core requirements in shorter timeframes greatly increased financial
benefits.
• Return of Investment (ROI) without the implementation of agile methodology:
14%
• Return of Investment (ROI) with the implementation of agile methodology: 50%

S3
John

Erickson
The Total
Economic

Australian
Insurance

Austra
lia

Case
Study

Combined 1
Agile methodology provided important decrease to costs and increased quality

and speed of development over four years:

2005

Impact™ Of
Using

ThoughtWorks
’ Agile

Approach
Single

Company
Analysis — An

Australian
Insurance
Provider

provider • Return of Investment (ROI) without the implementation of agile methodology:
16%
• Return of Investment (ROI) with the implementation of agile methodology: 56%

Not every project is a good fit for Agile development, but ThoughtWorks has
demonstrated that applying Agile processes and strong project management can
potentially be a benefit to high-risk projects, although highly-skilled staff will need to
be hired and retained in order for this to succeed.

S4

Forrester
Research Inc

2004

The Total
Economic

Impact™ of
Using

ThoughtWorks
' Agile

Development
Approach

Four
Companie

s

Intern
ational

Case
Study

 4

The enterprises discovered an expected return even on a risk adjusted
basis, which exceeded their standard ROI:
• Return of Investment on non risk-adjusted basis: 29% - 64%
• Return of Investment on the Thoughtworks agile risk-adjusted basis: 31% - 66%

Although agile practices are not suitable for every single project their
implementation offers:
• driving efficiency into the application development process
• Reducing errors and changes caused by unforeseeable factors.

S5

John
Erickson

2004

The Total
Economic

Impact™ Of
Using

ThoughtWorks
’ “Distributed

Agile”
Approach

Single
Company

Leading
Insurance

and
Financial
services

organisati
on

US
Case
Study

Combined 1

• projects were finished in almost half the time it took previously.
• cash benefits were noticeably lower in the first year that Agile was applied but
unexpectedly higher the following three years in the four-year cycle of the study.
• Return of Investment (ROI) without the implementation of agile methodology: 4%
• Return of Investment (ROI) with the implementation of agile methodology: 94%

Analysis —
Financial
Services

S6

Paul Devine

2008

The Total
Economic

Impact™ Of
Using

ThoughtWorks
’ Agile

Development
Approach

Single
Company

Analysis —
Media

Media
Company

Intern
ational

Case
Study

Combined 1

• Higher quality and more efficient development led to a reduction in overall
project duration, defects and rework.
• This resulted in reduced costs to build, change and support a new development
and production platform.
• ROI without risk-adjustment: 64%
• ROI with risk-adjustment: 40%

S7

Bryan
Campbell,
Dr. Glenn

Ray

2009

Iterative
Development

Testing
Approaches

Large
Fortune

500
Company

US
Experi
ment

XP 11
• The project developed an iterative testing framework to support the iteration

schedule developed for the project beforehand, identifying errors and addressing
them respectively with each iteration, eventually reducing and minimizing them.

S8

Valery A.
Martinez

2008

Software
Reliability

Observations
for Software

Products
Relying on

Agile
Programming

Practices

Sears
Home

Improve
ment

Products.

US
Experi
ment

XP 4

• When it comes to XP, It is better for a task to be less large and complex or many
problems should occur, especially when the team is pressed by time.
• It would be wise to assign the junior developers with small and relatively simple
sub-tasks and leave the complex parts to the senior developers.
• In 28% of the total time a junior developer would introduce an error, whereas a
senior developer in only 4%.

S9

Yael
Dubinsky,

David Talby,
Orit Hazzan,

and Arie
Keren

2005

Agile Metrics
at the Israeli

Air Force

MAMDAS
- a

software
developm

ent
unit in

the Israeli
Air Force

Israel
Experi
ment

XP 60
• It is possible to introduce successfully a new benefactory methodology in a hard

to change organization such as the army, overally increasing the confidence and
ability to make short and long term decisions.

S10

Outi Salo,
Pekka

Abrahamsso
n

2005

Integrating
Agile Software
Development
and Software

Process
Improvement:
a Longitudinal

Case Study

VTT,
Technical
Research
Centre of
Finland

Finlan
d

Case
Study

Coombine
d

5

• Successful implementation of agile methods within an organization is the
communication and collaboration between the organizational level and the project-
developing teams.
• The organization needs to make appropriate decisions and take action to address
the problems and/or mistakes that come up, and set the correct course that the
developer's actions should then take.
• The implementation of a project Facilitator in each team would ensure that the
team can successfully overcome any obstacles they might find by always performing
in tune with the organization's plans.

S11

Capers Jones

2007

Development
Practices for

Small Software
Applications

N/A US
Case
Study

Combined
40/16
000

• For the Function Point method of cost estimation shows that there is not a
single methodology that is adequate enough to be generally (universally) utilized.
••• Formal inspections are more than 65% efficient in finding bugs or defects,
which is about twice the efficiency of most forms of testing.
• Capability Maturity Model Integration (CMMI) and Agile approach are more
efficient in defect and bug removal than the U.S. average
• CMMI has a little higher ratings than Agile in the aforementioned, because of its
more formal approach.

S12

Hector M.
Olague,
Letha H.
Etzkorn,
Sampson

Empirical
Validation of

Three
Software

Metrics Suites

IEEE US
Case
Study

Combined 4

• Chidamer and Kemerer's Metric Suite (CK) has proven to be more effective,
reliable than the MOOD and QMOOD metrics and therefore better in predicting
fault tendencies and frequency.
•These metrics will not be so reliable for a long time since over the course of the
continuous iterations of the software development, the software itself matures.

Gholston,
Stephen

Quattlebaum

2007

to Predict
Fault-

Proneness
of Object-
Oriented
Classes

Developed
Using Highly
Iterative or

Agile
Software

Development
Processes

S13

Wolfgang
Holz, Rahul

Premraj,
Thomas

Zimmerman
n, Andreas

Zeller

2007

Predicting
Software
Metrics at

Design Time

Saarland
University

,
Germany

and
University

of
Calgary,
Canada

Germa
ny,

Canad
a

Experi
ment

 89

• Knowing of the actual development cost of a project or component, an
accurate estimate of the development cost that would occur if we had given a
different set of imports can be measured.
• Results in knowing whether the new parameters are hampering the development
process as far as cost is concerned.

S14

Danilo Sato,
Dairton
Bassi,

Mariana
Bravo,
Alfredo

Goldman,
Fabio Kon

Experiences
Tracking Agile
Projects: an

Empirical
Study

University
of São
Paulo

Brazil
Case
Study

XP 7

• The projects had a higher desired score which underlines the team's increased
willingness to adopt agile methodology.
• The daily meetings of the team as suggested by the agile methodology (referred
to as Retrospectives here) helped the teams to understand and stay in tune with the
project's pace.
• Retrospectives proved important and were also performed by the teams that
could not follow the pace, nevertheless improving their performance in general.
• The classes created with the agile approach resulted in classes of the same

2008

complexity as before agile, albeit significantly smaller in size and therefore less
prone to error and faults.

S15

Bachir Kane

2007

Estimating and
Tracking Agile

Projects

Ecole
Superieur

e de
Commerc
e de Lille

France
Case
Study

XP 1

• Agile tracking techniques are not necessary to projects with short-release cycles
whereas they are valuable to projects with long iterations.
• They should be taken, however, under consideration in every project where the
control and management shifts from one person to a whole team.
• In every case, there is need for a Project Manager who should be able to plan
correctly often in the middle of the project's cycle, guide and lead the team to the
desired result.

S16

Tamara
Sulaiman,

Brent
Barton,
Thomas

Blackburn

2007

AgileEVM –
Earned Value
Management

in Scrum
Projects

N/A US
Experi
ment

Scrum 2

The Agile Earned Value Management metrics method allows teams utilizing the
Scrum agile method to be able to obtain
• accurate cost analysis
• return of investment estimates
and therefore steer the teams efforts accordingly.

S17

Danilo Sato,
Alfredo

Goldman
and Fabio

Kon

2007

Tracking the
Evolution of

Object-
Oriented
Quality

Metrics on
Agile Projects

University
of São
Paulo

Brazil
Case
Study

XP 7

• The project without and agile methodology implementation turned out to be
larger in size, more complex and significantly more prone to errors and
maintenance.
• High correlation between size, coupling and complexity metrics noted.

S18

Quentin
Hart-Slater

2003

 APPLICATION
OF THEORY OF
 CONSTRAINTS
METHODOLO

GY TO
SOFTWARE

University
of

Milwauke
e

US
Case
Study

 6

• The overall capacity of the team developing a project is not utilized because it is
limited by various constraints.
• The management of the team should be able to identify and remove those
constraints and therefore not only improve the team's productivity but that of the
whole system as well.
• Many constraints are abstract in definition and identifying them is difficult

PROJECT
MANAGEMEN

T

• Theory of Constraints helps management to identify the areas in the project than
need to be addressed with higher priority.

S19

Minna
Pikkarainen

2006

Mapping Agile
Software

Development
onto

ISO 12207

ITEA
Nether
lands

Case
Study

Combined 4
• Agile practices offer good techniques and mechanisms to improve software

development as well as to implement and further test activities of the ISO 12207
process.

S20

Aldo
Dagnino,

Karen
Smiley,
Hema

Srikanth,
Annie I.

Antón and
Laurie

Williams

2004

EXPERIENCES
IN APPLYING

AGILE
SOFTWARE

DEVELOPMEN
T

PRACTICES IN
NEW

PRODUCT
DEVELOPMEN

T

ABB Inc.
Intern
ational

Experi
ment

ADEPT 2

• The Agile Development in Evolutionary Prototyping Technique (ADEPT) project
satisfied 100% more customers with -50% the effort in documentation.
• The traditional Incremental Development Model (IDM) project did not perform as
well but was completed in 300 work hours less .
• The team could identify and adapt to changes efficiently, while augmenting their
communication and group skills.

S21

Michael
Karlesky,

Mark Vander
Voord

2008

Agile Project
Management
(or, Burning
Your Gantt

Charts)

N/A US
Case
Study

 N/A

Agile project management, in contrast to traditional project management of
existing methodologies can offer:
• Better risk and scope management.
• Efficient budgets and schedules to create valuable products.
• Lightweight and flexible documentation.
• Early and effective integration error detection via the multiple iterations.

S22

Harald Klein,
Sabine
Canditt

Using Opinion
Polls to Help

Measure
Business

Siemens
Germa

ny
Case
Study

 340

• 49% said that the cost was reduced significantly with the introduction of agile
practices.
• 83% stated that agile practices offered a much better degree of business
satisfaction.

2008 Impact in Agile
Development

• There are many communication-related issues which are important enough to
cause instability and failure to a software development team.
• Agile methodology works not with the individual but the team as a whole, making
it an entity that is able to communicate and collaborate with other such entities.

S23

Peter Kokol,
Vili

Podgorelec,
Maurizio

Pighin

2001

Using software
metrics and
evolutionary

decision trees
for

software
quality control

N/A
Sloven

ia
Case
Study

 217

• 70% of the modules were correctly classified when only "α" metric was used.
• 80% of the modules were correctly classified when the "α" metric was used in
conjunction with decision trees.
• Combining the "α" metric and decision trees one can successfully locate and
predict modules with significantly large numbers of undetected faults.
• Devoting some additional effort to maintain , enhance and test them out, leads to
greater quality and reliability of the software in whole.

S24

David J.
Anderson

2005

Stretching
Agile to fit

CMMI Level 3
- the story of
creating MSF
for CMMI®

Process
Improvement
at Microsoft
Corporation

Microsoft US
Experi
ment

 8

• Agile processes had to be enhanced in order to be combined with the Capability
Maturity Model Integration. A successful modification has reduced the overall
overhead/heaviness of the project by 85%.
• Results in a CMMI approach that was more agile, adaptive and lightweight.

S25

Norman F.
Schneidewin

d

1999

Measuring and
Evaluating

Maintenance
Process Using

Reliability, Risk
and Test
Metrics

NASA US
Case
Study

 17

• Risk, reliability and test metrics can be used to measure both the quality of a
product and the stability of a maintenance process.
• Nowadays the challenge is to be able to choose the one best suited for our
projects without having to modify (or with minimal modification) factors.

S26
Outi Salo,

Minna
Agile Software
Deployment of

ITEA
Nether
lands

Case
Study

Combined N/A
• The Agile Deployment Model (ADM) helps to identify the correct and most

useful agile methods and practices for each individual organization, by examining 6

Pikkarainen

2005

Embedded
Systems

key challenges.
• ADM both introduces new (agile) techniques and utilizes traditional methods,
applied in an agile context.

S27

Teodora
Bozheva and
Maria Elisa

Gallo

2005

Framework of
Agile Patterns

European
Software
Institute

Spain
Experi
ment

XP 13

• Productivity increased up to 73%.
• Schedule deviation reduced by 7% - 38%.
• Cost deviation decreased up to 31%.
• Defect rates reduced by 10% - 83%.
• Only one company decreased productivity and increased cost deviation.
• Success of implementing agile methodology depends on factors generally related
to development, Testing, Team effort, Management and Customer, and even then,
its not fit for everyone.

S28

Alain Abram
et al

1998

Full Function
Points for

Embedded
and Real-Time

Software

Software
Enfineerin

g
Managem

ent
Research
Laborator
y, SELAM

Canad
a

Case
Study

 N/A

• In order to develop real-time software benchmarking and estimation models,
specialists must work with and build upon the knowledge that has been achieved by
others over the years.
• It is unwise, time-, and effort-consuming for them to start anew with their own
set, or interpretation, of rules.
• The industry should agree on a set of measurement rules so that everyone is
working with the same basis and each individual's results are valid and comparable
data that can be utilized by others in the future.

S29

Jennitta
Andrea

2003

v

ClearStre
am

Consultin
g

US
Experi
ment

XP 1

• The Request For Proposal is a process a company executes to find
the vendor and/or product that best meet their criteria instead of developing new
softwarein order to reduce ownership costs.
• Through agile implementation there can be better guidance on how to identify
and evaluate the company's key requirements, leading to better vendor choices.
• The "planning" part of the Extreme Programming agile method, can be useful
outside its development/programming context.

S30

James P.
Andrew

2006

Measuring
Innovation

2006

The
Boston

Consultin
g Group

Intern
ational

Case
Study

 269

• Dissatisfaction with Return of (Innovation) Investment (ROI) decreased
significantly over the years 57% - 48%, despite the improvement.
• Over 50% of the companies measure Post-Launch Impact infrequently, or never.
• 78% of responders relate developer incentives to Innovation metrics

• Most useful and popular metrics were Time to Market, ROI and New Product Sales

S31

Martin Kunz,
Reiner R.

Dumke, Niko
Zenker

2008

Software
Metrics for

Agile Software
Development

Software
Engineeri
ng Group
University

of
Magdebu

rg

Germa
ny

Experi
ment

XP 1

• The UnitMetrics measurement tool has made the integrated development
environment(IDE) Eclipse, able to support agile development.
• With over 100 downloads and utilizations, initial assumptions can be made as to
how to better support agile software development and, in particular, its possible
refactoring.
• Very User-friendly Interface

S32

Dr. Linda
Rosenberg,

Ted
Hammer,
Jack Shaw

1999 (?)

SOFTWARE
METRICS AND

RELIABILITY
NASA US

Case
Study

 56

• The Automated Requirements Measurement (ARM) can parse requirement
documents and assess the vocabulary of the document as well as each individual
specification statement.
• In addition, it assesses the structure of the requirement document by identifying
the number of requirements at each level of the hierarchical numbering structure.
• An inconsistent or absent structure affects the software reliability. For example,
by making it difficult to make changes later on.

S33

Liz Barnett

2005

Metrics For
Application

Development

Forrester
Research

Inc
US

Case
Study

 20

• The Balanced Scorecard model organizes Application Development (AD) Metrics
into four categories and lets clients to choose which metrics to use form across
them.
• Although appearing costly in the business level, the metrics work very well in the
application development level and offer a very realistic model for metrics selection
and definition.
• Data collection should be as unobtrusive as possible because it is relatively easy
for developers to "fake" data in order to get their job done easier and circumvent
the process not directly affecting them.

S34

Global
Environment

al
Management

Initiative

MEASURING
ENVIRONMEN

TAL
PERFORMANC

E:
A Primer and

Global
Environm

ental
Managem

ent
Initiative

US
Case
Study

 41

• There is a very important connection between environmental performance and
profitable returns that needs to be further examined and calls for the development
of more sophisticated metrics.
• By using metrics to measure and factor this connection we can show that
environmental programs are not a necessary decreases in profitability that must be
tolerated for the greater good.

1998 Survey of
Metrics In Use

• They should be viewed as (sometimes) radical innovations that add to profit
instead of decreasing it by reducing and minimizing the costs and planning more
efficient use of recourses.

S35

Deborah
Hartmann,

Robin
Dymond

2006

Appropriate
Agile

Measurement:
Using Metrics

and
Diagnostics to

Deliver
Business Value

- US
Case
Study

 N/A

• A project which delivers high-value features to a customer early in the project
may become self funding during the course of the project
• There can be one "key" metric chosen and distinguished form the others, by
which all aspects of the company can be measured, and it should be one that is
closely related to the economics of the company.
• The other metrics are renamed to "diagnostics" and their value is to supplement,
diagnose and improve the key metric.

S36

Mike Burba

2007

Four Myths of
Agile

Development
A Real-world
“Enterprise
Agile” Case

Study

Compuwa
re

US
Case
Study

 N/A

• Agile development iterations lead to features that answer closely to the
business requirements and help root out the functions that would be unnecessary.
• Planning in agile methodology is done throughout the development in different
intervals and that helps the team overcome changes and problems.
• Agile management is not more difficult than the traditional methods. With the
right approach the agile methods scale without affecting the agile practices of the
teams.
• Aspects of agile methodology can be used outside the scope of programming, in
more complex projects

S37

Serena

2007

Agile in the
enterprise

Serena N/A
Case
Study

 N/A
• 17% of the enterprises use Agile practices

• 34% are aware of what the Agile methodology is
• In order for company to adopt agile methods

S38

Pekka
Abrahamsso
n, Ko Doom

2007

AGILE
Agile software
development
of embedded

systems

ITEA
Finlan

d
Experi
ment

Combined 68

• 73% of the industrial projects with agile approach were considered successful
or very successful
• Analysis indicated that a team consisting on 17 developers using agile
methodology developed software 8 times better and 3.5 times faster that the
average measurements of the industry.

S39
Pekka

Abrahamsso
An iterative

improvement
ITEA

Finlan
d

Case
Study

Scrum 35
• 60% did not make use of any available agile practice

• Almost 80% were not even remotely familiar with the agile method, Scrum

n, Outi Salo

2007

process for
agile software
development.

Software
Process:

Improvement
and Practice

• 77% of those that later tried and experienced Scrum practices found them
beneficial.

S40

Stephanie
Moore, Liz

Barnett

2004

Offshore
Outsourcing

and Agile
Development

Forrester
Research

Inc
US

Case
Study

 N/A

• Most Indian companies are opposed to Agile methods, as they are antithetical
to less-disciplined development processes.
• The few Indian firms that have adopted Agile, was because of their customers'
demand and not of their own initiative.
• Offshore projects can benefit from Agile methods, but introduction must be
gradual.
• Excellent team communication and individual resolve is required for the success
of such endeavors.

S41

Daniel
Rawsthorne

2008

Monitoring
Scrum Projects
with AgileEVM

and Earned
Business Value
(EBV) Metrics

Danube
Technolo

gies
US

Case
Study

Scrum 1

• The Earned Value Management(EVM) metrics can be applied to agile projects,
but in order to give valid results they should be coupled with the Earned Business
Value(EBV) metric.
• On the other hand, the EBV could be utilized in the absence of agile metrics to
offer substantial overall results.

S42

Brad
Appleton,

Robert
Cowham,Ste
ve Berczuk

2009

Lean-based
Metrics for
Agile CM

Environments

CM
Crossroad

s
US

Case
Study

 1

Configuration management metrics applied to an agile environment raise two
main concerns:
• Agile methodology's approach with very small feedback loops which occur
frequently makes for a lot of complex details to attempt to measure in order to gain
valid results.
• Agile methodology's approach favoring "people and interactions" over "process
and tools" makes it very hard to acquire successfully such metrics transparently and
unobtrusively.

S43

VersionOne

2008

3rd Annual
Survey: 2008
“The State of

Agile
Development”

VersionO
ne

US Survey 2319

• The two most important barriers ion the road to agile adoption is the
unwillingness to change 44%, and the lack of ability to change the organizational
culture
• 57% of responders have their Agile teams distributed.
• The organization's greatest concerns regarding Agile implementation is the lack of
up-front planning 46% and loss of management control 37%.
• 49% of responders prefer Scrum as their preferred Agile practice.
• 55% of responders state that over 90% of their agile projects have been
successful
• 17.4% stated that their agile projects have been 100% successful.
• 23% stated that the reason for their failure in agile projects was that the
organization's philosophy and culture were at odds with the core agile values.

S44

VersionOne

2007

2nd Annual
Survey:

“The State of
Agile

Development”

VersionO
ne

US Survey 1681

• The greatest obstacle in the road for agile adoption is the company's un-
willingness to change
• 57% of responders have their Agile teams distributed
• 37% of responders prefer Scrum as their preferred Agile practice.
• 30% of responders stated that they have considered Agile in order to benefit in
the management of changing priorities.
• The organization's greatest concern regarding Agile implementation is the lack of
up-front planning. 34%
• 33% of the organizations have adopted Agile in over 75% of their software
development projects.
• 84% of the Organization gave adopted agile methods in some or all parts of their
software development process.
• Agile implementation increased productivity by 90% and reduced software
defects by 85%
• Use of agile methodology has accelerated time-to market by 83% and reduced the
overall cost by 66%

S45 VersionOne Survey: The VersionO US Survey 722 • 84% of the Organization gave adopted agile methods in some or all parts of

2006

state of Agile
Development

ne their software development process.
• Ability to manage changing priorities enhanced by 92% with Agile.
• Increased team morale and productivity as well as software quality by 74%
• Reduced risk and increased the time-to-market by 72%
• 40% or responders prefer use Scrum as their preferred Agile practice.
• The organization's greatest concern regarding Agile implementation is the lack of
up-front planning. 20%

S46

Ade Miller,

2008

Distributed
Agile

Development
at Microsoft
patterns &
practices

Microsoft US
Case
Study

 N/A

Before distributed agile development is adopted, some important features must
be taken under consideration:
• Ability to organize teams at distance and making communication efficient.
• Decreased team function and performance due to distance results in increased
delivery times and increased chance of failure.
• Team members need to be resolute about their work so that they will not fall back
on their tasks, since there is less pressure.

S47

Shine
Technologies

2003

SHINE
TECHNOLOGIE

S
AGILE

METHODOLO
GIES

Survey

Shine
Technolo

gies

Austra
lia

Survey 181

• 84.7% of respondents had average or greater knowledge of Agile methods.
• 46% stated that costs were unchanged with implementation of Agile.
• 93% stated that productivity was better or significantly better.
• 88% stated that quality was better or significantly better.
• 83% stated that business satisfaction was better or significantly better.
• 59% or respondents utilize and favor XP over other agile practices.

S48

Mike
Griffiths

2004

Using Agile
Alongside the

PMBOK

Quadrus
Developm

ent
US

Case
Study

 N/A

• To measure how well Agile can be used Project Management Body of
Knowledge (PMBOK) we need metrics that are relatively simple and relevant to the
Goal.
• Agile project management offer tracking and reporting metrics which do not
hamper the workload of a project.
• Agile should be used alongside traditional project management techniques on
high-execution risk projects.

S49
Michael
James

An Agile
Approach to

Danube
Technolo

US
Case
Study

Scrum N/A
• Macromeasurements like Velocity and Earned Business Value metrics for Scrum

and Running Tested Features metrics for XP should be measured once per iteration.

2008

“Metrics”:
Applied

Macromeasur
ements to
Ensure On-

Time Delivery

gies • Product and release plans can be adapted using empirical data, without affecting
the teams' individual organization.

S50

John D.
McGregor

2005

JOURNAL OF
OBJECT

TECHNOLOGY

Luminary
Software

US
Case
Study

 N/A

• Selective choice of strategic metrics can lead to summarized information, that is
otherwise too widespread for one person to examine personally
• Global quality metrics provide information to determine what should be measures
regardless of the process model utilized

S51
Mishkin
Berteig

Agile Work
Uses Lean
Thinking

Berteig
Consultin

g Inc.

Canad
a

Case
Study

 8

• Agile implementation minimizes setbacks like barriers and obstacles when the
team is trying to hasten their efforts.
• In case of setbacks like documentation policies and corporate standards the
Process Facilitator helps the team overcome and work around them.
• A high degree of trust must be developed between customers employees and
management in order for all of them to pursue the goal of becoming Agile.

S52

Carol
Dekkers

1999

QUALITY PLUS
TECHNOLOGIE

S, INC.
Software and
Technology

Solutions: Use
Cases and
Function
Points --

Where's the
Fit?

QUALITY
PLUS

TECHNOL
OGIES

US
Case
Study

 N/A

• Use cases require project teams to devote more time in planning and
documentation of requirements in earlier stages of development.
• Function points will supplement the utilization of use cases by identifying lack of
clarity in them, as well as assist to define certain ambiguous points which would
have passed undetected

S53

Dr. Linda H.
Rosenberg,

Frank

The Role of
Metrics in Risk
Management

NASA US
Case
Study

 N/A
• When supposting a risk-management program with the correct selection of

metrics like the Requirement and Product Quality and the Test and Process
Efficiency, the development is enhanced.

Parolek,
Steve

Botzum

2001

Across
the Software
Development

Lifecycle

• Such metrics offer important information for decision-making and support the
risk-management program by measuring the risk status and the results of the
mitigation processes.

S54

Lawrence
Chung, Nary
Subramanian

2004

Process-
Oriented

Metrics for
Software

Architecture
Adaptability

N/A US
Experi
ment

 2

Process-Oriented Metrics for Software Architecture Adaptability(POMSAA) is a
process-oriented framework which calculates the necessary metrics for Adaptability:
• Traces metrics to their respective requirements
• Analyzes the reasons for strategic strengths and weaknesses in metrics
• Evaluates and suggests improvements on the architecture of the framework

S55

Robert C.
Martin

2003

PERT, CPM,
and Agile
Project

Management.

Object
Mentor

Inc.
US

Case
Study

 N/A

• The CPM method is not suitable to accurately represent dependencies because
it doesn't support displaying more tasks than those that are currently underway
• The PERT method is good for large-scale projects but not if we want to manage
projects at the "per day" or "per person" level.
• The Agile Project Management (APM) method is useful for it is suitable to
measure the kinds of tasks that software projects incorporate and also it displays
the uncertainty and randomness often associated with such endeavors.

S56

Evelina
Lamma,

Paola Mello,
Fabrizio
Riguzzi

2004

A System for
Measuring
Function

Points from an
ER–DFD

Specification

The
British

Computer
Society

Italy
Case
Study

 7

• It is possible and effective to measure Function Points from a system which is
expressed in entity relationships(ER) and data flow diagrams(DFD)
• This automatic measuring process saves lot of human work hours and results are
in accord with the traditional human counters.
• The IFPUG counting rules are made more solid and rigorous, which helps avoiding
confusion between the different counters of the same project.

S57

Alain Abran,
Pierre N.
Robillard

1996

Function
Points:

A Study of
Their

Measurement

Universite
du

Quebec a
Montreal,

Canad
a

Case
Study

 N/A

• The Function Point metric when applied should not only focus on the end
product of the measurement system but in each step of the process, which most
likely will provide new information.
• It can also identify which an intermediate step is more meaningful and important
by measuring the information lost (instead of added) in each step.

Processes
and Scale

Transformatio
ns

S58

Nicole
Rauch,

Eberhard
Kuhn, Holger

Friedrich
2008

Index-based
Process and

Software
Quality

Control in
Agile

Development
Projects

andrena
Germa

ny
Case
Study

Scrum N/A

• The ISIS system for quality management has the project logbook in its core.
• Inaccurate and false trends can be counteracted against with haste.
• Assumes to be able to draw conclusions about the whole project while examining
only parts of it.

S59

James P.
Andrew,
Harold L.

Sirkin, Knut
Haanes,

Davind C,
Michael

2007

Measuring
Innovation

2006

The
Boston

Consultin
g Group

Intern
ational

Case
Study

 377

• Less than 50% of respondents are satisfied with their return of innovation
investment.
• 42% of responders stated that their organization is not planning to increase its
innovation investments.
• 69% of responders stated that they develop deep understanding of customers and
ensuring high-level sponsorship.
• 58% stated that they provide strong support to project developer teams.

S60

Outi Salo,
Pekka

Abrahamsso
n

2004

Empirical
Evaluation of

Agile Software
Development:
the Controlled

Case Study
Approach

VTT
Technical
Research
Centre of
Finland

Finlan
d

Experi
ment

XP 4

• Recruiting more experienced subjects was worth the effort due to their higher
level of knowledge and skills
• Development standards should have been designed for the team prior to the
project
• The team presence factor (the time the team spent within project facilities) could
have an influence on the eXpert project outcome.

S61
Outi Salo

Improving
Software

VTT
Technical

Finlan
d

Case
Study

XP 2
• Examination in post-iteration workshops revealed that in the second

project(zOmbie) there were significantly more positive as well as negative findings in

2004 Process in
Agile Software
Development

Projects:
Results from
Two XP Case

Studies

Research
Centre of
Finland

relation to the first one(eXpert).
• All top 5 most important positive findings in eXpert are related to XP practices
whereas in zOmbie on human and environmental practices.
• 20% of zOmbie's negative findings were related to its Off-shore Customer factor
and the communication problems that are implied.
• Estimation of the tasks was problematic in both projects and contributed by
above 15% on their negative findings.
• Decrease of negative findings towards the end of the projects leads to
satisfaction, adaptation and improvement of the team and its efforts.

S62

Pekka
Abrahamsso

n, Juha
Koskela

2004

Extreme
Programming:

A Survey of
Empirical Data

from a
Controlled
Case Study

VTT
Technical
Research
Centre of
Finland

Finlan
d

Case
Study

XP 6

• Customer was present at 80% of the development time, which proved to be a
great motivating factor for the team.
• From the above percentage, 21% was devoted to assist with development, 42.6%
in planning and 29.9% in acceptance and testing.
• In the first release of the project 81.7% of the programming was done in pairs,
whereas in the second it decreased to 75.9%

S63

Juha Koskela,
Pekka

Abrahamsso
n

2004

On-Site
Customer in

an XP Project:
Empirical

Results from a
Case Study

Sheffield
University

UK
Case
Study

XP 1
• On-site customer involvement is critical to the success of XP.

• The ability to contact the customer at will had a great impact in team effort as
they delivered 250% more Value for the Customer, within initial schedule.

S64

Minna
Pikkarainen,
Ulla Passoja

2005

An Approach
for Assessing
Suitability of

Agile
Solutions: A
Case Study

VTT
Technical
Research
Centre of
Finland

Finlan
d

Case
Study

 3

• Agile assessment assists in finding the appropriate agile practices that are
needed by an organization in order to improve a specific aspect of its software
development process.
• Process assessment can be performed fairly easily, by using simple
documentation, close communication and rapid feedback.
• Accurate expected results after agile implementation can be found and examined
through assassment.

S65 Minna Deploying F-Secure US Case 1 • Improvement Actions were much more than the negative experiences, 32 vs

Pikkarainen,
Outi Salo,
Jari Still

2005

Agile Practices
in

Organizations:
A Case Study

Corporati
on

Study 11.
• The pilot projects provide the organization with valuable feedback on
implementing the agile process.
• Negative experiences were always more than positive experiences and
improvement actions taken.

S66

Heikki
Keränen,

Pekka
Abrahamsso

n

2005

Naked Objects
versus

Traditional
Mobile

Platform
Development:
A Comparative

Case Study

Sheffield
University

UK
Case
Study

XP 2

Naked Objects implementation on the zOmbie project led to many interesting
data:
• Development duration was significantly reduced by -50%.
• The total effort in hours was reduced by -64%
• Team productivity substantially increased by 54%
• The total size of the software's code was decreased by -39%.

S67

Heikki
Keränen,

Pekka
Abrahamsso

n

2005

A Case Study
on Naked
Objects
in Agile

Software
Development

Helsinki
Stock

Exchange

Finlan
d

Case
Study

 1

• Naked Objects framework is not yet mature and should not be considered for
application with multiuser security requirements and lots of objects.
• Naked Objects allow the fast realization of user-stories, which allows better
understanding of the demands and changes need to be done.
• Implementaion requires high throughput and has been considered difficult.

S68

Scott Ambler

2006

Survey Says:
Agile Works in

Practice
N/A Us Survey 4232

• 54% Have limited knowledge of agile methods
• 60% of responders reported increased productivity and 66% reported higher
quality.
• 58% of responders reported that their stakeholder were satisfied.

S69

Erik
Arisholm,

Hans Gallis,
Tore Dyba,

Dag I.K.
Sjøberg

Evaluating Pair
Programming
with Respect

to
System

Complexity

N/A
Intern
ational

Experi
ment

XP 295
• Increased efforts to correctly perform the tasks by 84%

• Results from measuring required time to perform tasks and percentage of correct
solutions offered did not offer significant differences.

2007

and
Programmer

Expertise

S70

Lucas
Layman,
Laurie

Williams,
Lynn

Cunningham

2004

Exploring
Extreme

Programming
in Context: An
Industrial Case

Study

Sabre
Airline

Solutions
US

Case
Study

XP 1
• Developer productivity increased by 50%

• Software quality before release increased by 65%
• Software quality after release increased by 35%

S71

Matthias M.
Muller,

Walter F.
Tichy

2001

Case Study:
Extreme

Programming
in a University
Environment

Computer
Science

Departme
nt

Universita
t,

Karlsruhe

Germa
ny

Experi
ment

XP 12

 48% enjoyed working in accord with pair programming principles.

 96% found and gave support to their partner in order to find solutions

 XP is best adopted by small teams, due to the higher communication
requirements, which would disorganize larger teams.

S72

Forrester’s
Executive
Research

Panel

2004

Forrester
Research

Inc
US Survey 115

• Over 40% of responders value the results of quality and productivity metrics
• Over 66% of organizations stated that the project management and cost
management metrics are very valuable to them.
• 63% stated that there is initiative to improve such metrics in the company.

