
Alexander T.E.I of Thessaloniki
School of Technological Applications
Information Technology Department

Bachelor Thesis

Research Methods on Development
and Validation of Ad Hoc and

Wireless Sensor Networks (WSNs)

Developed in collaboration with scientist members of
ICube Laboratory, University Of Strasbourg

By

Kosmas Kritsis
Student Registration Number: 05/2794

Thesis Supervisors
Dr. Periklis Chatzimisios

Dr. Antoine Gallais

Thessaloniki

July, 2015

!!

Information Technology

Department

 ii

 iii

Bachelor Thesis

Research Methods on Development
and Validation of Ad Hoc and

Wireless Sensor Networks (WSNs)

By
Kosmas Kritsis

Alexander T.E.I. of Thessaloniki

“Love thy neighbor as thyself, for it is only then that you can be useful to yourselves
and of service to your fellow countrymen. There is nothing more worthwhile and
rewarding in life than to work for the benefit of others. One can derive more pleasure
from giving than from receiving.”

Haile Selassie I

 iv

 v

Αφιερωµένο στους γονείς µου Ευάγγελο και Ζαφειρούλα,

καθώς και στις αδερφές µου Άννα και Φωτεινή

 vi

 vii

Abstract

The verification of theoretical analysis is a vital step to the development of an
application or a protocol for wireless networks. Most of proposals are
evaluated through mathematical analysis followed by either simulation or
experimental validation campaigns. Up to this point, we provide a detailed
description of the development process and limitations of Wireless Sensor
Networks (WSNs) as well as analyze a large set of statistics on articles
published (i.e. 674 papers in total) in Ad-Hoc and WSN related top
representative conferences over the period 2008-2013 (i.e. ACM/IEEE IPSN,
ACM MobiCom, ACM MobiHoc and ACM SenSys). We mainly focus on the
evaluation methodologies provided by researchers. More specifically, our goal
is to explore the role of simulators and testbeds in the theoretical analysis of a
scenario throughout the application development procedure. We show that
there is a tendency that more and more researchers rely on custom or open
testbeds in order to evaluate the performance of their proposals. Simulators
indeed fail to reproduce actual environment conditions of the deployed
systems. Experimentation with real hardware allows our research community
to mind the gaps between simulation and real deployment. Still, as
experimental approach through custom testbeds comprises a low
reproducibility level (i.e., 16.5%), we investigate to what extent such
performance evaluation methods will be able to bridge those gaps. We finally
discuss experimental testbeds and their potential to replace simulators as the
cornerstone of performance evaluation procedures.

 viii

 ix

Acknowledgments

This Thesis is a result of a research collaboration that took place during the
academic year of 2013-2014 with the members of the ICube Laboratory at the
University of Strasbourg, France. After a two-month period visit while
participating at the Erasmus Internship program, I had the great opportunity to
actively participate and obtain valuable knowledge concerning the structure
and functionalities of a high-level federated WSN research laboratory, known
as IoT Lab. Later we continued to cooperate by distance, with an outcome of
a research article entitled “Performance Evaluation Methods in Ad-Hoc and
Wireless Sensor Networks: A Literature Study” that was accepted on April
2015 for publication in the IEEE Communications Magazine.

First of all I would like to gratefully thank my supervisor, Dr. Periklis
Chatzimisios, Associate Professor at the Department of Information
Technology at Alexander T.E.I. of Thessaloniki, for his constant support
though-out my BSc studies and confidence regarding my skills in participating
in a research project, as well as his guidance in my future scientific career.
Moreover, I would like to express my deep appreciation to my research
supervisor Dr. Antoine Gallais, Associate Professor at the University of
Strasbourg, for the given opportunity to visit the ICube laboratory and
participate in a research study, in addition to his guidance, support,
understanding and patience during our collaboration.

Special thanks go also to my advisor, collaborator and friend Georgios Z.
Papadopoulos, who is currently a PhD candidate at the University of
Strasbourg, France.

Moreover, one person, E.K., motivated me during the last 3 years to succeed
my goals, by showing respect and patience to our relationship.

Last but not least, I would like to deeply express my wholehearted love to my
parents and sisters for encouraging and believing in me, because nothing
would be possible without their support and help.

 x

 xi

Table of Contents

Abstract ... vii

Acknowledgments ... ix

1. Introduction ... 1

1.1 Motivation and Outline .. 1

1.2 Computer Networking .. 1

1.3 Wireless Communications .. 3

1.4 Ad-Hoc Networks and WSNs: Similarities and Differences 4

2. Research Process in WSNs ... 6

2.1 Theory – Analysis .. 7

2.1.1 Main Requirements ... 9

2.1.2 Network Requirements .. 11

2.1.3 Service Requirements ... 12

2.1.4 Software and Hardware Requirements ... 12

2.2 Design – Development ... 12

2.2.1 Network Designing Procedure .. 13

2.2.2 WSN Protocol Stack and Application Designing 16

2.2.3 Development Procedures .. 20

2.3 Performance Evaluation – Validation ... 21

2.3.1 Simulation-Emulation .. 22

2.3.2 Testbeds ... 23

2.4 Real Deployment – Maintenance .. 23

2.4.1 Pre-deployment and Deployment Phase .. 23

2.4.2 Post-deployment Phase .. 24

2.4.3 Re-deployment Phase of Additional Nodes .. 24

3. Simulators ... 25

3.1 Simulator Design Requirements ... 25

 xii

3.2 Discrete Time Simulations .. 27

3.3 Simulation Models ... 29

3.3.1 Network Model .. 30

3.3.2 Node Model ... 33

3.4 Simulation Design .. 34

3.4.1 Abstraction Level Design .. 34

3.4.2 Processing Level Design ... 35

3.5 Taxonomy of Simulators ... 36

3.6 Survey of WSN Simulators .. 39

3.6.1 Network Simulator 2 (NS-2) .. 43

3.6.2 Network Simulator 3 (NS-3) .. 44

3.6.3 OMNET++ ... 45

3.6.4 GloMoSim ... 47

3.6.5 Qualnet .. 48

3.6.6 TOSSIM .. 49

3.6.7 COOJA .. 50

3.6.8 MSPSim .. 52

3.6.9 Avrora .. 53

3.6.10 Matlab ... 54

3.6.11 EnergyPlus .. 56

4. Testbeds .. 58

4.1 Testbed Requirements .. 58

4.1.1 Experimentation Requirements ... 59

4.1.2 Hardware Requirements ... 60

4.1.3 Mobility Features ... 62

4.1.4 Maintenance .. 63

4.2 Testbed Architectures ... 63

4.2.1 Objective-Based Classification .. 63

4.2.2 Structure-Based Classification .. 65

4.3 Survey of WSN Hardware Motes ... 73

4.3.1 TelosB ... 74

 xiii

4.3.2 Tmote Sky ... 75

4.3.3 MICA2 ... 75

4.3.4 MICAz ... 75

4.3.5 USRP .. 76

4.3.6 WARP ... 76

4.3.7 iMote ... 77

4.3.8 IMote2 ... 77

4.3.9 ZigBee-based Motes ... 78

4.3.10 IRIS ... 78

4.3.11 EPIC .. 79

4.3.12 FireFly ... 79

4.3.13 Fleck .. 80

4.3.14 TinyNode ... 80

4.4 Survey of WSN Tesbeds .. 80

4.4.1 MoteLab .. 82

4.4.2 TWIST ... 83

4.4.3 Indriya ... 83

4.4.4 Intel Mirage ... 84

4.4.5 UMass DieselNet .. 84

4.4.6 Emulab .. 85

4.4.7 WARPLab ... 86

4.4.8 FLOCKLAB ... 86

4.4.9 ORBIT ... 87

4.4.10 Tutornet ... 87

4.4.11 MAP .. 88

4.4.12 NetEye .. 88

4.4.13 KANSEI ... 88

5. Research ... 90

5.1 Performance Evaluation Procedures ... 91

5.1.1 Simulating protocols or experimenting algorithms 91

5.1.2 A Thorough Literature Study ... 92

 xiv

5.2 Results Of Analysis ... 96

5.2.1 Evaluation procedures .. 96

5.2.2 Reproducibility ... 101

6. Conclusions & further discussions .. 103

6.1 Conclusions .. 103

6.2 Further discussions ... 104

6.2.1 Scientific results or proofs of concepts? .. 104

6.2.2 Applications ... 106

6.2.3 Mobility .. 107

Bibliography .. 108

List of Figures ... 126

List of Tables .. 128

Abbreviations .. 129

 1

1. Introduction

1.1 Motivation and Outline

Computer networks can be considered as one of the greatest achievements
of humanity, since they enable the users to communicate almost instantly,
regardless of their location. However, after many decades of research, wired
networks have reached maturity, thus evolving to new wireless technologies
that further introduce a great diversity of possible applications, such as Ad
Hoc and Wireless Sensor Networks (WSNs). These networking technologies
emerged in order to provide solutions for different scientific problems,
including health care, disaster recovery, environmental monitoring as well as
smart cities and the modern Internet-of-Things (IoT) applications.

The primary purpose of this B.Sc. Thesis is to provide a detailed overview
considering the development lifecycle of Ad Hoc and WSN systems, and in
particular to analyze the different performance evaluation methods, which are
employed by the research community. Therefore, the Thesis is organized as
follows. In Chapter 2, we introduce a brief description of a typical WSN
research lifecycle along with the involved procedures. Next, Chapter 3
provides a detailed description of the simulation requirements followed by a
brief overview of the available WSN simulation tools. Similarly, Chapter 4
describes the basic requirements and structures of the experimental testbeds,
as well as it summarizes the different WSN hardware and experimental
laboratories. Finally, after a thorough study of 674 scientific articles, Chapter 5
analyzes various statistics concerning the current trend of validation
methodologies in the research field of WSN and Ad Hoc networks.

1.2 Computer Networking

A computer network can be defined as the connection between two or more
devices, over a common communication channel, in order to share data and
resources. This definition can be very comprehensive, however its simplicity
obscures the great diversity of possible network models and technology
utilization such to achieve networking. In the modern era, people in their
everyday life rely on networks without understanding the complexity of the

 2

involved technology. This demand motivated a rapid evolution in network
technologies, from wired communications to contemporary innovative wireless
models. Despite the underlying architecture of networks, a broader
classification can be applied based on the area coverage and transmission
medium utilization. A brief description of the different types of networks can be
introduced as follows.

i. Local Area Network (LAN)
Typically, a LAN is used to connect computers at a single area such as
homes and small offices, where the users need to communicate amongst
them and not with the outer world. A single person is usually the administrator
and manages the network, which can be wired hubs and switches and/ or
wireless access points.

ii. Wireless Local Area Network (WLAN)
A WLAN is a LAN that is based only on wireless connectivity (usually by
employing IEEE 802.11 protocols). The users by employing wireless
interfaces are able to exchange information through an access point. The air
is considered to be the transmission medium. Therefore, every network
interface is equipped with an antenna, which produces radio signals in order
to be able to participate in the WLAN.

iii. Metropolitan Area Network (MAN)

A metropolitan network covers bigger area compering to LAN. A
common MAN interconnects individual LANs within a city. Hence, a MAN
should support routing services.

iv. Wide Area Network (WAN)
A WAN interconnects users within large areas, like countries or even the
entire world (Internet). Separate LANs and MANs are interconnected in order
to form a WAN, by utilizing router devices.

 3

v. Campus Area Network (CAN)
Computer networks that operate over university campuses or big corporation
offices are referred as campus area networks. Following similar principles to
MAN, individual LANs are connected in order to implement a CAN. However,
the occupied area is smaller than MANs.

vi. Storage Area Network (SAN)
A storage network is used to connect servers with storage devices by utilizing
Fiber technology in order to achieve high bandwidth. SAN improves storage
efficiency for storage-oriented applications.

vii. System or Cluster Area Network (S/CAN)
A system or cluster area network interconnects high performance computers
over fiber channels so as to provide high bandwidth. This class of networks is
used in distributed computing for cluster configuration.

viii. Personal Area Network (PAN)

A PAN is the smallest network in terms of area coverage. The personal
networks emerged in order to interconnect devices around a single person.
Such networks typically involve PCs, telephones, Personal Digital Assistants
(PDA), printers and so on, which communicate in a way to provide optimized
services according to the requirements of the individual. Wired PANs may
communicate over USB or FireWire interface, while wireless PANs employ
Bluetooth, or IEEE 802.15 radio interfaces.

1.3 Wireless Communications

In the last two decades, wireless communications emerged as a result to the
increasing utilization of Information Technology (IT) systems by the people,
thus becoming an integral part of several types of communication devices, as
it allows users to communicate even from remote areas. Wireless technology
involves the transmission of information over a distance without wires, cables
or any other form of electrical conductors.

 4

Figure 1. Wireless Networks Hierarchy

The transmitted distance varies from few meters to thousands of kilometers
while providing freedom of movement and the ability to extend applications to
different areas. Therefore many types of wireless networks and systems exist
as presented in Figure 1, mostly by interconnecting various computer devices
such as servers, PCs, laptops, smartphones, RFIDs, printers etc. Wireless
networks can be installed conveniently while providing much more flexible and
cost-effective solutions compared to traditional wired networks. However, our
study will focus only on the wireless Ad Hoc networks and WSNs.

1.4 Ad-Hoc Networks and WSNs: Similarities and Differences

Ad Hoc Networks and WSNs are similar because both types can be
considered as decentralized and distributed wireless networks while not
requiring a significant network infrastructure in place. Two nodes of the
network are able to communicate either directly (single-hop routing) or by
involving intermediate relay nodes (multi-hop routing). Additionally, both Ad

 5

Hoc and WSN nodes are typically powered over batteries thus requiring
energy aware mechanisms in order to minimize the power consumption.
Moreover, these networks communicate over an unlicensed radio spectrum
and therefore they are vulnerable in interference by other radio technologies
that operate in the same wireless band. Finally, both networks should support
self-organization methods due to their distributed nature.

However Ad Hoc networks were developed during 70 ́s by the scientist in
order to be employed by the US military. As to the present day there are
various commercial applications based on Ad Hoc technology, which is quite
different from the previously developed military systems and therefore they
require a new approach to the problem (Gerla, 2005). The military solutions
are mostly developed for a single purpose, thus employing unique hardware
and software solutions in addition to their high development cost, which can
not be adopted by the commercial applications.

Despite the aforementioned similarities, there are various fundamental
differences, which most of them derive from their different nature. Ad Hoc
networks were developed to interact closely with the user, since most of the
nodes are devices used by human beings including laptops, PCs, PDAs, etc.
On the other hand, WSNs do not focus on servicing the user, rather than
interacting with the environment. Indeed, the nodes involved in a WSN are
usually embedded devices that sense various environmental events and
possibly actuate on their occurrence. Additionally, the number of nodes
involved in a typical WSN scenario varies from tens to thousands of nodes,
which introduces further density as well as scalability issues that are not
required in a simple Ad Hoc network.

 6

2. Research Process in WSNs

A WSN system is a combination of software, network and embedded
engineering. These fields are well defined and therefore, WSN developers
should be aware of the currently employed technologies and methods in the
previously mentioned domains, so as to efficiently design new solutions.
However, some of these practices should be modified in order to fit the
specifications of WSNs. As far as it concerns the development lifecycle of
applications that incorporate WSN technology, there are various
methodologies that can be adapted. The concepts of Service-Oriented
Architecture (SOA), agile development methods and networking practices of
Mobile Ad Hoc Networks (MANET) and Peer-to-Peer (P2P) domains can be
combined so as to establish an effective development framework for WSNs.

In a SOA-based system, the application is a logical set consisting of different
software that incorporates in a way to perform certain tasks (Papazoglou,
2003). Furthermore, SOA is a popular method that is broadly employed in the
design process of Web Services (Schroth & Janner, 2007). Sensornets act in
a similar way, by categorizing the involved nodes into groups according to the
services that they provide and thus enabling researchers to adapt popular
Internet technologies and protocols in their designs. Moreover, SOA methods
have to be modified so as to include the complex services of WSNs such as
storage, routing and sensor readings. However, this system architecture may
utilize additional component-based models for more detailed designs. The
main difference between these two approaches is that components define the
actual functionality of the system, while services are used to describe the logic
and the interactions amongst the components (Petritsch, 2006).

On the other hand, WSNs are employed in a broad area of applications and
therefore different parameters should be optimized accordingly. For instance,
the data propagation time, the fault-resilience requirements, the network size,
node mobility, code maintainability and re-usability are some parameters that
differ in various scenarios. However, it is rational that improvement of some
parameters affects negatively others. Balancing the major parameters of the
system is a complex task and usually leads to iterative procedures between
the designing and development phases of the project. Additionally, the project
requirements often change from the initial ones during its lifecycle.

 7

Figure 2. Typical WSN Project Lifecycle

Hence, agile methodologies are appropriate for developing WSN applications.
This type of development can be identified due to the short and iterative
development cycle as well as the constant and direct interactions between the
members of the development team (Martin, 2003).

However, most WSN specific research projects follow relatively the same
project lifecycle stages, which are the analysis phase, the designing-
development phase, the performance evaluation phase and finally the real
deployment phase, as presented in Figure 2. The following Sections in this
Chapter are organized according to the aforementioned phases and further
provide a brief description of the involved tasks as follows.

2.1 Theory – Analysis

Development process begins with the conception of the subjected problem.
Researchers and engineers from various institutional or commercial
departments cooperate in order to analyze and define the building blocks of
the solution by collecting project requirements.

Early stage analysis of the sensor networks requirements is a critical task,
due to the difficulties of accessing and maintaining the WSN system later to
the post-deployment phase. The unique characteristics of WSN applications
present a diversity of specific challenges, which enables researchers to apply
various formal methods for system specification, verification and synthesis. In
order to apply this rich set of methods and theories, the very first task is to
build a formal description of the sensor network. Usually, a formal system
description requires to be defined over high-level mathematical models, which
can later be used for a variety of system analysis tasks, including simulation,

 8

verification and performance evaluation (Dong et al., 2008). Moreover, the
formalization of the WSN description allows convenient and faster
development of WSN systems, as well as it enables a partial automation of
this process (Meshkova et al., 2008).

Also the authors of (Meshkova et al., 2008) suggest a basic collection of
parameters that need to be practically considered for any WSN system
(Figure 3). These parameters can be further classified into four groups,
according to the abstraction-levels of the development process that they are
involved. Firstly, the main parameters specify the overall system performance
and functionality, thus being the fundamental and the most important
requirements of the project. Secondly, the network parameters describe the
wireless network and its behavior according to the interactions between the
nodes of the system. Next, the service parameters define the appropriate
services and their behavior in conjunction with their inputs and outputs.
Finally, the hardware and software requirements describe the devices and the
employed software that collaborate in order to form the actual WSN system.
Typically, these parameters are valuable during the designing and
development stages of the project. A brief description of the aforementioned
groups is introduced as follows.

Figure 3. Typical WSN System Requirements (Meshkova et al., 2008)

 9

2.1.1 Main Requirements
The main requirements consist of five basic parameters, which are the project
cost, the network lifetime, the propagation delay, the fault-resilience and the
services that specify the overall WSN functionality.

The total cost of the project is a combination of the hardware, the
development and the deployment costs. The deployment cost also can
increase in heterogeneous systems that employ individually specific nodes.
Conversely, homogenous solutions are much cheaper due to their ability of
self-organizing according to the overall system conditions. Nevertheless, in
order to achieve this functionality, more effort is required during development
and thus increasing the cost of this phase. Dynamic networks are more
complex, however they provide a flexible structure that can self-adjust to
various scenarios. Some examples of networking technologies that enable
dynamic configuration are middleware frameworks in conjunction with code
updates through the Erasable Programmable Read-Only Memory (EPROM)
(Brown & Sreenan, 2013). On the other hand, static networks requires
extensive designing efforts and test implementations in order to provide a
convenient solution with minimal interference letter to real deployment.

The network lifetime is a major requirement because the network is functional
only when it is considered alive. In other words, the network lifetime depends
on the individual lifetime of the involved nodes. As a measurement for energy
consumption, it forms the upper bound for the utilization of the sensor network
resources. The lifetime of a sensor node basically depends on how much
energy it consumes over time in conjunction with the available energy for use
(Dietrich & Dressler, 2009). Typically the motes are powered over batteries
and therefore they have limited lifetime. However, there are various available
technologies that can be employed in order to further increase the nodes’
lifetime. For instance, computational balancing can be applied by addressing
parts of the processing load to the gateway or even to the user device.
Although it has to be ensured that the gain from processing information on the
gateway is greater than the communication cost of transferring data to it.
Hence, this approach is suitable for small-scale networks. Additionally, energy
harvesters are usually employed in order to extend the nodes’ energy
resource, as depicted in Figure 4 according to the authors of (Merrett et al.,
2009).

 10

As far it concerns the Quality-of-Service (QoS) of the project, two major
parameters need to be considered, which are the propagation delay and the
fault-resilience.

The maximum allowable propagation delay between the gateway and the
farthest node depends on the subjected scenario. For instance, health care
and emergency control are some applications that are delay-sensitive, thus
requiring strict synchronization between the nodes. Additionally, delay-
monitoring techniques are employed such to detect abnormal delays in the
system (Zeng et al., 2009). Then the appropriate corrections must be applied
so as to maintain the normal functionality of the network.

Fault-tolerance can be considered as a parameter in all the involved models,
including the hardware and software of the system along with the underlying
node and network models. Furthermore, fault-resilience mechanisms manage
and specify the tolerance of the sensor network to situations such as node
failures, outdated and imprecise information in addition to data losses and
malicious data injections. For instance, security add-ons may be employed on
top of back-up and relay nodes. However, these methods introduce additional
computational procedures and thus reducing the network lifetime. Moreover,
this approach requires extra development effort and deployable devices that
further increase the overall project cost.

Finally, the services parameters specify the expected functionalities of the
system, according to the user expectations and the purpose of its
development. However, the initial requirements are based on assumptions
that need further updating later on the development and validation phases of
the project.

Figure 4. Typical Energy Components in WSNs (Merrett et al., 2009)

 11

2.1.2 Network Requirements
The network requirements are considered to be critical because they describe
the network where the application is about to be deployed. These parameters
include information concerning the node mobility, the fault-tolerance, the
appropriate bandwidth, the number of employed nodes, the geographical
network coverage and the network symmetry by means of heterogeneity. The
user can identify most network parameters, such as the expected bandwidth
and node mobility, during the initial stage of conception. However, most of
them are specified and adapted by the development team throughout the
project lifecycle and thus affecting other requirements that need further
adjustment. For instance, fluctuations in the geographical positions of the
nodes influence the network coverage and heterogeneity requirements.

Globally the network is modeled and organized based on the graph theory as:

The graph consists of a set of vertices V that represent the nodes of the
network, in accordance to a set of edges E that further contains numerous
pairs of nodes as subsets of V , which represent the links between the nodes.

An edge e = ninj()∈ E exists if and only if ni is in the transmission range of nj

and vice versa (Dimokas et al., 2007).

Initially, general network parameters such as the network heterogeneity,
density and scalability, must be estimated and translated into a graph. Later in
the development phase, designing options are limited and thus more detailed
graph representations of the network can be composed and evaluated.
However, most WSN systems are developed by highly qualified small teams
and therefore these processes are typically merged.

G = V,E() with

V = (ni{ }
ι=1

ι=κ

∑) = n1,n2, ... ,nk{ } and

E = ninj{ }∑() ∀ ni,nj ∈V ni ≠ nj()

 12

2.1.3 Service Requirements
Similarly to SOA, during the conception phase, WSN services are described
based on high-level abstractions that provide generic design solutions.
Furthermore these solutions aim on providing further formalization of the WSN
development process, and thus they are suitable for systems that employ
heterogeneous designs.

Most WSN applications require various services in order to provide their
functionality. For instance data aggregation, processing and decoding are
crucial services performed by every node in the system. However in dense
networks, such requirements can be satisfied by deploying special nodes that
work as distributed service providers. Furthermore, the trade-off in service
composition is to assign each required service to the appropriate service
provider based on certain parameters such as the load balance, the
propagation delay and the available network resources (Wang et al., 2009).

Typically, the service requirements include all the expected functionalities and
services of the system. Also each service should consider the expected
influence on the nodes’ lifetime and the introduced information overhead in
the network traffic.

2.1.4 Software and Hardware Requirements
The software and hardware requirements are valuable during the designing
and development phases. The software parameters specify the required
Operating System (OS), the minimum memory capacity of Radom Access
Memory (RAM) and EPROM, as well as a list of software modules that are
essential for the overall node and network functionalities. The hardware
parameters specify the WSN hardware platform and its underlying
components, including the type of sensors, memory, microcontroller chip,
communication interfaces, radio and finally the available energy resources.

2.2 Design – Development

After the initial stage of gathering and analyzing the basic requirements of the
subjected WSN solution, the researchers continue by investigating for
available proposals that can be further adopted so as to minimize the
development costs. However, in most cases the developers need to design
new solutions so as to satisfy the requirement trade-offs between cost,

 13

performance, network lifetime and QoS. Therefore, the initial task of the
designing phase is to specify the appropriate network architecture. Next, the
developers have to design the application by modeling the underlying protocol
stack for the nodes of the network. Finally, at the development phase of the
project, the abstract designing models are implemented into real code. A brief
description of the procedures involved in the designing and development
phases can be found as follows.

2.2.1 Network Designing Procedure
Through the network designing stage the developers have to decide on the
corresponding network architecture that matches to the requirements of the
project. As it is illustrated in Figure 5, the WSN network structure can be
classified into four types, which are the single-hop star topology, the multi-hop
mesh and grid topologies as well as the two-tier hierarchical clustered
topology (Chen et al., 2009). The researchers should choose between these
network architectures according to the scale of the network, by means of
geographical latitude, as well as the behavior of the nodes such as mobility
and fault resilience.

 14

i. Single-hop star topology

A single-hop star topology is the simplest WSN network structure, which
consists of the nodes that are directly connected with the gateway, as
presented in Figure 5.a. This type of networking enables handy designing and
minimizes the overall project cost due to its simplified modeling abstractions.
Hence, it is a suitable solution for small-scale networks were cost and fault-
resilience are often major concerns. For instance in medical applications the
nodes should be free of deficiencies because even a single failure may lead
to losses in the patient’s state. Cost is important in scenarios such as smart
home applications, where most of the nodes have the same sensory

(a) (b)

(c) (d)

Figure 5. Typical WSN network topologies - (a) single-hop star, (b) multi-hop grid,
(c) multi-hop mesh, (d) two-tier clustered

 15

capabilities. Furthermore, in small-scale networks the nodes can transfer
computational load on the gateway device with low communication cost.

ii. Multi-hop mesh and grid topologies
For medium and large-scale networks there is a need to specify a routing
process between the nodes of the network in order to transfer sensory
information to the gateway. Therefore, each node relies to its neighbors to
promote its data to the central sink or gateway, by adapting popular client-
server and P2P approaches (Chawathe et al., 2003). Furthermore, according
to the type of deployment, the developers choose between mesh and grid
topologies. Grid topology is suitable for scenarios where the nodes follow a
structured deployment, as presented in Figure 5.b. On the other hand, a mesh
topology is optimum in applications where the nodes are randomly deployed,
similarly to Figure 5.c.

iii. Two-tier hierarchical clustered topology
Nevertheless, the most popular network model for large-scale networks is the
two-tier hierarchically clustered topology. It is a complex and role-specific
architecture where nodes perform different functionalities in the network.
According to this topology the nodes of a specific field transmit their data to
the cluster head node of their area, which further promote their data either to
the central gateway or to other cluster heads from neighbor regions, similarly
to Figure 5.d. By employing nodes with different capabilities it can significantly
improve the network performance. On the other head, the complexity of
developing heterogeneous networks increases the overall project cost.
Typically, the cluster head nodes are designed to be more powerful by means
of computational abilities and provide an in-network processing of the sensory
data. Moreover, the introduced hierarchy may affect the network stability due
to the strict coupling between the cluster head and its members. For instance,
a possible failure of a cluster-head can lead to the disconnection of its
underlying area from the rest of the network. Moreover, in scenarios with
mobile nodes it is improper to employ hierarchical network structures due to
the great cost of maintaining such hierarchy.

 16

2.2.2 WSN Protocol Stack and Application Designing
After the designing of the network topology, the developers continue with the
modeling of the application and communication protocols that are employed
by the WSN system. Typically, the protocols are organized based on a
protocol stack specific for WSN systems, similar to the traditional Open
Systems Interconnection (OSI) model, as it is presented in Figure 6. The
WSN protocol stack provides power efficient communication and routing
through the wireless medium, as well as it promotes further collaboration
between the nodes of the network by utilizing data and networking protocols
(Akyildiz et al., 2002). Moreover, It consists of the Physical Layer, the Data-
Link Layer, the Network Layer, the Transport Layer and the Application Layer
in addition to cross-layer services such as the Power, Mobility and Task
Management services. However, the WSN stack formulation introduces
iterations between the designing and the development phases so as to
balance the major trade-offs, between flexibility, simplicity and efficiency.
Typically, the developers first define the top services, and next continue to the
lower layers. The cross-layer services are implemented last so as to readjust
the main requirements if necessary.

Figure 6. The WSN protocol stack

 17

i. Physical Layer
The Physical Layer protocols specify the radio frequency and the carrier
frequency generation. Also they are responsible for the modulation,
encryption, and transmission of the signal as well as to detect neighbor and
sensory signals. Considering the high consumption of energy in long-term
communication over the wireless medium, the developers have to design and
apply protocols that promote power efficiency. Moreover, due to the
environmental radio noise, the physical layer protocols should ensure the
transmission signal integrity.

ii. Data-Link Layer
The Data-Link protocols control the multiplexing of the data streams, the data
frame detection, the medium access and the error control as well as they are
responsible to provide reliable point-to-point or point-to-multipoint connections
between the nodes of the network.

Moreover, the Medium Access Control (MAC) sub-layer addresses the issues
of power conservation and data-centric routing. These unique features require
a WSN specific MAC protocol that meets two goals. First, it should establish
the links between the nodes, hop by hop, in order to be able to self-organize
and transfer data. Second, it must provide fair sharing of the communication
resources between the nodes. MAC protocols of traditional networking fail to
accomplish these two goals, since power consumption is not a primary
consideration in their design.

Another important functionality of the Data-Link layer is the error control of the
transmission data, which can be classified into two groups, the Forward Error
Correction (FEC) and the Automatic Repeat Request (ARQ). However, ARQ
is not an optimum solution for multi-hop networks due to the additional
overhead introduced by the retransmissions and thus affecting the overall
network lifetime. On the other hand, FEC methods overcome this issue by
enhancing correction algorithms within the node stack. However, developers
have to take under consideration the high complexity of implementing such
decoding procedures. Therefore they should design simple error control
codes with low encoding and decoding complexity in order to provide a
convenient solution for WSN systems.

 18

iii. Network Layer
The Network layer specifies the optimal paths between the intermediate
nodes so as the data packets can surely reach the central gateway, which can
be a sink node or a base station. Moreover, every node executes a distributed
algorithm in order to acquire and establish a common routing table. Recovery
from system error, node failures or topology changes is essential in order to
guarantee the availability of data dissemination paths (Koliousis & Sventek,
2007). The sensor nodes establish and maintain routes by employing either
proactive or reactive data propagation technics.

The proactive protocols periodically monitor the links between the nodes in
order to ensure connectivity and path availability amongst the active node.
Therefore, the nodes advertise a possible variation of their routing state to the
entire network so as to maintain a fully traversable and common network
topology.

On the other hand, reactive protocols establish paths only upon request, for
instance in response to a query, or an event. Generally, the node remains in
an idle mode until it is required to generate a request packet or forward an
incoming routing packet through its neighbor peers to the gateway. Next, the
gateway responds over the reverse path with an Acknowledgment packet
(ACK) so as to maintain an updated global routing table. Reactive data
propagation is typically cheaper by means of overheads in the network traffic,
since packets are generated only when it is necessary. Due to their simplicity,
and inherent support for data on-demand, these protocols tend to be the best
design choice for WSNs.

Moreover, routing protocols provide two basic mechanisms, which are the
neighbor discovery, to discover and maintain connectivity with neighbor
nodes, and flooding, to disseminate the network state to distant nodes.

iv. Transport Layer

The Transport layer is required in order to enable the users of the system to
access the sensor field through the Internet or other external networks.
However, the traditional Internet transport protocols such as User Datagram
Protocol (UDP) and Transmission Control Protocol (TCP) are limited due to
the energy constrains and the data-centric communication imposed by WSNs
(Iyer et al., 2005). For instance, it is well documented that the UDP protocol

 19

does not provide any link reliability and TCP requires a global addressing
scheme in order to transport data packets between the peers.

Hence, there is a necessity for designing transport protocols which could
address the unique characteristics of WSNs, including the network topology,
system services, data traffic parameters and resource limitations by means of
energy constrains and medium access fairness. Moreover, the transport
protocol should provide high energy efficiency, flexible reliability and optimum
QoS, in terms of link throughput, delay and packet loss rate (Wang et al.,
2006). Thus, the developers should design WSN transport protocols that
enhance the functionalities of congestion control and loss recovery. These
two components affect directly the overall network lifetime, reliability, and QoS
parameters as it was previously explained.

v. Application Layer – Cross Layer Services
The key role of the Application layer is that it provides an abstraction of the
underlying physical topology of the system, which further interacts with the
actual WSN application. Moreover, this layer includes the appropriate
interfaces that enable the users to monitor and manage the network
infrastructure. In other words, the application layer includes the code of the
main application as well as several management services.

However, due to the great diversity of possible WSN scenarios and purposes,
the design of an appropriate protocol is a challenging task. Actually, the
formulation of a generic layer scheme is almost impossible, considering the
various requirements in different WSN applications. Thus middleware and
cross-layer designs emerge in order to provide optimum solutions, by tightly
integrating, either parts, or the total layered protocol stack. Such services
benefit from the boundless implementation amongst the layers and promote
efficiency by reducing the overall network overhead. For instance, MAC and
routing protocols can be enhanced into one protocol so as to combine their
functionality and minimize the end-to-end delivery latency, as proposed in (Du
et al., 2007) and (Mouradian et al., 2014).

Additionally, further optimization of the network performance can be achieved
by assigning different roles to the nodes, such as data storage, data
aggregator or cluster head. These methods provide an in-network processing
which can be activated either to individual nodes or to all the nodes of the
network, according to the subjected scenario.

 20

Figure 7. Implementation of Design Models to System Components

In cases where the network topology is stable the role assignment can be
applied statically. However, self-organization is essential for dense and multi-
hop networks and thus dynamic role assignment mechanisms emerge (Frank
& Römer, 2005). Hence, these methods provide flexible solutions that further
improve the system efficiency, as well as maximize the network lifetime.
Nevertheless, the introduced complexity of the in-network functionalities
requires greater development efforts and more detailed system models, so as
to prevent resource mismanaging in terms of power consumption and traffic
overhead.

2.2.3 Development Procedures
In the development phase of the project lifecycle, the researchers focus on
implementing the designing abstractions of services and protocols into actual
code that is processed by the node’s OS (Figure 7). However, traditional
operating systems do not address the unique characteristics of WSN
applications. Therefore the research community has developed various
lightweight operating systems specific for WSNs, which support main
functionalities, such as dynamic component linking, clock synchronization,
task scheduling, interruption management, memory allocation and networking
support. Furthermore, the previously mentioned functionalities provide
resource abstractions in a way to enable the developers of the system to
employ high-level Application Programming Interfaces (APIs) independently to
the underlying hardware (Dong et al., 2010).

The choice of the appropriate WSN OS is a critical decision since the
supported programming models significantly induce the development

 21

effectiveness of the application. Globally, there are two types of programming
models, which are the event-driven and the multithreaded programming. It is
most likely that application developers are more familiar with the traditional
multithreaded model.

 Nevertheless, this type of programming does not provide power awareness
and thus being an unsuitable solution when it is applied to resource constraint
systems such as WSNs. On the other hand, event-driven programming
models tend to address the diverse nature and specifics introduced by WSNs
but yet considered to be challenging for traditional application developers
(Farooq & Kunz, 2011). Hence, researchers have implemented various hybrid
WSN OS that adapt both programming models, such as the solutions
proposed by (Dunkels et al., 2004), (Zhou et al., 2008), (Dong et al., 2011)
and (Liu et al., 2014).

Moreover, additional efforts need to be taken by the developers, considering
the implementation trades-offs between the code’s efficiency, complexity and
comprehensiveness. For instance, complex codding introduces difficulties in
future updates, maintenance and reusability, even though it is strongly related
to the requirements and the services of the subjected system. However, code
clarity and comprehensiveness can be supported by following a component-
based development approach in conjunction with coding primitives, such as
variable naming and code commenting. On the other hand, by minimizing the
introduced memory footprint and processing load of the code can contribute to
resource awareness and improve the overall efficiency of the WSN
application. Finally, as already mentioned in the previous Section, providing
in-network functionalities by implementing cross-layer optimizations such as
distributed coding, compression and encoding can increase the network
lifetime and therefore its reliability.

2.3 Performance Evaluation – Validation

After the coding implementation of the system services and applications, the
developers need robust validation tools and methods in order to verify the
optimum functionality of the system components, prior to real deployment.
Performance evaluation induces iterative procedures between the designing,
development and testing phases in order to optimize the system modules and
provide convenient solutions. After many years of technological evolution in
the field of WSNs, has resulted in three main validation platforms, which are
the sensor network simulators, emulators and the physical testbeds. However,

 22

due to the complex nature of WSNs, each one of these methods has its own
limitations when applied individually. Therefore, the researchers should
combine all three in order to achieve more realistic conditions and retrieve
valuable validation results (Coulson et al., 2012). A detailed presentation of
the previously mentioned tools can be found in the upcoming Chapters;
nevertheless a brief description is introduced as follows.

2.3.1 Simulation-Emulation
Simulation is the most widespread method for system validations across the
research field of communication networks. Simulators enable scientists to
evaluate their ideas and protocols in a convenient way by providing various
levels of system abstractions in order to hide the complexity of low-level
hardware functionionalities. Moreover, the researchers can investigate in
depth the performance of the subjected solution by repeatably optimizing and
isolating different system parametes in various scenarios (Papadopoulos et
al., 2013). However, when it comes to the diverse nature of WSNs, there are
many unique parameters that complicate the simulation fidelity, often making
it unrealistic to test the instruction-level execution and its impact on the
network lifetime. WSN simulations that do not consider the execution model of
the node’s OS, as well as the introduced synchronization issue of time drift
due to hardware delays, produce inconvenient performance results (Riliskis &
Osipov, 2015).

On the other hand, emulation is a special type of validation method that aims
on bridging the gap between system simulation and real hardware
performance. Moreover, the emulators try to provide the exact same
instruction-set processing with real hardware by duplicating its functionality
over detailed simulation models. Therefore, it is able to provide greater fidelity
than simulation-based validations, as well as being more flexible and much
cheaper than real hardware implementations such as purely physical
testbeds. Despite its promising capabilities, emulation is a much less
exploited approach in the field of WSNs. However, there are various scientific
studies on the lower layers of the WSN systems, such as hardware drivers,
networking and OS as well as cross-layer validation frameworks that
incorporate emulation methods. For instance, emulators can compute the
energy consumption of a particular WSN hardware platform according to
detailed simulation of the radio model, as proposed in (Girod et al., 2004) and
(Wu et al., 2007).

 23

2.3.2 Testbeds
Due to the simulation limitations in the modeling realism of the deployment
challenges, has resulted in an increased interest in developing real hardware
laboratories known as testbeds. These platforms excel in the fidelity of the
provided validations by enabling rigorous, transparent, and replicable testing
of mature WSN designs and models (Papadopoulos et al., 2013). However,
WSN testbeds are expensive platforms by means of, development,
deployment, maintenance and overall cost. Additionally, most of them provide
limited flexibility and heterogeneity due to the fixed network topologies, single
type of supported mote platforms, protocol stack and OS. Therefore, the
majority of scientists conduct experiments over custom, small-scale (i.e.
typically up to tens of nodes) and local testbeds that are not open to the
research community and do not promote reproducibility.

2.4 Real Deployment – Maintenance

Deployment of sensornets is considered to be the final phase where the
nodes have to be set up in a geographic field so as to monitor the
phenomenon of interest. However, deployment is a labor-intensive and
complex task since environmental fluctuations often degrade the network
performance or trigger system errors that could not be discovered during the
evaluation phase (Ringwald & Romer, 2007). However, there are various
issues that need to be addressed in order to result with an efficient
deployment with minimum maintenance. Thus, we can categorize these
issues based on three discrete phases related to deployment, which are the
pre-deployment and deployment phases, post-deployment phase and final the
re-deployment phase (Akyildiz & Vuran, 2010).

2.4.1 Pre-deployment and Deployment Phase
Initially, the nodes can be placed either one by one in a field or they may be
deployed randomly according to the specific application. For instance, nodes
can be deployed in an indoor laboratory or outside by dropping them from an
airplane or by a missile, as well as they can be placed one by one either by a
human or even a robot. However, in most large-scale scenarios the great
number of involved nodes, in conjunction with the diverse environmental

 24

conditions makes it almost impossible to place the nodes according to a
carefully designed plan. Therefore the schemes for initial deployment must
reduce the installation cost, increase the flexibility of the nodes topology
arrangement and promote self-organization and fault tolerance functionalities.

2.4.2 Post-deployment Phase
After the deployment phase is completed, the network topology may change
due to various reasons. Moreover, in scenarios where the nodes introduce
mobility, their movement influences directly the topology of the network for-
long time periods. On the other hand, the links between the nodes of the
system can change in cases of radio jamming, environmental interference or
noise while these factors affect the network topology for short-time periods.
Also according to the sensing tasks of the nodes, the topology may change
periodically, when certain nodes turn to sleep mode for a specific amount of
time. Finally, the most critical case of topology change occurs when the nodes
fail to participate in the network due to possible hardware deficiencies or lack
of available power resources, which result in permanent changes.
Consequently, the employed network protocols should enable the nodes to
adapt to the aforementioned fluctuations in the topology.

2.4.3 Re-deployment Phase of Additional Nodes
The changes of the network topology introduced during the post-deployment
phase, may require additional nodes to be deployed in order to overcome
possible connectivity and fault tolerance issues. Therefore, additional nodes
can be re-deployed at any time to replace the broken nodes or even to
improve and expand the dynamics of the system. However the addition of
new nodes introduces the requirement of network self-organization by utilizing
special WSN and Ad-Hoc protocols.

 25

3. Simulators

Due to the great complexity of deploying and maintaining large scale WSNs,
troubleshooting procedures after real deployment are extremely expensive.
Hence, the researches should provide reliable solutions that are evaluated
over extensive testing. Testbeds of this scale are also expensive to be
developed and need great effort to be managed (Mainwaring et al., 2002),
(Ganesan et al., 2002). Therefore, WSN simulators are designed to provide a
software platform that addresses the key aspects of the overall performance
of a sensor network. Moreover, simulators enable handy designing,
development, debugging and evaluation of new algorithms and protocols prior
to hardware implementation.

However, it is almost impossible to duplicate the exact same conditions of real
deployments. Therefore, studies based only on simulation practices affect the
total credibility of the proposed research (Kotz et al., 2004). On the other
hand, simulators can be considered essential for exploring WSN applications,
acting as a common ground for the scientists to test their ideas. A single
paper cannot puzzle out all the aspects of a complete application, but it can
contribute in a way to promote further analysis and research in the field
(Stojmenovic, 2008).

In order to effectively evaluate a study over simulations, it is important to have
a good knowledge of the existing simulators and their capabilities. Up to the
present day there are a variety of simulators that differ in their designing and
modeling abilities. Thus, developers can choose the appropriate tool
according to their needs and identify possible errors in their applications with
ease such to provide further improvement. Nevertheless, lack of knowledge in
the features of the available simulators can lead to inaccurate assumptions
and buggy applications.

3.1 Simulator Design Requirements

Any WSN simulator should provide a diversity of underlying tools so as to
replicate the behavior of real deployments. The basic requirements that
should be implemented by a simulator in order to provide convenient results
can be briefly described as follows.

 26

i. Fidelity and Heterogeneity
In order to match any simulation needs, the software should provide accurate
behavior of the underlying features of the simulated system. More specific, the
models of the radio channel, the physical environment and network
functionality should be faithfully implemented for optimum performance
evaluation. Fidelity can be referred to both bit and temporal accuracies. For
instance, the accuracy of simulating a transmission event is a correlation
between the content of the transmission (bit accuracy) and the duration of the
transmission time (temporal accuracy). Furthermore, by taking under
consideration the nature of modern WSN applications, energy aware and
heterogeneous mechanisms should be supported and replicated efficiently.

ii. Reusability and Availability

Globally, researchers are interested in challenging their novel proposals with
keen current studies. Such feature enables detailed comparison between
different simulated scenarios and applications so as to optimize new
solutions. Hence, the simulators should provide a diversity of common WSN
models that can be modified or even integrated with new ones. Those models
should provide modularity in order to support fast prototyping by abstracting
low-level functionality details. However, the existed variety of implemented
WSN scenarios depends on the popularity and development support of the
simulator in use. Recent protocols and applications that successfully involved
and promoted evolution in the WSN field of study are mostly implemented in
later versions. Also, availability can be referred to a cross-platform design of a
simulator, by means of OS independency (Windows, Linux, etc).

iii. Performance and Scalability

Performance and scalability are critical tasks for modern WSN applications.
As far as it concerns the simulators, those tasks depend on the underlying
programming language that implements the simulation engine and its
functionalities. It should not be confused with the programming language that
implements the user-defined testing scenarios. Moreover, performance refers
to the overall simulation speed, which is further defined as the ratio of the
virtual simulated time to the physical run-time. Scalability is related to the
ability of simulating large-scale networks and the effects of timely increasing
network complexity on the overall performance. However, this mechanism is

 27

limited to the memory, processing and storage features of the computer
hosting the simulator.

iv. Rich-Semantics Scripting Languages and Graphical User Interface
Due to the great amount of information involved in the simulation process,
rich-semantics scripting languages should be supported, in order to define
simulation settings and retrieve output results. The Graphical User Interface
(GUI) is considered to be a major requirement because it enables convenient
debugging, fast network modeling and handy visualization of the results
without the need to employ third party software. Inexperienced users can get
an easier control of the simulations by using a simulator that provides a user
friendly GUI.

3.2 Discrete Time Simulations

WSN simulators are discrete time software platforms, which means that
simulations are driven by events that occur over discrete time. Furthermore,
the architecture of the core mechanism comprises the scheduler and the
simulation models. The simulation models implements the functionality and
the logics that model a physical condition. On the other hand, the scheduler is
responsible to provide the appropriate collaboration between the models, by
managing the simulation time in accordance to the simulation models so as to
induce and fluctuate the simulated system at discrete time points. The
changes on the simulated system are introduced by varying the values of
some state variables during simulation time.

The scheduler can be designed as Time-Driven or Event-Driven, based on the
way that the time points are divided, thus promoting the simulation events.
Every time point introduced by the scheduler, which can be either a step or an
event, is further processed by a function that is typically called handler. The
handler is responsible to invoke the proper simulation models that need to
cooperate in order to update the current state of the simulated system
variables, if necessary.

 28

Code Listing 1. Example of an Event-Driven Simulation

i. Event-Driven

The event-driven design induces the scheduler to divide the time into points
that correspond to simulation events, for instance sending or receiving a
packet, some change in the sensory field of interest etc. Differently to time-
driven designs, in event-driven schedulers there are various handler functions
corresponding to every event. This method is considered to be more accurate
than time-driven scheduling due to the ability of evaluating the simulated
system only when the events occur, as presented in Code Listing 1. However,
this method of scheduling introduces complexity and requires strong
computational capacity and development effort to conduct event-driven
simulations.

ii. Time-Driven
When the scheduler follows a time-driven design, the simulation time is
divided into further points that stand off equal time length, for instance one
point every minute, hour etc., always according to the tested scenario.
Consequently, the events occur based on a list containing respectively
timestamps. Globally in a time-driven scheduler there is a single handler
function that performs evaluations of the system on every time step,
regardless the presence of changes in the simulated system.

1 while(true)
2 {
3 //Event queue
4 if(!empty(eventQueue))
5 {
6 // get the first event from the queue
7 Event e = dequeue(eventQueue);
8 // progress simulation time according to the event
9 timeProgression(e.time);
10 // call the handler of the specific event
11 e.handler.handleEvent();
12 }
13 }

 29

Code Listing 2. Example of a Time-Driven Simulation

Moreover, a time-driven design is considered to be more suitable in cases
where the changes of the simulated system happens more or less periodically
on some predictable time points, as presented in Code Listing 2. Hence,
without the presence of overheads in managing the events as in event-based
scheduling, simulations that follow a time-driven design are more convenient
to implement.

3.3 Simulation Models

The key aspect of simulators is to provide convenient simplifications of real
conditions and interactions between the underlying elements of a sensor
network and the physical environment. The structure of the simulated
condition is implemented in several models that individually define a specific
feature or operation, along with their relations (Figure 8). Moreover, the
simplifications should be well defined and detailed in order to acquire valuable
results.

Figure 8. Typical Simulator Structure

1 for (every t)
2 {
3 //progress simulation time by t
4 timeProgression(currentTime+t);
5 //call simulation handler
6 simulationHandler();
7 }

 30

Hence the simulated models should be based on realistic assumptions.
However, the complex of precise modeling capabilities, in accordance with
large-scale scenarios, increases dramatically the utilization of resources and
finally affecting the overall simulation performance. Therefore, the
fundamental trade-off is to provide accurate modeling while meeting the
aforementioned simulator design requirements. In addition, many methods
have been used to deal with scalability issues such as component-based
design and parallel simulation. In a parallel simulation, the simulated
components are distributed over several Central Processing Units (CPUs),
where the sub-programs are concurrently executed, while the simulator
scheduler is responsible for the overall synchronization. Despite the
complexity of real systems, a general description of the main component
models is introduced as follows.

3.3.1 Network Model
The network model is a broad simplification of the system network, which
further incorporates the following individual models. Figure 9 depicts these
models and their relations.

Figure 9 Typical WSN Network Model

 31

i. Nodes
The node is the physical device that monitors a set of physical variables that
simulate a physical condition of interest. Also the nodes are connected on a
common radio channel in order to communicate with each other. The protocol
stack that is implemented as part of the inner node model defines the
connection and communication mechanisms. Unlike the classical network
models, sensor networks introduce complex concepts such as mobility,
energy efficiency, and sensory capabilities that are constrained by the
physical environment. These concepts are also implemented as part of the
inner node structure that further interacts with the environmental model. A
typical simulation scenario can involve several numbers of nodes, however
large-scale networks that introduce great scalability are still a challenging
task. More detailed description about the node functionality is given in the
Node Model section below.

ii. Environment
The environmental model is the main component that differs WSN models
from the rest network types. This feature simulates real environmental
conditions with sensed physical variables. Moreover, its basic functionality is
to generate and propagate events that further trigger the node to initiate an
activity of interest such as communicating with other nodes. Physical
variables of interest include data such as temperature, seismic waves, sound,
water pollution etc. However there are some simulators that they employ an
agent for each physical variable. In other words, it means that the events
generation is separated from the environmental model.

iii. Radio Channel

The radio channel consists of the propagation and the error models.
The propagation model specifies the diffusion of the radio signal among the
nodes of the network. The environmental model varies due to insertion loss
and its effect on the signal quality. Furthermore, there are several propagation
models that differ in complexity, however more complex models are globally
more resource demanding, which can further affect the overall performance
trade-off. In more detailed models, the use of a terrain component is
connected to the environment and radio channel models and it is taken into
consideration so as to compute the propagation, by influencing several

 32

physical magnitudes. The error model addresses the random phenomenon
that affects the rates of packet reception as well as packet loss. Normal
distribution, Markov chain or empirical models are typically used and
optimized in order to implement such error models.

iv. Sink Nodes
The sink nodes are special nodes that receive and process data from the rest
sensor network. They are used to provide fast advancement of valuable
information that is related to sensory data collected by the network nodes.
The use of sink nodes depends on the subjected application and scenarios
that are tested through the simulator.

v. Agents

The agent acts as the generator of events of interest in order to trigger the
nodes. More specific, the agent may cause a variation in a physical
magnitude, which is propagated through the environment and impels the
sensors of the nodes. This component typically is implemented as part of the
protocol tier that is described below, however it can be more effective if
implemented separately from the node and the environment models (Figure
9).

Figure 10. Tier-based Node Model

 33

3.3.2 Node Model
The overall node mechanism depends on various models that incorporate in
such way so as to form a cross-layer functionality. However, in order to
facilitate the development process, these models are grouped into further
classes according to their purpose. Those abstract tiers and their comprised
models are briefly described below and are illustrated in Figure 10.

i. Protocol Tier
The protocol tier groups all the appropriate communication protocols.
Globally, the protocol tier contains three layers, which are a MAC, a routing
and a specific application layer. The functionality of the protocols depends on
the state of the physical tier that is presented below, for instance a routing
protocol may consider energy constraints in order to decide the packet route.
Hence, efficient methods that enable information interchange between the
tiers must be implemented.

ii. Physical Node Tier
The physical node tier simulates the resources of the node, by means of
hardware and its effects on the performance, lifetime, capabilities and
functions of the node. Actual composition of this tier may change depending
on the specific application. Typically, that tier consists of the physical sensor
model, the energy model and the mobility model. Physical sensors describe
the sensory behavior of the monitoring hardware. A critical feature of WSN
applications is the energy model, which simulates the power consumption
during common node activity such as sensing, data processing and
communication. Also there is a mobility model that defines possible
movement of nodes by changing their position parameters during simulation
time. Generally, the mobility is implemented either by a movement vector in
accordance to the initial position or by a list of positions linked to timestamps.

iii. Media Tier
The media tier acts as a common ground between the nodes and the
simulated physical environment. A node can interact with the environment
through an ordinary radio channel that is further affected by the physical
parameters as described previously in the radio channel Section.

 34

Figure 11. Classification of Simulation Designs

3.4 Simulation Design

As described in previous Section, simulation models implement the logics and
functions of simulated WSN applications. Furthermore, the simulation models
are developed based on various designs that also play important role in order
to implement the design requirements of WSN simulators. A broad
classification of possible simulation designs is applied based on two key
aspects that are the abstraction and multiprocessing capabilities, as illustrated
in Figure 11.

3.4.1 Abstraction Level Design
The simulators can follow two types of designs based on their abstraction
capabilities in order to address the requirements of the simulated system.

i. Simulation Based Design
Globally, simulations can be used to test the performance of new applications
without considering constrains that may introduced by the employed
hardware. Moreover, simulators provide handy modeling of the interior
features of the subjected physical systems by simplifying the software
development process for a particular WSN application. Simulation based
designs do not provide fully accurate evaluation. However it allows fast
prototyping because it provides handy development of WSN systems in high-
level abstractions.

 35

ii. Emulation Based Design
The emulators are a special type of simulators that aim on increasing the
overall evaluation fidelity by modeling the subjected system in a realistic
manner. In other words, emulators require cross-layer implementations of the
models in addition to low-level functionalities. Furthermore, emulation based
designs can improve the simulation performance, by employing real sensor
motes and implementing their corresponding instruction set, so as to support
native execution of actual WSN code. Emulators provide accurate simulations
of WSN applications because an emulator executes the same machine code
that runs on a real sensor node processor. Consequently, this type of design
introduces overheads due to complex models and requires greater resources
than a typical simulator.

3.4.2 Processing Level Design
Simulators can be divided in two types based on the way that they process
the simulation events.

i. Sequential simulators
Simulations that follow a sequential design introduce the simulated events in a
queue that is further addressed by a single processor.

ii. Parallel simulators
Simulators that employ a parallel design introduce the simulated models in a
distributed system that further addresses individual processes either to a
multi-core processor or to multiple processors. Therefore, this type of design
can improve the overall simulation speed and performance.

However, simulations based on distributed designs are able to provide limited
speed and scalability due to great complexity in providing the temporal
relations of the interactions between the simulated models. For instance, in a
scenario that sensor nodes are simulated in parallel, their simulation speeds
may vary due to differences in either the number of inputs or node models, in
addition to lack of available processors so as to simulate all the nodes
simultaneously. Since nodes may get simulated at different speeds, it
becomes critical to preserve the causality of events for optimum simulation-
based evaluations (Titzer et al., 2005), (Jin & Gupta, 2008).

 36

In order to overcome the above synchronization issues many protocols have
been proposed. Globally, these parallel synchronization protocols can be
classified into two groups according to their approaches, which are the
conservative and optimistic protocols.

In a conservative approach, a process is able to progress in simulation only
when the causality is preserved. However, it is possible to result in a
deadlock. Therefore conservative protocols require additional messages to be
enhanced in order to transmit the local time between the different simulated
processes, thus introducing a major overhead. On the other hand, an
optimistic protocol allows the simulated process to progress in simulation time
until it discovers a violation of casualty, where the process has to move
backwards in time along with cancelling all the transmitted messages. This
rollback is achieved by periodically saving the simulation state so they can be
handled as checkpoints. Therefore, the major overhead in an optimistic
approach is the processing of the rollback actions (Lim et al., 1998).

3.5 Taxonomy of Simulators

Simulators are the most wide spread evaluation tool amongst the WSN
research community for designing new applications. The key features that
play crucial role in the simulation process are the models of the subjected
nodes, network and environment as described previously. However,
environmental modeling is still a challenging task since the majority of the
existing tools provide poor designs by means of details and abstraction
(Hammoudeh et al., 2008). Additionally, many available proposals of WSN
simulation frameworks, like the proposals of (Guestrin et al., 2004),
(Chiasserini & Garetto, 2004) and (Gracanin et al., 2004), do not provide
detailed environmental models. On the other hand, modern research studies
try to address this controversy and provide more specific information and
detailed frameworks so as to increase simulation efficiency, as the proposals
of (Merrett et al., 2009), (Lo et al., 2007), (Corke et al., 2010) and (Ferencik et
al., 2010).

 37

Figure 12. Simulators Taxonomy (Du et al., 2014)

Therefore, the following taxonomy will focus only on the simulators’ node and
network modeling capabilities in accordance to the employed abstraction level
design. Hence, WSN simulation tools can be divided into four categories,
which are the Network Simulators with Node Models (NSNM), the Network
Simulators with Node Emulators (NSNE), the Node System Simulator with
Network Models (NSSNM) and finally the Node Emulators with Network
Models (NENM), as depicted in Figure 12. A brief description of each category
can be found below.

i. Network Simulators with Node Models (NSNM)
Network simulators with node models, typically, implement event-based
scheduling designs among the underlying simulation models, such as the
radio channel, the node and the network models. However, the main objective
of this type of simulators is to emphasize on network modeling capabilities,
which is the predominate entity. Hence, the node models are implemented in
higher abstraction level, by means of functional complexity. Many popular
simulators belong to this group, for instance NS-2, NS-3, OMNET++ and
GloMoSim.

ii. Network Simulators with Node Emulators (NSNE)
Network simulators with node emulators, aim on addressing the advantages
of the overall abstraction level classification, by employing network

 38

simulations in conjunction with node emulations. Furthermore, on the network
simulation part, the developer implements the details of the network models.
On the other hand, the node emulators process natively the nodes’ instruction
set, which provides accurate performance results. However, the
communication between the network simulator and the node emulator
introduces overheads that lead to time-consuming evaluations. A popular
example of simulator that belongs to this group is Qualnet.

iii. Node System Simulators with Network Models (NSSNM)
Node system simulators with network models, globally utilize System-Level
Description Languages (SLDL), such as SystemC, in order to model the
underlying node system. Moreover, SLDL enables researchers to design
simultaneously high-level abstractions of the hardware and software
components, as they would have been in a real system. Hence, researchers
can focus on the overall functionality of the system instead of its
implementation details, which promotes convenient evaluations of different
architecture alternatives. Finally, the NSSNM compared to NSNM can provide
faster execution due to the SLDL effectiveness (Du et al., 2011). Some
examples of this type of simulators are, IDEA1 (Du et al., 2011),
SystemC/MSPSim platform (Stecklina et al., 2011).

iv. Node Emulators with Network Models (NENM)
A node emulator with network models can be considered as a conjunction
between two further sets, which are the Instruction Set Simulator (ISS) and a
WSN OS emulator. The ISS is used to simulate specific microcontrollers and
processors, and eventually collaborates with an OS emulator that is used to
emulate the execution of node application code over embedded WSN OS
such as TinyOS, and Contiki. This type of simulators provides high timing
accuracy of software execution compared to real implementations due to the
ability of processing the embedded software directly in the simulation
framework without modifications (Eriksson et al., 2009). Some examples of
simulators that belong to this group are TOSSIM, COOJA, MSPSim and
Avrora.

Each one of the aforementioned simulator types aim on fulfilling different
simulation requirements. Those identifying features that separate each type
are briefly presented in Table 1 as proposed in (Du et al., 2014).

 39

Table 1. Characteristics of the different simulator types

Simulator Type Advantages Disadvantages

Network Simulators with
Node Models (NSNM)

• Network modeling
• Radio channel

modeling
• Scalability

• Simple power
model

• Simple timing
model

Network Simulators with
Node Emulators (NSNE)

• Network modeling
• Detailed channel

modeling
• Detailed timing

model

• Scalability

Node System Simulators
with Network Models
(NSSNM)

• Network modeling
• Radio channel

modeling
• Scalability

• Moderate timing
accuracy

• Moderate power
accuracy

Node Emulators with
Network Models (NENM)

• High timing
accuracy

• High energy
accuracy

• Simple network
modeling

• Simple channel
modeling

• Scalability

3.6 Survey of WSN Simulators

As already mentioned in the previous Section, according to the simulator
taxonomy there are a number of available tools that can be employed based
on the requirements of the subjected research. Moreover, by taking into
consideration the popularity of the simulation tools presented in Chapter 5, a
brief description of these simulators is presented below. Each further
description is introduced with the following format: a summary of the
simulator, the programming language in use, its key features and finally its
limitations, as summarized in Table 2.

 40

Table 2. Summarized simulators characteristics

Simulator Language Key Features Limitations

NS-2 • C++
• Tcl

• Modular design
• Extensible
• Diversity of predefined

models
• Visualization tool

called NAM
• Packet level execution

• Long learning curve
• Predefined models

can not be modified
• Standard application

layer models

NS-3 • C++
• Perl
• Python

• Open-source, build
from scratch

• Realistic simulation
models

• Can be employed as
real-time emulator

• Pcap output files for
further visualization by
third party tools

• Supports both IP and
non-IP based networks

• Not backward
compatible with NS-2

• Lack of credibility
• Scalability depends

on the host PC’s
computational and
memory resources

OMNET++ • C++
• NED

• Open-source
• Modular design
• Extensible
• GUI based on Eclipse

IDE
• Extensions for real-

time simulation,
emulation and
SystemC models

• High scalability

• Lack of accuracy
• Few predefined

models
• Difficult to combine

the predefined
models since they
have been developed
by different research
teams

 41

Simulator Language Key Features Limitations

GloMoSim • PARSEC

• C

• Sequential and
parallel simulation
environment

• Modular design
• Extensible
• Suitable for

simulating mobile
wireless IP networks

• High scalability
• User-friendly GUI

• Lacks the ability of
providing accurate
simulations

• Discontinued since
2000

Qualnet • PARSEC

• C

• C++

• Based on GloMoSim
• High fidelity
• Modular design
• Sequential and

parallel simulation
environment

• Individual
measurements on
each layer

• Java-based GUI

• Commercialized
software

• High CPU utilization
• The GUI is slow in

most computers

TOSSIM • nesC

• C

• C++

• Python

• Open-source
• Simulation of

TinyOS-based
applications

• High scalability
• Powerful GUI

• Lack of power
consumption models

• Limited to TinyOS
applications

• Lack of heterogeneity

COOJA • Java

• C

• Open-source
• Extensible
• Simulation of

ContikiOS-based
applications

• Simulation of
heterogeneous
networks

• Convenient transition
to real deployments

• Binding with MSPSim
• GUI and visualizer
• JNI supports third-

party debugging tools

• Limited to the Javas’
heap memory

• Slow simulation time

 42

Simulator Language Key Features Limitations

MSPSim • Java • Open-source
• Instruction-set

emulation of MSP430
microcontroller

• Realistic simulation
• Accurate timing
• High scalability
• Modular design
• GUI
• Convenient transition

to real deployments

• Limited to the Javas’
heap memory

Avrora • Java • Open-source
• Instruction level

simulator
• Cycle accurate
• Language and OS

independency
• Based on Atmel AVR

microcontroller
• High scalability

• Does not model clock
drift

• Lack of GUI
• Does not support

mobile scenarios
• 50% slower than

TOSSIM

Matlab • C

• Fortran,

• Python

• C++

• Perl

• Java

• ActiveX

• .NET

• High-scripting
language

• Flexible, reliable
• Hundreds of build-in

mathematical functions
• Simulink and other

frameworks for WSN
simulation

• Extendible
• Friendly GUI

• Commercial software
• Interpreted language
• Slower performance

EnergyPlus • Fortran

• C++

• Energy-management
simulation tool

• Modular design
• Interface for external

programs

• Lack of GUI
• Simulation based on

input files

 43

3.6.1 Network Simulator 2 (NS-2)

i. Summary

Network Simulator 2 is a discrete event simulator that aims on networking
research in general (The Network Simulator - NS-2, 2011). Network simulator
was developed in 1989 as an alternation of the REAL simulator (Keshav,
1988), and since then three major versions has been released NS-1, NS-2 in
1996 and NS-3 in 2008. As far as it concerns NS-2, it is designed based on a
modular approach that enables effective extensibility (Sarkar & Halim, 2011).
Furthermore, this simulator provides a variety of predefined models in order to
support simulation of TCP, routing, and multicast protocols over wired and
wireless (local and satellite) networks. However, the upgrade of simulating
wireless network technologies, such as LTE, MANETs and WSNs, was
introduced in later versions. Moreover, the simulation scenarios that are
tested over the NS-2, follows strictly the OSI reference model.

ii. Simulation language
NS-2 simulations are conducted based on a combination of C++ functions,
which models the behavior of the simulation nodes, and Tcl scripts that
control the simulation process and specify further features, such as the
network topology (Chaudhary et al., 2012).

iii. Key features
NS-2 is a popular simulator for WSN application due to the provided
extensibility in conjunction with a great number of predefined protocols and
models that are available within the simulator package. It follows an object-
oriented design that allows straightforward implementation of new protocols.
The key features of WSN systems that are supported include sensor channel
models, power models, lightweight protocol stack, hybrid simulations and
finally, scenario generation tools. Moreover, a visualization software tool
called Network AniMator (NAM) is employed in order to support topology
layout, packet level animation, and various data inspection mechanisms
(Nam: Network Animator, 2002). The simulations are executed in packet level,
thus producing detailed results and enabling handy debugging.

 44

iv. Limitations
NS-2 requires a long learning curve and advanced skills in order to conduct
valuable and repeatable simulations. A major drawback of NS-2 is that a user
is unable to modify the provided protocols and models (Chaudhary et al.,
2012). Furthermore, the packet formats, the energy models, the MAC
protocols and the hardware models differ between various WSN systems. A
unique characteristic of sensor networks is the fact that the application layer
interacts often with the lower protocol stack, nevertheless NS-2 lacks of the
ability to provide a modifiable application model.

3.6.2 Network Simulator 3 (NS-3)

i. Summary

The NS-3 simulator (NS-3, 2011) is a free open-source discrete-event
network simulator especially devoted for research and educational use. The
NS-3 project started in 2006 and it was first release to the public on July 2008
with the version 3.1. Up to the current day the latest version is 3.23 that was
released on May 2015. NS-3 was developed from scratch and it is not an
extension of NS-2, thus not backward compatible (Chaudhary, Sethi, &
Keshari, 2012). However, NS-2 community still continues to provide support
and maintain the simulator package in order to study transition and integration
mechanisms to NS-3. Furthermore, new features have been included
compared to NS-2, in order to provide detailed simulation tests of any
networking technology. Every three months, new stable version of NS-3 is
shipped, containing new developed models that are documented, validated,
and maintained by researchers.

ii. Simulation language
NS-3 simulations are conducted entirely in C++ with optional use of Python
bindings. The network component models as well as the user-defined
simulation scenarios are implemented either in C++ or PERL, however
differently to NS-2, they can be totally written in C++ programming language.

 45

iii. Key features
NS-3 is open-source, and the project team maintain an open environment so
as researchers across the globe to be able to contribute and share their
proposals. Furthermore, the ns-3 software infrastructure encourages the
development of simulation models, which are sufficiently realistic to allow NS-
3 to be used as a real-time network emulator, interconnected with real
systems. For instance, users can send and receive NS-3 generated packets
on real network devices, while NS-3 serves as an interconnection framework
in order to provide a link between the virtual machines. Thus, many existing
real world protocol implementations can be reused within NS-3. Furthermore,
NS-3 generates Pcap (Packet Capture) packet trace files that can be
processed by third-party visualization and tracing software, such as Wireshark
(Wireshark, 2006), NetAnim (Riley, 2012) and Gnuplot (Gnuplot, 1986).
Finally, its simulation core supports research on both IP and non-IP based
networks. (NS-3, 2011)

iv. Limitations

One limitation of NS-3 is the credibility of the simulation results. The employed
network simulation models are modifications of already available ones, and
possible malfunctions may transfer and affect the performance of the
simulated systems. Also the scalability of the introduced simulation scenarios
is constrained to the available memory capacity and computational capability
of the computer hosting the simulator.

3.6.3 OMNET++

i. Summary

OMNΕT++ is an extensible, modular, component-based and discrete-event
simulation framework, primarily for building network simulators for wired and
wireless networks. However, support for specific domain networks, such as
sensor networks, wireless ad-hoc networks, MANETs etc., is provided by
model frameworks, developed as individual projects like Castalia (Castalia,
2007). OMNΕT++ offers an Eclipse-based IDE, a graphical runtime
environment, and a powerful GUI library for animation, tracing and debugging
support. There are extensions for real-time simulations, network emulations,
database integrations, SystemC system models, and several other functions.

 46

Getting started with it is quite simple, due to its clean design. Finally,
OMNET++ was developed to fill the gap between open-source and research-
oriented simulation software tools such as NS-2 and the expensive
commercial alternatives like OPNET.

ii. Simulation language
The OMNΕT++ framework is totally implemented in C++ programming
language. However the underlying network models can be grouped in broader
structures called components by using NED, which is the topology description
language employed by OMNET++ (NED, 1998).

iii. Key features
OMNET++ is an open architecture simulation environment with an
embeddable simulation kernel that enables extensibility and handy integration
of new protocols and network technologies. The ease of modifying the sensor
network properties and its scalability makes OMNeT++ an excellent tool for
simulation-based evaluations of WSN applications and systems. Moreover,
the provided graphical user interface enables handy tracing and debugging
procedures.

iv. Limitations
A drawback of OMNET++ is that it lacks of available protocols in its library,
compared to other simulators like NS-2. However, OMNET++ is becoming a
popular tool and new contributions have extended the initial framework.
Nevertheless, most of the available models have been developed by different
research groups and do not share a common architecture, thus combining
them is a challenging task. Another major concern is the accuracy of the
simulated models. The authors in (Colesanti et al., 2007) prooved that
simulation performance results retrieved from OMNET++, differ significantly
from real experimental results.

 47

3.6.4 GloMoSim

i. Summary

Global Mobile Information System Simulator, known as GloMoSim (Zeng et
al., 1998) is a discrete-event sequential and parallel simulation environment
for wireless networks. Its library is classified according to the OSI reference
model and consists of modules that respectively model a specific procedure in
the protocol stack. GloMoSim follows a modular design in order to support
extensibility, thus enabling researchers to modify, develop and share new
modules and protocols. Moreover, simulation scenarios can be executed in
shared memory and distributed computers by employing a variety of
synchronization protocols in order to improve simulation performance.
Moreover, several choices are provided within its library for radio propagation,
Carrier Sense Multiple Access (CSMA) MAC protocols and implementations
of UDP and TCP. GloMoSim is suitable for simulating mobile wireless IP
networks. However, the development and support of the GloMoSim project
has been discontinued since 2000 and replaced with the commercial Qualnet
project.

ii. Simulation language
Simulations in GloMoSim are conducted using PARSEC (Bagrodia et al.,
1998). PARSEC is a simulation language implemented in C, by the Parallel
Computing Laboratory at UCLA for sequential and parallel execution of
discrete-event simulation models, thus enhancing this ability to GloMoSim.

iii. Key features
GloMoSim is a powerful simulation tool due to its ability to execute parallel
models and scenarios in a distributed manner. This can be achieved by
employing one of the three different conservative synchronization algorithms
that are provided within the package of the simulator. The provided algorithms
are the null message protocol (Misra, 1986), the conditional event protocol
(Chandy & Sherman, 1989) and the Accelerated Null Message Protocol
(ANP) (Jha & Bagrodia, 1993). The choice of the conservative runtime
algorithm is introduced as an option in the execution command. Hence,
GloMoSim is able to handle large-scale scenarios with optimum performance.
Furthermore, like most simulators, GloMoSim is an extensible simulator that

 48

implements the underlying network models as modified modules, thus
enabling handy development of new proposals.

iv. Limitations
GloMoSim provides basic protocols and functionalities for wireless
communication networks. However, researchers like in (Alageswaran et al.,
2013) try to address this deficiency by implementing and evaluating WSN
specific protocols though GloMoSims’ simulation engine. Moreover,
GloMoSim similarly to NS-2, lacks the ability of providing accurate simulations
of the packet formats, the energy models, and the MAC protocols
functionalities compared to real WSN systems. Finally, GloMoSim project has
been discontinued since 2000 and commercialized as Qualnet project.

3.6.5 Qualnet

i. Summary
Qualnet is a commercial communication simulation platform based on the
core of GloMoSim. It was released on 2000 by Scalable Network Technology
(SNT) for commercial use in order to simulate the functionality of real wired
and wireless communications networks, as long as the underlying network
devices (Qualnet, 2008). Qualnet extends significantly the availability of build-
in protocols and models compared to GloMoSim. Furthermore, it supports
advanced wireless modules and provides powerful tools for handy designing,
developing and debugging of new ideas. Qualnet, similarly to its predecessor
is a discrete-event sequential and parallel simulator.

ii. Simulation language
Qualnet uses PARSEC to conduct simulations, therefore the models and the
build-in libraries are implemented in C and C++ programing languages.

iii. Key features

Qualnet aims on providing high fidelity by supporting many popular protocols
and network device models. Moreover, due to its parallelization design it can
produce the same fidelity for different scale scenarios with increasing

 49

scalability. Qualnet has a modular layer structure that enables comparative
performance evaluations of alternative protocols by collecting individual
measurements on each layer.

iv. Limitations
Compared to most available simulators, Qualnet is a very powerful simulation
tool that provides convenient simulation results, however it is not an open
source project. Users have to pay in order to acquire a licensed Qulanet
package. Nevertheless, the worst drawback of Qualnet is the extreme high
CPU utilization of its Java-based GUI, which runs very slow on most
machines.

3.6.6 TOSSIM

i. Summary

TOSSIM is a discrete event simulator and part of the TinyOS project (Levis,
2006), which is an embedded operating OS specialized for wireless sensor
networks, both developed at Berkeley University of California (Levis et al.,
2003). Thus, TinyOS applications can be compiled directly into the TOSSIM
framework, which can further simulate thousands of nodes running complete
applications. Furthermore, TOSSIM replaces the low-level components of a
TinyOS system, such as the Analog-to-Digital Converter (ADC), the Master
Clock, the EEPROM and several of the components in the radio stack in order
to emulate their real behavior. Programs developed through the TOSSIM
framework can be transferred to real motes without any modification, thus
enabling researchers to easily transition between running an application on
motes and in simulation. Also it provides a GUI that enables handy
visualization, designing and debugging of running simulation scenarios in a
controlled and repeatable environment. Moreover, TOSSIM simulates the
network functionality at bit granularity due to low-level assumptions.
Therefore, TOSSIM aims on simulating the execution of TinyOS applications,
rather than simulating the real world. While TOSSIM can be used to
understand the behavior observed in the real applications, it does not take
into consideration all the details, and should not be used individually for
absolute evaluations.

 50

ii. Simulation language
TOSSIM framework was developed in nesC (Gay et al., 2003), which is an
extended library of C programming language, aiming to provide a component-
based programming model for embedded systems. Furthermore it supports
Python and C++ programming languages.

iii. Key features
TOSSIM is an open source project with a large community that provides
online documentation and support. Moreover, it comes with a visualization
tool named TinyViz, which enables users to design easily WSN applications
and monitor their functionality. Simulation scenarios are modeled in low-level
abstractions that enable detailed debugging and support for large-scale
experimentation including thousands of nodes. Overall, it is very simple and
powerful WSN emulator for TinyOS-based networks.

iv. Limitations
TOSSIM is limited to TinyOS implementations and is not able to simulate any
other type of network or protocol. Moreover, power consumption models are
not supported, however users can employ PowerTOSSIM (Shnayder et al.,
2004), which is an extenstion of the TOSSIM framework in order to simulate
accurately the power consuption of the nodes. Furthermore, heterogenous
networks are not supported because all the simulated nodes share the same
TinyOS application.

3.6.7 COOJA

i. Summary

COOJA is an open source and flexible simulator for the Contiki OS
specialized for sensor node (Dunkels et al., 2004), which allows cross-layer
simulations between the different levels of the WSN system, such as the OS,
the network and the instruction set levels. Simulation scenarios provide low-
level abstractions of the underlying mote hardware in conjunction with high-
level abstractions of the network behavior. It was developed following an
extensible design through all of the simulated models, including the sensor
node platform, the radio transceivers and propagation models etc. Moreover,

 51

COOJA is able to simulate heterogeneous networks with different types of
nodes, by means of hardware and software. The node type may be shared
between several nodes and determines properties common to all these
nodes. Contiki applications can be executed either as native code on the host
CPU or by employing a specific instruction set emulator for MSP430 boards
named MSPSim (Eriksson et al., 2009). Additionally, the applications
developed through COOJA can be transferred directly to real mote hardware,
thus minimizing the transition effort to real deployments. Finally, COOJA
enables users to save simulation state in order to later restore the simulated
scenarios or even skipping back simulation over time (Österlind et al., 2006).

ii. Simulation language
COOJA simulation engine is implemented in Java programming language,
and all the interactions with C-based Contiki code are addressed through the
Java Native Interface (JNI).

iii. Key features

COOJA is a free, open source, code level simulator for sensor networks that
simulates nodes hosting Contiki OS, thus enabling convenient transition to
real deployments. However nodes with different OS and characteristics may
be included in a simulated scenario. Moreover, Java-based nodes provide fast
simulations but do not run deployable code. On the other hand, by emulating
nodes with MSPSim provides more detailed results compared to Java-based
nodes or nodes running native Contiki applications. Nevertheless, native code
simulations are more efficient than node emulations and additionally they
evaluate deployable code. COOJA provides extendibility in two ways. First, by
modeling the hardware peripherals of the simulated nodes as interfaces,
which enable the Java simulator to detect and trigger events such as
incoming radio traffic. Secondly, all the interactions between the simulator
engine and the simulated nodes are performed via plugins, for instance
starting or pausing the simulation progress. Moreover, a GUI is provided in
order to design and develop the simulated WSN system, with an additional
visualization tool named TimeLine, for presenting the radio traffic and radio
usage of the simulated network (Österlind et al., 2010). Finally, the Java
Native Interface enables Contiki code debugging by employing third party
tools like GDB (GDB: The GNU Project Debugger, 2006).

 52

iv. Limitations
COOJA, due to its extendibility, is limited to the Javas’ heap memory.
Simulating many nodes with several interfaces requires a lot of calculations
and thus increasing the simulation run time.

3.6.8 MSPSim

i. Summary

MSPSim is an open source instruction set emulator that is able to simulate
complete WSN motes such as Tmote Sky, as well as custom WSN motes
based on Texas Instruments MSP430 microcontroller. MSPSim aims on
providing realistic simulations with accurate timing in conjunction with handy
debugging control. Furthermore, extendibility is supported through a variety of
available build-in implementations of different peripheral devices as
components, which are further simulated based on a discrete-event approach.
Moreover, the ability to process and interpret real hardware firmware enables
handy transition to real implementations. MSPsim is part of the Contiki OS
project and can be enhanced in cross-level simulation scenarios conducted
under the COOJA framework (Eriksson, et al., 2009).

ii. Simulation language
All the underlying models developed under the MSPSim framework are
implemented in Java programming language.

iii. Key features
MSPSim is a powerful emulator due to its even-based simulation kernel that
enables accurate execution timing with low resource utilization, thus providing
high simulation performance even in scenarios involving thousands of nodes.
In order to achieve this functionality, MSPSim processes the simulation
events based on two queues that address the events to the simulator
scheduler according to their time criticality. The first queue includes the
events concerning the internal components of the MSP430, such as the
analog-to-digital converter, and are scheduled based on the CPU clock
cycles. Secondly, events concerning external components, like the radio

 53

transceiver, are scheduled based on a simulated high-resolution clock.
Furthermore, MSPSim provides a modular design for the simulated mote
hardware peripherals such as the sensors, communication ports, the radio
transceiver and LEDs. Hence, the user is able to modify the mote abilities
according to the specifications of the simulated application. Finally, a GUI is
integrated and enables handy simulation designing, debugging and
visualization of statistics like CPU utilization over different scenarios. Also an
accurate graphical representation of the sensor board is presented and
simulates its visual behavior, for instance the color and flashing of the on-
board LEDs.

iv. Limitations
Similarly to COOJA, MSPSim is implemented in Java and thus its
extendibility, is limited to the heap memory of the Java Virtual Machine (JVM).

3.6.9 Avrora

i. Summary

Avrora is an open source instruction level sensor network simulator with a
cycle accurate behavior (Titzer et al., 2005). Unlike other simulators that are
able to simulate only specific platforms, such TOSSIM, Avrora has language
and OS independency due to the ability of processing actual machine code.
The provided simulation and analysis tools are designed to emulate Crossbow
Mica2 and MicaZ mote platforms, as well as custom motes that are based on
the Atmel AVR microcontroller. Avrora simulates a network of motes that
process real microcontroller programs, in preference to model-based
abstractions so as to provide convenient evaluations. Additionally, the
underlying components of the mote are simulated as individual software that
interacts with the simulator core through respective virtual interfaces. Finally,
the Avrora project was transferred to sourceforge on 2008 and its
development has been discontinued since 2013 (Avrora - SourceForge.net,
2013)

 54

ii. Simulation language
The Avrora framework is implemented in Java programming language in order
to provide flexibility and portability.

iii. Key features

One of the key features of Avrora includes its accuracy on simulating the time
model based on the clock cycle. Moreover, the host computer processes all
the simulated nodes as individual threads that are further synchronized when
necessary, in order to ensure global timing and communication order.
Moreover, large-scale scenarios can be efficiently simulated with reasonable
performance according to the number of the available processors.
Additionally, in order to execute the subjected applications, the simulated
events are processed based on an event-queue that takes advantage of the
sleeping-mode property of the nodes, thus promoting performance efficiency.
The developers of Avrora claim that it is able to scale networks of up to
thousands of nodes.

iv. Limitations
A major drawback of Avrora is that it does not model clock drift, which is a
situation that occurs when nodes may run at slightly different clock
frequencies over time due to manufacturing tolerances, temperatures, and
battery performance. Furthermore, Avrora lacks of a graphical user interface,
thus conducting and analyzing simulations is a complex task. Finally
compared to TOSSIM, Avrora does not support mobility and is 50% slower,
however it provides more accurate and scalable evaluations.

3.6.10 Matlab

i. Summary

MATLAB (MATrix LABoratory), is a software package and a high–level
scripting language which enables high performance numerical computation
and visualizations of new ideas (MathWorks, 1994). It is the most popular
software package for scientific research due to its powerful capabilities by
means of analysis, flexibility and reliability. MATLAB provides a user-friendly
environment that includes hundreds of reliable and accurate built-in

 55

mathematical functions. These functions can be optimized and collaborate in
order to provide solutions on a broad field of mathematical problems such as
matrix algebra, complex arithmetic, linear and nonlinear systems, differential
equations, signal processing etc. Therefore, MATLAB is particularly an
appropriate tool to serve as a generic data-managing platform, as well as in
the field of wireless sensor networks.

ii. Simulation language
The core functions and the build-in libraries are implemented in C and Fortran
programming languages, however external libraries written in Python, C, C++,
Perl, Java, ActiveX or .NET can be directly called from MATLAB.

iii. Key Feutures

The most important feature of MATLAB is its programming interface, which is
very easy to learn and operate even from users with basic programming skills.
Moreover, users are able to develop their own functions by using its native
framework or by accessing custom libraries written in different programming
languages through specific external interfaces. Furthermore, there are several
optional toolboxes in order to support special application designs such as
signal processing, control systems design, system identification, statistics,
neural networks, fuzzy logic, symbolic computations, and so on. Additionally,
MATLAB is able to simulate sensor networks by employing the modeling
abilities of the Simulink framework, which is an integrated software package
for modeling, simulating, and analyzing dynamical systems (Qutaiba, 2012).
However, MATLAB provides an extendible design and is not limited only to
Simulink, thus enabling researchers to implement different WSN simulation
frameworks such as tinyLAB (Santini, 2009) and Prowler (Zhang et al., 2006).

Finally, MATLAB is the most famous framework for developing customized
simulators aiming to study particular problems in WSN applications.

iv. Limitations

The only drawback of MATLAB is that it is an interpreted language thus
resulting in slower processing performance. Moreover, MATLAB is a
commercial software and requires users to pay in order to purchase the
complete package.

 56

3.6.11 EnergyPlus

i. Summary

EnergyPlus is an open-source next generation energy and building
performance simulation tool, which was derived by combining the two well
documented energy simulation engines of DOE-2 and BLAST (Building Loads
Analysis and System Thermodynamics) (National Institute of Building
Sciences, 2015), along with new capabilities. DOE-2 (DOE-2, 1998) is a
popular freeware aiming to provide energy consumption predictions for
buildings, while BLAST can be used to predict and analyze heating and
cooling energy consumption within buildings. EnergyPlus provides a
completely new and modular structure, where different modules can easily be
included into the simulation so as to combine different concepts and aspects
of building energy consumptions (Crawley et al., 2001).

ii. Simulation language
EnergyPlus was initially written in FORTRAN, a programming language for
scientific supercomputing applications. However since version 8.2.0 Autodesk
(Autodesk Inc., 2015), a leader in developing engineering software, has
translated the simulation core, which comprises more than 700,000 lines of
computer code, into C++ programing language (Roth, 2013).

iii. Key Feutures
The modular design of EnergyPlus is a key feature because it enables
researchers to quickly add new modules to the program or even links to
external programs. The C++ implementation provides the advantages of
running on modern hardware like multi-core processors. Moreover, C++ is a
popular and powerful programming language, thus increasing the accessibility
of EnergyPlus to many more developers, who can customize their own
programs. Therefore, energy management applications based on sensor
networks can be also evaluated through the EnergyPlus simulation engine,
similarly to the proposals of (Dong & Andrews, 2009), (Agarwal et al., 2010)
and (Erickson et al., 2011).

 57

iv. Limitations
A major drawback of EnergyPlus is that it lacks of a graphical interface and it
can be accessed only from a console environment. Hence, simulations are
mainly based on input files, which further increase the effort of defining all the
necessary input data.

 58

4. Testbeds

The growing interest of the research community in the WSN field of study
imposes more accurate performance evaluation tools and methods. However,
most of the WSN applications introduce significant challenges due to
hardware availability, fluctuations of environmental radioactivity, resource
constrains, energy autonomy, management, cost etc. Therefore, testing and
verifying new designs, protocols and applications only over simulation may
lead to inaccurate results, given the great complexity of real deployments.

This was a leading reason that motivated universities and research institutes
across the globe, to implement and design experimental laboratories known
as testbeds, so as to be able to reflect the exact environmental conditions that
may face during real deployments. A testbed is a platform consisting of a
number of low-cost and low-power devices known as nodes or motes, which
are deployed in a controlled and manageable environment. Typically, the
motes are equipped with sensors that communicate via wireless connection
and monitor a phenomenon according to the testing scenario. Nevertheless,
there are various testbed architectures based on their functionality and their
modeling ability.

4.1 Testbed Requirements

An experimental physical testbed, in order to be able to address the diverse
characteristics of WSN systems should be flexible in a way to support a
number of different network topologies and protocols. Moreover the
underlying infrastructure should enable the developers to test their solutions in
the most realistic manner possible, by means of scalability, functionalities,
environmental conditions and limitations. According to (Tonneau et al., 2014),
the requirements of a WSN testbed can be classified into four main groups,
which are the experimentation requirements, the hardware requirements, the
mobility features and the maintenance considerations.

 59

4.1.1 Experimentation Requirements
The experimentation requirements specifies the appropriate tools and actions
that need to be supported by the testbed infrastructure in order to enable the
users to design, conduct and analyze their experiments in a convenient and
reliable way. These requirements include the experimental scenario
specification, the communication interfaces, the experiment repeatability and
simulation.

i. Scenario Specification
The first stage of the experimental process over a testbed is to indicate the
appropriate resources such as the type of sensors and the number of nodes
as well as the employed protocol stack, firmware and the data format.
Therefore, the initial experimental setup of the subjected scenario is
considered to be important in order to retrieve meaningful results.

ii. Interfaces

Communication interfaces enable the users to interact with the nodes and the
other networking devices of the WSN testbed. Moreover, the researchers
should be able to adjust and optimize the network parameters as well as to
monitor and debug the ongoing progress of an experiment. It is of a great
importance for the researchers to have access to network metrics, such as
delay, throughput, overhead and energy consumption in order to be able to
collect and analyze the resulted data.

Typically, there are two ways to access the testbed facility. The simplest type
of access is to establish a Secure Shell connection with the use of the Secure
Shell (SSH) protocol. However, modern laboratories employ web services to
provide the appropriate interfaces for the users in order to interact with the
network resources. Additionally, the web services technology provides the
ability to the researchers to develop special client applications according to
their needs. Nevertheless, this type of access introduces further security
issues that should be taken into account.

iii. Repeatability
The researchers, in order to effectively evaluate their proposals, should be
able to conduct a number of different experimental scenarios by varying

 60

specific parameters, so as to investigate their influence on the overall system
performance. Moreover the testbed facility must provide the ability to the
users to implement their experiments independently to the underlying
infrastructure so as to acquire more representative results. Therefore there
are various methods that address experimental repeatability such as the
standardization of the scenario specifications and the firmware of the nodes,
as well as storing the traces of the experimental execution.

However, repeatability is still a challenging task due to environmental and
system fluctuations related to radio interference, node mobility and hardware
platform. For instance, environmental noise may cause instability between the
links of the nodes that may further mask significant system events (Rensfelt et
al., 2011).

iv. Simulation
As already mentioned, simulation-based validations for WSN applications lack
of accuracy in capturing realistic environmental conditions, such as radio
propagation. Nevertheless, there is a modern tendency among the research
community in developing testbeds capable of combining both simulation
methods and physical hardware experimentation. Such facilities benefit from
the increased flexibility provided by the simulators and are able to test
scenarios with high scalability (Coulson et al., 2012).

4.1.2 Hardware Requirements
As far as it concerns the hardware requirements, they play a critical role for
the realistic performance evaluation of the subjected application. The testbed
of choice should correspond to the appropriate hardware requirements of the
application in order to enable the researchers to investigate in depth its
functionality prior to real deployment. The hardware parameters of a physical
WSN platform include the network heterogeneity, scale and federation.

i. Heterogeneity
Modern concepts that incorporate WSN technology such as IoT applications,
rely completely on heterogeneous networks where the underlying devices
play different roles and reserve various amount of resources. However, this
application model introduces high complexity, thus requiring the testbed

 61

platform to provide special designing and development tools that enable the
researchers to conveniently conduct such experiments. Typically,
heterogeneity can be distinguished into three types (Yarvis et al., 2005). First
is the computational heterogeneity where some of the nodes have increased
computational abilities such as the sink nodes and the gateways. Second is
the link heterogeneity where some of the nodes may have wired interfaces in
order to provide reliable communication links. Final is the energy
heterogeneity where the nodes have various energy resources.

ii. Scale
Most WSN systems are deployed in large areas such as smart-city
applications, where thousands of nodes are involved in the network. Hence,
the researchers need to test their solutions in scenarios with increased
scalability. However, most physical testbeds consist of only few nodes, from
tens to hundreds, due to the high cost of developing such hardware. On the
other hand, modern hardware technologies have significantly decreased in
cost, thus enabling scientist to develop new physical experimental platforms
or to extend existing ones, so as to be updated and address the contemporary
challenges.

iii. Federation

Another method that is employed in order to address scalability and
heterogeneity issues in WSN testbeds, is the federated model. This feature
enables local experimental platforms to interconnect under a common
framework in order to share their resources and provide more powerful
evaluations. Therefore, the scientists are able to authenticate and reserve
simultaneously the appropriate resources amongst several local testbeds that
are members of the same federation (Chatzigiannakis et al., 2009). However,
a major challenge of this concept is to maintain link reliability between the
interconnected testbeds; thus requiring QoS models to be employed so as to
ensure efficient real-time execution of the subjected experiment (Ricci et al.,
2012).

 62

4.1.3 Mobility Features
There are many WSN applications that involve mobile nodes, which require
communicating so as to interchange sensory data and information. Hence,
there is a need to develop experimental facilities that employ robotic and
automation systems in order to enable researches to test such applications.
However, the mobility feature in WSN testbeds introduces some important
issues that need to be considered in order to effectively design and conduct
experimental evaluations. These issues include the mobility type, power
recharging, localization, designing and management.

i. Mobility models
Globally there are two types of mobility models, which are the undergone and
the controlled mobility. By the term undergone refers to the mobility of a node
that is attached to either an object or an entity, which cannot be controlled by
the device itself. Moreover, as far as it concerns entities such as animals or
humans, the mobility pattern is not possible to be predicted. On the other
hand, in cases where objects such as public transport buses and trains that
carry nodes, the mobility patterns are predictable since the routes are always
predefined. However, considering the great complexity and cost of
implementing robotic systems, only few testbeds support real-time
experiments with mobile nodes. For instance undergone mobility has been
implemented and supported by (Des Rosiers et al., 2011) and (Nati et al.,
2013), as well as controlled mobility by (Jiménez-González et al., 2011),
which introduces further management issues by means of locating and
charging.

ii. Autonomous recharging & localization
Also in cases of hardware failure, mobility introduces further challenges
considering the localization of the nodes. Moreover, the mobile components of
the facility such as the robots should be able to locate the recharging point so
as to promote the continuity of the experiment. Therefore, the WSN testbeds
in order to provide autonomous experimentation should facilitate the process
of maintenance by implementing accurate positioning and path planning
mechanisms with obstacle avoidance.

 63

iii. Designing and management tools
From the perspective of the user, the testbeds also should implement a
number of tools that would facilitate the development and management of the
mobile scenarios. These tools include software frameworks that provide
hardware abstractions in order to enable the researchers to develop the
appropriate embedded firmware and services. Additionally, visualization tools
must be provided so as to define experimental parameters such as the paths
of the nodes as well as to present experimental data in real-time.

4.1.4 Maintenance
Similarly to the general maintenance requirements that were described in
previous Chapter, the WSN testbed maintenance is equally important in order
to ensure the proper functionality of the system. Therefore a daily
maintenance is appropriate to verify that the hardware and the software
architecture are still operational so as address effectively the experimental
queue. Additionally, scheduled maintenance must take place in order to
update the provided services and hardware components such as the
batteries, in a way to optimize the functionality and extended the lifetime of
the facility.

4.2 Testbed Architectures

In a report that was conducted during the 2002 Workshop of National Science
Foundation (NSF) (National Science Foundation, 2002), the authors analyze
the experimentation process in the wireless networking research field. By
adopting the NSF’s perspective of analysis, we can classify the WSN testbeds
into two groups, first based on their main objective and second based on their
underlying structure (El-Darymli & Ahmed, 2012).

4.2.1 Objective-Based Classification
WSN testbeds can be distinct into two categories, based on their functional
objectives, which are presented in Figure 13.

 64

Figure 13. Objective Classification of WSN Testbeds (El-Darymli & Ahmed, 2012)

i. Multi-User Experimental Testbeds (MXT) – open testbeds
An MXT is designed to provide the research community with the ability of
evaluating new network architectures, protocols and applications. The
institution that manages the MXT is responsible to provide the researcher with
access to its tools and its underlying infrastructure.

ii. Proof-of-Concept Testbeds (PCT) – custom testbeds
This kind of testbed is designed to advance and evaluate scenarios of specific
research issues. New ideas are tested in a more constraint environment, in
order to promote technology optimization. Moreover, the PCTs can be
considered as the critical stage for the final commercialization. Ordinarily, if
the concept is proofed then the PCT is no more of use.

From the above stated reasons, it is obvious that the missions of MXTs and
PCTs are quite different. An MXT provides its services to a wide range of
users, whom research can be focused in various issues. By contrast, the
PCTs aim in a particular research objective. Choosing the suitable type of
testbed, in accordance with the nature of the problem, can play a crucial role
for conducting optimum performance evaluation tests.

 65

4.2.2 Structure-Based Classification
Furthermore, WSN testbeds, based on their structure, can be categorized into
four groups that are relative to each other. The most simplified structure of
WSN can be considered the Research Kit (RK). Next, the Cluster Testbed
(CT) provides a broad infrastructure that employs similar elements with the
RKs. Overlay Testbed (OT) is overlaid on an existing testbed, which can be
irrelevant to WSN technologies. Last, but not least is the Federated Testbed
(FT), which is a wider class and is able to involve and combine all the
previous structures. Figure 14 illustrates this affinity. Further description of the
above-mentioned categories can be found below.

i. Research Kit (RK)
A WSN Research Kit is a pack of WSN software and hardware, produced and
developed by various vendors. The relatively low price of an RK combined
with its convenient installation, render a suitable solution for researchers to
built their own local testbeds.

Figure 14. Structured Classification of WSN Testbeds (El-Darymli & Ahmed, 2012)

 66

Figure 15. Crossbows‘ RK and its SW Platform

Due to the great diversity of research applications, the vendors develop
different RKs with the appropriate components. However all the RKs have a
common basic structure, consisted by a number of nodes and base stations.
The nodes have sensors such as light, temperature, humidity, motion etc. and
a programmable firmware in order to implement their functionality. They can
be powered either over USB or batteries. Monitoring and management
software is also provided, like the MoteView by Crossbow. Finally, with
respect to scalability, the vendors have developed software platforms to
support this feature, like Crossbows’ MoteWorks as depicted in Figure 15.

ii. Cluster Testbed (CT)

A Cluster Testbed (CT) is an experimental laboratory, enabling researchers to
perform extensive evaluations of their solutions in large scale, over real
deployment emulations. It can be accessed remotely only by authorized
users. The majority of existing testbeds belong to this category. Regardless
the different characteristics of a CT, it should be flexible into adopting various
configurations. In other words, the users should be able to experiment on
modular network architectures and topologies, in order to control certain

 67

features, such as scalability, power consumption, transmission power, etc.
Hence, many CTs are designed to be open and expandable. Moreover, the
CTs should have a support team for maintaining and troubleshooting the
undelaying infrastructure, so as the researchers can focus on the
experimentation process of their study. Some examples of CT are Motelab,
TWIST, Indriya, Mirage, NetEye. Even thought there is not any specific
framework for developing a CT, the majority shares similar interconnection
model between their components. Those typical architecture scenarios are
illustrated in Figure 16, followed by a brief description of the underlying
elements.

 Figure 16. Typical WSN-CT Architecture Scenarios

 68

Figure 17. Typical Sensor Node Structure

A. Sensor Nodes – Motes

WSN motes are small, low-cost, wireless electronic devices that are capable
of gathering and processing sensory data, like temperature, humidity, motion,
pressure etc. There are various vendors that produce different types of motes
with various capabilities. However, almost every mote employs similar
components. Figure 17 depicts a generic internal structure and interactions
between the elements of a node.

The sensors can be categorized into active and passive, based on their
probing ability. An active sensor probes continuously the environment within
its range, like sonar and radar. On the other hand, a passive sensor collects
its measurements without actually manipulating the environment by active
probing. Most of the researchers choose passive sensors for their solutions.
However, any sensor produces analog signals that are further translated into
machine language, through a conjunction of the ADC and the microcontroller.
Moreover, the microcontroller is responsible to perform all those tasks,
between the internal components, that are critical for the overall functionality
of a mote. Additionally, there is a memory to store the required flash data so
as to program the node, as well as application related data. In order to
communicate with neighbor nodes, data exchange can be achieved through
the transceiver. Ordinarily, communication and processing functionalities
consumes the most energy. Nodes have low power source that can be either
a battery or an energy harvester, thus raising a constraint for adopting energy
efficient protocols.

Finally, according to the abilities of a node, we can classify node deployments
in two groups. Homogenous sensor nodes are those that share similar

 69

abilities, like transmission range, memory capacity, computing. Hence,
heterogeneous sensor nodes have different abilities. Both groups can be
deployed hierarchal in multiple layers or blended in a unified layer.

B. Processing Hub (PH)

Taking into consideration the small size of a node, it is obvious that its
recourses by means of storage, processing and energy are limited. Thus,
Processing Hub emerged to content the need for a more powerful mote. The
PHs are more expensive than the common nodes due to their expanded
sufficiency, and can be assumed as base stations. In order to advance the
network resource utilization, the PHs collects sensory data from the other
nodes and produce compact information that is further promoted to the
network.

C. Storage Hub (SH)

As it was stated previously, sensory data from nodes are transferred to central
base stations for additional processing due to storage constrains.
Nevertheless, there is a necessity to point out some important events before
data reaches the end user. This feature can be implemented by deploying an
SH, which by its side utilizes data mining and feature extraction software
tools. The presence of SHs in WSN testbeds is not obligatory.

D. Gateway (GW)

The Gateways act as the last step in the information route, by bridging the
sensor network with the rest of the network. It is an IP addressable
component, and aggregates data from the base stations to the servers and
vise versa.

E. Back-Channel (BC)

The back channel is a critical element for optimum performance and
maintenance of any WSN testbed. It is the data transmission medium
between the gateways and the sensor network, enabling node programming,
monitoring, data logging etc. The BC can be either wired or wireless, both
having their pros and cons. The wired BC is used extensively through indoor
sensor deployments, due to handy use of USB or Ethernet cable channels.

 70

Supporters of wired back-channel assert that utilization of such technology
can avoid network congestion in the wireless channel, in order to be devoted
only to application related traffic (Handziski et al., 2006), (Werner-Allen et al.,
2005). On the opposite side there are some researchers claiming that
adopting wired models leads to impractical solutions (Dimitriou, Kolokouris, &
Zarokostas, 2007).

F. Back-Bone (BB):

The BB is the infrastructure of the testbed that interconnects various elements
of the network. Typically, it provides a communication path between the
gateways and the servers of the network. Various technologies can be used
to implement a BB, either wireless or wired Ethernet and USB. The
researchers choose between wired and wireless solutions based on the WSN
scalability and location. Ordinarily, indoor testbeds employ wired technologies,
while outdoor WSNs utilize wireless solutions. Sometimes designers deploy
the back-channel as part of the back-bone.

G. Private and Public Servers

Servers host a number of software tools that are applied on a central
database, containing information about the WSN testbed. The database takes
on an intermediary role between public and private servers. The remote users
place requested tasks on the public server that are further retrieved and
processed by the private server. Moreover, the database interacts with the
sensor network in order to be updated with the current status of the testbed
elements, as well as storing logging and localization information about the
motes. Additionally, the servers should provide an interface so that the end
users can log on and access the database and its tools. Finally the servers
communicate with the base stations and the motes, through the gateways that
are connected to the backbone.

 71

Figure 18. Macroscopic structure of an OT

iii. Overlay Testbed (OT)

The OT follows the same concept as the Internet being overlaid on the
telecommunications network (Figure 18). In the research community of
wireless communications, OT is widely accepted as the most efficient tool for
evaluating new protocols and applications, because it allows explicit
investigation of unforeseen network models. During the deployment of an
overlay testbed, the underlying network is not affected. Typically, OTs are
developed to experiment wireless communications in general, hence they
may not have been designed for testing sensor networks. However, there are
cases that a WSN is overlaid by a broader testbed.

The structure of an OT is a combination of the underlying infrastructure of the
overlay testbed, with the comprised elements of the internal sensor network.
Moreover, the structure of the overlaid WSN follows similar principles with
previously explained cluster testbeds. A famous example of an OT is the early
Emulab. However, the evolution in the network technologies has expanded
the concept of OTs to virtual federated testbeds.

iv. Federated Testbed (FT)
The development of a federated testbed can be achieved by interconnecting
various locally manageable testbeds, in different geographic locations. Those
individual laboratories are connected through the Internet, in order to frame a
broad platform that enables vast experimentation of new applications.

 72

Figure 19. Typical Federated Testbed model

Due to the great variation in the underlying infrastructure and the complexity
of the employed network architecture of an FT, researchers can investigate
unpredicted issues that may occur. Furthermore, the heterogeneous hardware
diversity, along with the unlimited capabilities by means of recourses,
promotes cost efficiency in WSN research projects. Hence, any experimental
model can be adopted conveniently, without facing the constraint environment
of a single facility. However, a generic architecture can be modeled and is
depicted in Figure 19.

The FTs’ structure is an ensemble of the underlying individual WSN testbeds
that communicate through a federal overlay network. The member
laboratories are developed and maintained by different institutions and their
architecture is equivalent to the CTs described above. Each testbed owner
has full jurisdiction over its own facility and allows authenticated local access
by utilizing a web server. The overlay network is equipped with a member
portal server that connects the individual testbeds using the Internet, in order
to be perceived as a whole by the end user. This feature enables the
researchers to experiment over a distributed virtual testbed with modular
capabilities and resources. Such innovative network technology offers
boundless research opportunities for new solutions. Examples of federated
WSN testbeds include, FIT-IoT Lab, modern Emulab, WISEBED.

 73

4.3 Survey of WSN Hardware Motes

As already described in the previous Section, the key component of any
sensornet is the employed node platform. Moreover the actual hardware that
hosts the application determines the basic capabilities of the application as
well as the overall efficiency of the system performance. Hence the
researchers are able to choose between various hardware platforms
according to the requirements of their application. By taking into account the
results of our research concerning the popularity of the motes as presented in
Chapter 5, a brief description of those motes are summarized in Table 3 and
can be introduced as follows.

Table 3. Summarized motes characteristics

Mote Microcontroller Antenna Power Sensors and I/O
Boards

TelosB TI MSP430 Internal Batteries or
USB

External sensors
and I/O
peripherals

TmoteSky TI MSP430 Internal Batteries or
USB

On-board
humidity, light,
temperature
sensors and
external optional
I/O peripherals

MICA2 Atmel ATmega
128L

External Batteries or
external
source

External sensors
and I/O
peripherals

MICAz Atmel ATmega
128L

External Batteries or
external
source

External sensors
and I/O
peripherals

USRP Software radio
system

Up to 8
External

External power
supply

Up to 2
transceiver I/O
daughterboards

WARP FPGA Xilinx
Virtex-6 chip

2 external External power
supply

Optional I/O add-
on boards

iMote ARM7 Bluetooth
external

Batteries Optional I/O
components

 74

Mote Microcontroller Antenna Power Sensors and I/O
Boards

IMote2 PXA271 XScale
CPU

Internal and
optional
external

Rechargeable
batteries or
USB

Both side
connectors for I/O
peripherals

IRIS Atmel
ATmega1281

External Batteries Optional I/O
peripherals

EPIC MSP430 External Battery inputs
or external
source

68-pin chip USB
and Storage
modules

FireFly Atmel
Atmega32L

Internal Batteries On-board light,
audio,
temperature,
dual-axis
acceleration and
passive infrared
motion sensors
and optional I/O
peripherals

Fleck Atmel Atmega
1281

External Battery set in
addition to an
inbuilt solar
charging circuit

On-board
temperature
sensor and
optional I/O
peripherals and
analog screw
terminals

TinyNode MSP430 Internal,
optional
external

Batteries or
external
source

On-board
temperature
sensor and an
expansion
connector for the
SEB board

4.3.1 TelosB
The TelosB (MEMSIC, 2004) mote is an open-source platform designed by
UC Berkeley to support the development of low-power research
experimentation, which can deliver fast wake-up from sleep mode and thus
extending the battery lifetime. Moreover, the mote is equipped with a USB
interface that enables the researcher to program and communicate with the
hardware without consuming battery energy, since it can be powered from the
host computer. However, if TelosB is always connected thought the USB port,
there is no need to load a battery set on the node. Also the Texas Instruments

 75

MSP430 microcontroller of the mote is designed with an extended memory in
order to be compatible with TinyOS applications as well as to interface with an
optional sensor suit. Finally, TelosB communicates wirelessly through an
integrated antenna that is connected to an IEEE 802.15.4 radio chip and is
able to store up to 1 MB of logging data in an external flash storage.

4.3.2 Tmote Sky
The Tmote Sky (MOTEIV, 2005) was developed in replacement of the TelosB
by UC Berkeley so as to increase the performance, functionality and
expansion capabilities of the mote. It has on-board humidity, light and
temperature sensors that further increase the hardware robustness as well as
minimizing the cost and the size of the device. Additionally, its IEEE 802.15.4
radio chip enables the on-board antenna to communicate with high data rate
within a rage of 128 meters from the node while providing link-layer hardware
encryption and authentication. Finally, Tmote Sky employs an MSP430
microprocessor that supports TinyOS and later ContikiOS applications and is
designed to load a protected OS image from the flash memory so as to
recover in case of application failure.

4.3.3 MICA2
The MICA2 (Crossbow, 2003) mote is a commercial battery powered WSN
hardware platform based on the Atmel ATmega 128L microprocessor. It
supports TinyOS applications that are stored in an internal flash memory
along with the communication protocols. Moreover, the mote is equipped with
a radio chip that is compatible with 868/916MHz, 433 or 315MHz protocols
and requires an external antenna in order to communicate with neighbor
nodes. The device also provides expansion connectors and analog inputs so
as to connect a wide variety of external sensors and peripherals such as
serial or parallel interfaces that facilitate the programming of the hardware.

4.3.4 MICAz
The MICAz (MEMSIC, MICAz Datasheet, 2004) mote, similarly to its
predecessor is a battery powered WSN hardware based on the Atmel
ATmega 128L microprocessor. Moreover the microprocessor runs
applications that are developed under MoteWorks, which is a TinyOS-based

 76

framework. The employed radio transceiver is compatible with the 2.4GHz
IEEE 802.15.4 standard and requires an external antenna so as to be
wirelessly accessible. MICAz also provides expansion connectors and analog
inputs to connect external sensors and peripherals such as Ethernet or USB
interfaces that facilitate both programming and data communication.

4.3.5 USRP
The Universal Software Radio Peripheral (USRP) (Ettus Research, 2010) is a
family of wireless hardware platforms that enable fast prototyping of flexible
software radio systems. Moreover, the designing of the software modules is
implemented in GNU Radio, which is an open-source software radio and
signal processing package. Hence, the user after installing the GNU Radio
software on his computer is able to communicate with the USRP hardware
through either a high-speed USB interface or a Gigabit Ethernet link.
Additionally, there are some USRP models that integrate a microprocessor
capable of providing the appropriate functionalities in order to provide a
standalone solution. Generally a USRP platform requires an external power
supply and consists of a basic motherboard and a modular front-end that can
accommodate up to two transceiver daughterboards with the corresponding
external antennas. This modular approach enables the researchers to
experiment with a great diversity of Radio Frequency (RF) up to 5.9 GHz.

4.3.6 WARP
The Wireless Open-Access Research Platform (WARP) (Rice University,
2006) is a scalable and extensible programmable wireless hardware that
enables prototyping of advanced wireless networks. Its great advantage is
that it combines a high-performance hardware suite along with an online
open-source repository containing reference algorithms and support
documentation, which is updated by the research community. The first two
versions of the platform were developed by Rice University, however Mango
Communications Inc. released the latest version on 2012 and ever since is
the most active contributor of the project. The WARP hardware is powered
over an external supply and consists of a main Field-Programmable Gate
Array (FPGA) based on Xilinx Virtex-6 chip, thus offering a flexible way to
implement different components of a wireless transmission system on various
networking levels. Moreover the platform integrates two programmable RF

 77

interfaces with external antennas as well as a variety of peripherals including
an SD card slot, two Gigabit Ethernet interfaces, a USB port and other user
I/O features. However the Ethernet interfaces are employed only to send and
receive data traffic to the host computer. Therefore, the researchers are able
to program the platform through its USB port. Finally, Mango as well as third
party vendors develop a number of optional I/O add-on boards that extend the
basic capabilities of the platform.

4.3.7 iMote
The iMote (Intel Mote) (Kling et al., 2004) is a hardware developed by Intel
Reserch Labs in order to provide to the research community with a sensor
node platform that is equipped with increased CPU performance, improved
radio bandwidth and reliable. Moreover the hardware is powered over a
battery set and consists of an ARM7 microcontroller, a wireless Bluetooth
radio chip with external antenna, RAM and Flash memory as well as a
number of optional user I/O components such as a USB and serial
interfaces. The basic Bluetooth protocol was modified in order to meet the
WSN specifications such as the “scatternet” mode of Bluetooth, which has
been successfully adapted in order to be able to form networks of multiple
piconets. Furthermore, networking and routing functionalities have been
implemented on top of a TinyOS base in order to provide multi-hop
networking and self-organizing abilities.

4.3.8 IMote2
The IMote2 (Adler et al., 2005) is an advanced wireless sensor node platform
developed by Intel Research Labs as a replacement of its predecessor iMote.
The structure of the platform consists of a low-power PXA271 XScale CPU
running TinyOS as well as an IEEE 802.15.4 radio chip that is connected
either to an integrated antenna or to an optional external antenna.
Furthermore, IMote2 provides a modular design with interface connectors in
order to enable the researchers to easily connect expansion boards on both
sides of the board. Moreover, the top connectors provide a standard set of I/O
interfaces for basic expansion boards. The bottom connectors provide further
high-speed interfaces for application specific I/O in addition to a mini USB

 78

port. The mote can be powered either through the USB port or by a battery
board, which can be connected to either side. Furthermore, a special battery
board can be employed in order to provide the option of mounting
rechargeable batteries.

4.3.9 ZigBee-based Motes
ZigBee (ZigBee Alliance , 2002) is actually a standards-suite, which provides
specifications for wireless communication protocols for PAN applications
operating on small, low-power digital radios, rather than an actual hardware
device. Moreover, the ZigBee protocol suite enhances and extends the IEEE
802.15.4 functionalities by providing low data-rates, low-power consumption,
security and reliability due to the implementation of self-organizing mesh
networking. Therefore ZigBee specifies a decentralized network topology very
similar to the Internet that allows nodes to establish new routes through the
network in cases of topology changes caused by system failures thus being a
suitable solution for IoT applications. As far as it concerns hardware platform
implementations, there are various vendors that produce ZigBee Certified
devices and products that can be further employed by the researchers
according to their needs.

4.3.10 IRIS
The IRIS (MEMSIC, 2011) is a 2.4 GHz battery powered mote module
designed for low-power, wireless sensor networks. The mote structure
consists of an Atmel ATmega1281 microprocessor and an IEEE 802.15.4
radio chip with an external antenna capable of yielding ranges as far as 500
meters without amplification. The microprocessor can support TinyOS
applications and is able to load the MoteWorks framework from its internal
flash memory. Moreover , IRIS is equipped with an expansion connector that
enables the researchers to attach a great variety of optional interfaces and
peripherals, including different sensor boards and a USB interface for both
programming and data communication.

 79

4.3.11 EPIC
The EPIC (Dutta & Culler, 2008) mote is a family of open hardware
components developed by UC Berkeley as a solution for application-driven
designs. General-purpose motes may introduce difficulties during the system
development, since most applications require to be tightly coupled with the
underlying hardware. Therefore, the modular approach of the EPIC mote
enables the researchers to customize their hardware design by choosing the
components that enhance the appropriate functionality. The EPIC family
includes three individual components, which are the Core, USB and Storage.
These components are compact multi-chip modules that can be conveniently
integrated into new hardware designs through their 68-pin leadless chip
carrier (LCC-68) footprint. Moreover, the Epic Core is a fully functional mote
consisting of an MSP430F1611 microcontroller, flash memory and a radio
chip that requires a power source and an external antenna. The Epic USB can
be employed to support UART-over-USB, JTAG-over-USB, reprogramming,
alkaline and Lithium battery inputs, Lithium battery recharging and automatic
power source selection. Finally the Epic Storage provides a rich memory
hierarchy of four different flash memories (NAND, two NOR, and FRAM), all
with different read, write, and erase characteristics.

4.3.12 FireFly
FireFly (Mangharam et al., 2007) is a low-cost hardware platform developed
by Carnegie Mellon University capable of providing both data processing and
multi-hop mesh communication. The mote structure consists of an Atmel
Atmega32L microcontroller that loads Nano-RK OS from a flash memory, as
well as an IEEE 802.15.4 radio transceiver that is connected with an
integrated antenna. Moreover, the hardware platform is equipped with various
sensors providing light, temperature, audio, dual-axis acceleration and
passive infrared motion measurements as well as I/O connectors that can
enhance expansion boards including a USB interface and an AM receiver.
Also there is an SD card slot for additional data storage. The AM receiver is
employed in order to acquire the periodical synchronization pulses that are
generated by a global AM carrier current transmitter.

 80

4.3.13 Fleck
The Fleck (Sikka et al., 2007) motes are a series of WSN nodes developed by
CSIRO ICT Centre aiming on outdoor applications where long range and
energy self-sufficiency are crucial. The latest hardware platform from the
group is the Fleck3B mote, based on an Atmel Atmega 1281 microprocessor
capable of loading TinyOS applications from an 1Mb integrated flash memory.
Moreover, it is equipped with a radio transceiver with an external antenna that
can work in three different transmission bands including 433MHz, 868MHz
and 915MHz. Furthermore, the mote provides a single connector for
programming and access over serial ports, expansion connectors for
enhancing Fleck daughter boards as well as screw terminals that enable
convenient connection of analog and digital sensors; even though there is an
integrated temperature sensor on board. Finally, the board requires 3.4-8V of
power that can be supplied by a battery set in addition to an inbuilt solar
charging circuit for NiMH batteries.

4.3.14 TinyNode
The TinyNode (Dubois-Ferriere et al., 2006) is an ultra-low power platform
that provides a convenient way to add wireless communication to WSN
systems. TinyNode consists of an MSP430 microcontroller optimized to run
TinyOS from an internal flash memory as well as a radio transceiver that is
connected to an integrated wired antenna with an optional connector for an
external one. Moreover, the platform is equipped with an on-board
temperature sensor in addition to an expansion connector, which is used to
enhance the so-called Standard Extension Board (SEB). The SEB supports
further analog, digital and serial interfaces along with the power supply that
can be either external or a set of batteries.

4.4 Survey of WSN Tesbeds

After providing the aforementioned descriptions of the most popular mote
platforms, it would be beneficial to continue with a brief survey of the
experimental physical testbeds that were involved in our research as
presented in Chapter 5. Therefore in this Section we will try to specify the key
aspects and functionalities of the different experimental laboratories around
the globe that can be employed by the researchers in order to validate their
proposals. A brief summarization can be found in Table 4.

 81

Table 4. Summarized testbeds characteristics

Testbed Nodes Key Features

MoteLab Fixed array of 30
MICAz and 190
TelosB

One of the first open WSN testbeds. MySQL
back-end server, a PHP web server, a Java-
based data logger and a Job Daemon for
assigning tasks to the motes. Wall-powered
with in-situ power measurement device in
addition to temperature, humidity and light
sensors.

TWIST 102 TmoteSky and
102 eyesIFX

The testbed has a central PostgreSQL server
and is hierarchically organized in three layers,
the servers, the super nodes and the sensor
nodes. USB powered with light and
temperature sensors. The super nodes are
Network Link Storage Units.

Indriya 139 TelosB Based on MoteLab. The nodes are powered
over the USB backchannel and equipped with
light, temperature, acoustic, magnetometer, 2-
axis accelerometer and infrared sensors.

Intel Mirage 97 MICA2 and 51
MICA2DOT motes

Based on a resource allocation system where
the testbed resources are allocated according
to a repeated combinatorial auction. The motes
are equipped with pressure, temperature, light
and humidity sensors and powered over
Ethernet.

UMass
DieselNet

40 buses with GPS
devices and
HaCom Open
Brick computer
with 3 radios

A vehicular DTN of 40 public transport busses
and various throwboxes that work as relays that
promote the messages to the central repository.

Emulab 580 PC nodes with
USRP Mobile
testbed with 6
MICA2 robots and
30 stationary
MICA2

A combination of hardware and software tools.
There are many instances of the Emulab
framework deployed in more than two dozens
sites around the world.

WARPLab Up to16 WARP
nodes controlled
by a single PC

An experimental framework for experimentation
of physical layer protocols by interfacing WARP
nodes directly with MATLAB.

 82

Testbed Nodes Key Features

FLOCKLAB 30 Observers
equipped with any
four of Tmote Sky,
OpenMote,
MSP430-CCRF,
TinyNode, Opal,
and Iris motes

A mixed indoor/outdoor topology, able to
support different services such as measuring
power consumption and time accurate tracing
and actuation.

ORBIT 400 nodes WITH
MORE THAN more
than 1500 radio
devices.

A radio grid network testbed that consist of a
remotely accessible indoor testbed, in addition
to an outdoor trial network with mobile nodes.

Tutornet 13 Stargates, 91
TmoteSky and 13
MICAz motes

A simple three-tiered, clustered WSN testbed

MAP 32 static mesh
routers, 5 laptops
and 16 PDAs

An experimental WMN laboratory. The testbed
do not provide power consumption awareness.

NetEye 130 TelosB motes,
15 laptops

An open WSN experimental testbed equipped
with light sensors and a mixed USB and
Ethernet backchannel

KANSEI 210 stationary
nodes equipped
with a Stargate, a
TmoteSky and an
Extreme Scale
Mote. 50 portable
Trio motes and five
robots

A heterogeneous, hybrid experimental WSN
laboratory that combines hardware motes,
simulation engines and data generation
devices.

4.4.1 MoteLab
MoteLab (Werner-allen et al., 2005) was one of the very first fully functional
and open WSN testbeds that was deployed at Harvard University in the three
floors of Maxwell Dworkin Laboratory, the Electrical Engineering and
Computer Science departments. The testbed provides a web interface that
enables the users to easily create, manage and schedule experimental
scenarios. Moreover, it automates the reprogramming of the motes as well as
providing easy access to the testbed database that contains the generated
data logs from the experiments. Additionally, the web services enable the

 83

users to interact in real time with the nodes that are employed during an
experiment. MoteLab consists of 30 MICAz and 190 TelosB motes deployed
in a fixed array, as well as a MySQL back-end server, a PHP web server, a
Java-based data logger and a Job Daemon that is responsible of assigning
tasks to the motes. Moreover, the motes are wall-powered and equipped with
an optional in-situ power measurement device in addition to temperature,
humidity and light sensors. Finally every node is connected through an
Ethernet interface to the back channel for convenient reprogramming and
logging.

4.4.2 TWIST
The TKN Wireless Indoor Sensor network Testbed (TWIST) (Handziski et al.,
2006) is an open, scalable and flexible indoor WSN testbed deployed in three
floors at the Technical University of Berlin. The testbed structure is
hierarchically organized in three layers, which are the servers, the so-called
super nodes and the sensor nodes. The sensor nodes of the networks consist
of 102 TmoteSky and 102 eyesIFX motes that are equipped with light and
temperature sensors. The motes are powered over a USB interface that is
also required for programming and further communication through USB hubs
with the super nodes. The super nodes are Network Link Storage Units
(NSLU) running a customized Linux OS while providing gateway functionality
between the nodes and the servers. The servers and the control PCs are
connected to the Ethernet back channel, thus requiring from the super nodes
to be equipped with both USB and Ethernet interfaces. The control PCs are
employed in order to manage and conduct the experiments as well as to
support a central PostgreSQL server to store application and logging data.
Finally, the testbed provides a web interface that enables the users to
schedule and control their experiments.

4.4.3 Indriya
Indriya (Doddavenkatappa et al., 2011) is an open, large-scale, low-cost WSN
testbed deployed at the National University of Singapore in three floors of the
School of Computing. The users are able to access the testbed infrastructure
through a web interface based on the framework proposed by the MoteLab
engineers. Therefore the researchers can conveniently upload their programs
to the nodes, create and schedule jobs as well as accessing the logging

 84

information that are store in the central database after the completion of the
experiments. Moreover, the testbed consists of 139 TelosB motes where most
of them are equipped with light, temperature, acoustic, magnetometer, 2-axis
accelerometer and infrared sensors. Additionally, the nodes are connected to
the USB backbone that is used for programming and data logging as well as
powering supply.

4.4.4 Intel Mirage
Intel Mirage (Chun et al., 2005) is a resource allocation system where the
testbed resources are allocated based on a repeated combinatorial auction
that is build over a closed virtual currency environment. Moreover, the users
of the laboratory compete for its resources by submitting bids that correspond
to combinations of interest in space and time along with a maximum value of
virtual currency that the user is willing to pay. For instance a user’s bid would
be “any 32 MICA2 motes for 8 hours anytime in the next three days”. Next, a
combinatorial auction periodically collects the bids and specifies the winning
users based on the overall availability and demand. The Mirage system was
developed over a 148 node indoor testbed, deployed at Intel Research
Laboratory in Berkeley. The testbed consist of 97 MICA2 and 51 MICA2DOT
motes equipped with pressure, temperature, light and humidity sensors as
well as an Ethernet interface that is used for power supply, programming and
debugging.

4.4.5 UMass DieselNet
DieselNet (Soroush et al., 2009) is a vehicular Delay Tolerant Network (DTN)
developed by the University of Massachusetts (UMass) deployed on 40 public
buses that serve the surrounding area of the UMass Amherst campus. The
DieselNet testbed is open to the research community for experimentation in
addition to a number of stored traces that can be utilized for further simulation.
Every bus carries a GPS device that records times and locations as well as a
Linux-based HaCom Open Brick computer that is further connected to three
radios; including an 802.11b/g Access Point (AP) to provide DHCP access to
passengers, a second PCI-based 802.11b/g/a interface that constantly scans
the surrounding area for DHCP offers and other buses, and a longer-range
MaxStream XTend 900MHz radio to communicate with the so called
throwboxes. The throwboxes are stationary wireless nodes that work as

 85

relays and consists of a modified TelosB mote that is powered over a set of
batteries that can be recharged by an attached solar sell. Moreover, the AP
on each bus transmit its SSID every 100 ms. The second radio continuously
scans for SSID broadcasts. On discovering a remote bus’s AP, the
discovering bus obtains an IP address from the remote bus. Then, a TCP
connection is established between those buses, initiating a contact event, and
data is continuously transmitted to the remote bus until the TCP connection is
broken when the buses move out of range. Once the socket reports an error
or closure, the contact event is marked as ended and logged. For each
contact, the receiver logs the ID of the sender, the time, duration, and the
number of bytes received. These bus-to-bus transfer records are transmitted
to a central repository whenever a bus is able to associate with a throwbox.

4.4.6 Emulab
Emulab (Johnson et al., 2006) is a network testbed developed by the Flux
Group and it is deployed at the School of Computing at the University of Utah.
The testbed provides a combination of hardware and software that enable the
researchers to experiment with a wide range of environments. Currently, there
are many instances of the Emulab framework deployed in more than two
dozens sites around the world. The scientists can access the facility without
charge through a web interface that unifies the different environments and
provides a more convenient solution for system evaluations and resource
reserving. The laboratory consists of more than 580 PC nodes able to run any
OS and emulate a great variety of systems and topologies. Moreover some
nodes are equipped with USRP devices that enable the researchers to have
the total control of the physical layer and its operations. Also many nodes are
equipped with two 802.11a/b/g wireless boards that may act as access points,
clients, or ad-hoc nodes and can be programmed through a wired interface.
Moreover, a mobile testbed that is build over the Emulab network provides the
ability to the researchers to experiment with six robots that are equipped with
six customized MICA2 motes respectively in addition to 30 stationary MICA2
nodes deployed on the ceiling in a grid topology.

 86

4.4.7 WARPLab
WARPLab (Anand et al., 2010) is an experimental framework that enables the
researchers to rapidly prototype and evaluate new physical layer protocols by
interfacing WARP nodes directly with MATLAB. Moreover, the baseband
processing is performed within MATLAB while providing the ability to
interconnect up to 16 WARP nodes that can be controlled by a single host
PC. Every node within a WARPLab system consists of an FPGA board and a
radio daughterboard with four large buffers respectively to the antennas. The
FPGA handles the communication between MATLAB and the radios by
transferring control signals and data between the host PC and the radio
buffers. A typical WARPLab experiment cycle starts from MATLAB where the
transmitted samples are first generated in addition to the baseband
processing of the signal. Next, the processed signal is transferred over
Ethernet to the radio buffers through the FPGA boards along with the
appropriate control signals depending on the role of each node. Then
MATLAB synchronizes all the nodes in order to start the experiment, where
the transmitting node flushes its buffers through its radios while the receiving
nodes immediately loads their buffers with incoming data. Finally, after the
end of transmission the receiving nodes transfer the received signals to the
host PC for further processing within MATLAB’s interface.

4.4.8 FLOCKLAB
FlockLab (Lim et al., 2013) is a WSN testbed, developed and deployed at the
Computer Engineering and Networks Laboratory at the Swiss Federal Institute
of Technology Zurich in Switzerland. The testbed provides 30 powerful
customized nodes in a mixed indoor/outdoor topology, able to support
different services such as measuring power consumption and time accurate
pin tracing and actuation. The customized nodes that are called observers are
small Linux based computers that offers four target adapter slots to which
different motes can be attached, including Tmote Sky, OpenMote, MSP430-
CCRF, TinyNode, Opal, and Iris. Moreover, the testbed is organized in three
tiers, where the lowest layer consist of the sensor motes that run the
applications, the second layer consists of the observers computers that
communicate over LAN or WLAN and transfer the data of the motes to the
higher layer and vise versa. Finally, the third tier is a dedicated server that
synchronizes all the observer nodes and provides basic functionalities such

 87

as node configuration, experimental scenario management, as well as
collecting, analyzing and visualizing data to the user.

4.4.9 ORBIT
ORBIT (Raychaudhuri et al., 2005) is a radio grid network testbed developed
by the WINLAB research team at Rutgers University. It is an open facility that
provides flexible, scalable and reproducible performance evaluations of next-
generation wireless network protocols. Moreover, the ORBIT testbed consists
of 400 nodes deployed indoors in a controllable radio grid structure, in
addition to an outdoor trial network of vehicular and stationary nodes to
support end-user validations in real environmental conditions. However, only
the indoor deployment is accessible and programmable though a web
interface, which provides various services that allow the user to interact with
the testbed infrastructure in a convenient manner. Furthermore, the ORBIT
nodes are customized hardware with a total of more than 1500 radio devices,
including WiFi, WiMAX and LTE boards, USRP radios, WARP nodes,
Bluetooth, ZigBee and TelosB motes. Therefore, ORBIT is capable of
experimenting with end-to-end wired and wireless technologies through a
common Ethernet back channel that is managed by a central server for equal
resource sharing and data logging.

4.4.10 Tutornet
Tutornet (ANRG, 2009) is a three-tiered, clustered WSN testbed developed by
Networked Systems Laboratory (NSL) and deployed at Ronald Tutor Hall at
the University of Southern California, currently is managed by the
Autonomous Networks Research Group (ANRG). Moreover, the laboratory is
structured in three layers consisting of a central server, 13 Stargates version
7.3, 91 TmoteSky and 13 MICAz motes respectively. Every Stargate works as
a cluster head and a base station by connecting seven member nodes
through a USB hub. The Stargates establish an 802.11b connection with the
server in order to interchange data as well as to reprogram the motes of the
network. Additionally, the users benefit from a web interface that provides
convenient communication with the underlying infrastructure of the laboratory.

 88

4.4.11 MAP
MAP is an experimental wireless mesh network (WMN) testbed designed and
deployed at the School of Electrical and Computer Engineering at Purdue
University (Purdue University, 2008). Moreover, the testbed consist of 32
static mesh routers, which are connected through wireless links to each other,
while providing 802.11b connectivity to end-hosts including 5 laptops and 16
Compaq IPAQ PDAs. Moreover, the routers are small computers equipped
with a second radio in order to establish 802.11a/b/g connections between the
nodes and communicate through a central gateway with the server of the
network. However, researchers are not able to experiment with other multi-
hop wireless networks such as sensor networks since the testbed do not
provide power consumption awareness.

4.4.12 NetEye
NetEye (Ju et al., 2012) is an open WSN experimental testbed deployed in an
office at the Computer Science Department at Wayne State University.
Moreover, the testbed structure is organized in tiers consisting of 130 TelosB
motes, 15 Dell Vostro1400 laptops and a central server. The nodes are
equipped with a light sensor and a USB interface in order to be powered and
communicate with the laptops though a USB hub. The laptops also work as
cluster heads that host from 6 to 12 nodes each, while they are connected
with the server through the wired Ethernet backchannel in order to be able to
capture log data and reprogram the nodes. Also the server provides web
interface so as to enable the users to easily create and mange experimental
scenarios as well as to visualize the retrieved results.

4.4.13 KANSEI
Kansei (Ertin et al., 2006) is a heterogeneous, hybrid experimental WSN
laboratory deployed at The Ohio State University that provides high fidelity
with increased scalability. Moreover, Kansei is able to run experiments in
large scale due to the combination of hardware motes, simulation engines and
data generation devices. The basic structure consist of 210 stationary node
array where each node carries three platforms; a Stargate a TmoteSky and an
Extreme Scale Motes (XSMs) equipped with light, passive infrared,
temperature and magnetometer sensors, as well as a microphone. The
Stargate serves as a controller and a data collector for the TmoteSky and

 89

XSM motes, which is connected through a dedicated 51-pin connector.
Furthermore the Stargate is connected to the Ethernet backchannel in order
to communicate with the central server. Furthermore, the testbed provides 50
portable Trio motes and five robots, each one equipped with a Stargate, a
TmoteSky and a WSMote. Kansei has been designed to be highly fault
tolerant, autonomic and self-organizing, thus ensuring the researchers to
spend less time designing, conducting and troubleshooting their experiments.

 90

5. Research
Ad-Hoc and Wireless Sensor Networks (WSNs) have enabled a large variety
of applications. Environmental and wildlife monitoring, clinical medical and
homecare monitoring, monitoring and control of industrial processes including
agriculture, smart houses and cities are just some of the examples of Ad-Hoc
and WSN applications, where low-cost, and easily deployed multi-functional
sensor nodes is the ideal solution (Yick et al., 2008). As a result, during the
last years we experience the emergence of a new paradigm called Internet of
Things (IoT) in which smart and connected objects cooperatively construct a
wireless network of things (Gluhak et al., 2011). However, the unique features
of Ad-Hoc and WSN technologies can pose significant challenges. Hence,
envisioned solutions must be verified before being deployed in a real-world
WSN deployment, either by utilizing simulators and emulators or through
experimentations by employing testbeds.

Simulation evaluation is an essential phase during the design and
development of an Ad-Hoc or WSN infrastructure. However, environments in
which Ad-Hoc or sensor networks evolve are often application-specific and
too complex to be reproduced precisely. More specifically, simulators allow
users to implement some basic assumptions, such as link quality, radio
propagation, medium interferences and network topologies (Papadopoulos et
al., 2013). Even tough, the majority of the simulation models cannot capture
real world complexity, as proposed by (Hiranandani et al., 2013) and
(Barrenetxea et al., 2008), they are often utilized as a first step. Our purpose
is to show that this step is not sufficient to show the consistency of a solution
as well as that low cost devices have steered researchers and engineers to
enrich performance evaluation with testbeds.

Experimental evaluation is performed either custom or over open testbeds,
and exhibits potential unexpected failures and problems that the proposed
solutions by researchers would face during real deployments. Even though
performing well over testbeds, those remain in vitro deployments with more or
less controlled environment conditions. Such a proof of concept must then be
transposed into the real world. Designing and setting up a complete Ad-Hoc
or WSN system under real conditions that can support robust applications is a
very complex task (Kdouh et al., 2012). Researchers and production system
developers, first need an appropriate plan of deployment and later number of

 91

tools, simulators/emulators and testing facilities for real experiments, in order
to initially validate their concept or model and then to develop the appropriate
infrastructure.

Throughout this study, we compile a large set of statistics on a literature
review of 674 articles published in top conferences that are related with Ad-
Hoc and WSNs over the 2008-2013 period. We focus on the evaluation
provided by authors, and especially to what extent experiments on testbeds
have become a must for performance evaluation of new communication
algorithms and protocols. Hence, we exhibit the tendency where performance
evaluation procedures rely on experiments with real hardware and
environment, to the detriment of simulations. The question of scientific results
versus proofs of concepts therefore arises. Indeed, we discuss the meaning of
reproducibility and of a proof of concept as a prototype being designed to
determine feasibility. In this paper, we also analyze the selection of the
evaluation methodology (e.g. simulator, testbed), and simplicity of the overall
design that should be provided for validation, understanding and explanation.
Finally, this work aims to investigate and gather the pros both from simulation
and experiments so that real- world experiments could lead to reproducible
scientific results for our research community.

5.1 Performance Evaluation Procedures

In a typical research process cycle, once the modeling phase is done, network
researchers and developers continue with the validation procedure in which
they evaluate their concept by using either a simulator or an emulator. Later,
network engineers and developers may proceed with experimentation to
further cross-verify their proposal (Stojmenovic, 2008). Thus, once both the
simulation performance and the experimental measurements are satisfactory
then real deployments can be initiated.

5.1.1 Simulating protocols or experimenting algorithms
When facing too complex environments to be theoretically analyzed and
considering the difficulties of setting up a real-world (e.g. large-scale)
deployment, simulations used to emerge as the good mean to study Ad-Hoc
and WSNs. Many open source and freely available simulators allow users to
have a better control of the nodes by often employing a GUI, and to retain or
simplify some assumptions in order to evaluate their solutions. Simulation

 92

evaluation is a provisioning procedure during the protocol development.
However, even if the simulation performance presents coherent results with
mathematical analysis, past real-world deployments show that it is not
recommended to proceed directly with real deployment since engineers may
face unpredictable phenomenon such as node crashing or network
disconnection (Barrenetxea et al., 2008), (Langendoen et al., 2006).
Intermediate experimentation platforms can therefore be considered to bridge
the gap between simulations and real world deployments. Nevertheless,
simulations can offer wider sets of assumptions to test and potentially more
complete evaluations. On the other hand, testbed experimentations do
impose many characteristics, such as the physical environment, real
hardware and network topology. Such facilities offer the opportunity to have
their solutions facing real conditions, thus being more realistic than those
modeled under software simulators. Yet, numerous parameters, including
radio dynamics, link stability and symmetry, impact of the weather on
communications (Boano et al., 2010), appear so unpredictable that they may
lead to results that can not be reproduced with sufficiently tight confidence
intervals. The ambition of obtaining scientific results should then lead
researchers to allow for further repeatability of the presented results. As a
result, during the simulation evaluation the environmental conditions should
not affect the behavior of the nodes. Hence, it would be ideal if the authors
first verify their model by employing experimental tests in order to reflect the
reality that their proposals would face during real deployment.

5.1.2 A Thorough Literature Study
Throughout this Thesis, we carry out a thorough study over top representative
conferences that are strongly related to Ad-Hoc and WSN research fields. In
particular, we have studied all articles that have been published at the
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), ACM Annual International Conference on Mobile Computing
and Networking (MobiCom), ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc) and ACM Conference on Embedded
Networked Sensor Systems (SenSys) conferences in order to derive the
current tendency of the validation methodology that authors follow with
respect to previously reported issues. Hence, we go through and study 674
articles in total published in the conference proceedings for the last six years
from 2008 to 2013 where 596 are related to Ad-Hoc & WSN (see Figure 20).

 93

Indeed, we identified 78 articles that deal with other wireless technologies
such as WiFi and WiMAX, that are studied in the context of cellular networks.
All of these papers have been found in MobiCom (i.e. 140 out of 185) and
MobiHoc (i.e. 142 articles out of 175) conferences (see Figure 21), which are
not entirely dedicated to Ad-Hoc and WSN but have a broader scope on
mobility and wireless communications. We further emphasize our
investigation over these 596 articles. During our investigation, we observe and
obtain plethora of information for each work and later we categorize the
articles based on their common features.

Figure 20. Number of articles per year (all conferences are considered)

 94

Figure 21. Appropriateness of our conference sample

Figure 22. Publication flows over the period 2008 - 2013

Figure 22 provides detailed information about the total number as well as the
Ad-Hoc & WSN related published articles per proceeding year. We actually
observe that, there is a decreasing tendency of the published articles in the
proceedings, indeed we identified 43 articles less from 2008 to 2013.

 95

More specifically, MobiHoc and IPSN reduced the total accepted papers, from
44 to 24 (MobiHoc) and from 41 to 24 (IPSN) respectively, while MobiCom
and SenSys kept a steady flow.

Modern technologies introduced the feature of mobility. Consequently, the
research community focuses into developing and testing such aspects and
scenarios. Our study results justify this trend, owing to the 148 articles
(57.7%) that simulated mobile scenarios. Still, our statistical results for
MobiHoc and MobiCom, the mobile oriented conferences, show that not all of
their articles implement mobility scenarios. For instance, during the 2008
MobiHoc conference we determined only 13 out of 28 simulation-based
articles that introduced mobility in their tests. As shown in Figure 23, 57% of
articles having mobile scenarios are less induced by our conference sample
(half of the conferences, MobiCom and MobiHoc, being theoretically focused
on mobility-related topics) than by the global enthusiasm for mobile scenarios,
all four conferences being considered.

Figure 23. Mobility scenarios in performance evaluation procedures

 96

Figure 24. Use of Mathematics (M), Simulations (S), Experiments (E) and their

combinations in validation procedures of 596 Ad-Hoc and WSN related articles.

5.2 Results Of Analysis

5.2.1 Evaluation procedures
In this subsection, we expose our analysis on the validation procedures that
the authors followed. As a first step, we aimed to categorize the reviewed
articles according to the employed evaluation method. In particular, we
examine the proportion of simulation, experimental and mathematical (i.e.
modeling or analysis) evaluated works. Our primary analysis exposes
interesting results. More specifically, our investigation shows that the majority
(i.e. 561) of the articles provide an analytical representation of their solution.
The remaining 35 have only simulation or experimentation results.
Furthermore, 284 verify their proposal by employing simulation evaluation
while on the other hand 392 of the articles include experimental evaluation for
their validation. Finally, only one out of five (i.e. 20.3%) articles proceed
through all three phases of the research process cycle (i.e. analysis,
simulation and experimentation). The number of articles with the previously
stated properties (with respect to 596 studied papers) is illustrated in Figure
24.

 97

Figure 25. Total simulation versus experimentation evaluated articles.

We now present the characteristics of the articles that we studied. The
percentage of simulation versus experiment-based studies (with respect to
596 studied articles) is illustrated in Figure 25. As can be observed, while
simulations and experiments used to be equally until 2009, the usage of
simulations is decreasing every year (except in 2011) while experimentations
still remain present at a relatively stable rate.

Over the period 2008-2013, 284 studies followed a simulation-based
evaluation to test their proposal. We noted the simulator usage, the scales of
simulated networks and the programming languages used for custom
simulators. Only 43.3% are validated through a known simulator while 42.3%
of articles did not even provide any information about the tool that they have
utilized (see Figure 26). Finally, 14.4% (with respect to 284 studied
simulation-evaluated articles) developed a homemade simulator (Figure 26),
by utilizing programming languages, such as Python and Java (see Figure 28)
for the distribution of the most popular programming languages).

We are next interested in determining the usage of the simulators. As can be
observed from Figure 27, MATLAB is the first choice in our community
counting more than 35 articles, followed by TOSSIM, which has been utilized
in almost 20 articles. Furthermore, Network Simulator 2 (ns-2) comes third
with 13 articles.

 98

Figure 26. Simulator usage and scales of simulated networks

Figure 27. Popularity of simulators

Figure 28. Programming language popularity for custom simulators

 99

Nowadays, the research community is able to evaluate proposed protocols,
models, and even new technologies over open testbeds at a very large-scale
(Gluhak et al., 2011). Increasingly, network researchers are using
experimentations to enlarge the scope of their performance evaluation, as it is
illustrated in Figure 25. Moreover, as it can be observed from Figure 29, our
investigation shows that the majority of the researchers, 91.3%, choose to set
up their own testbeds. Even though to the current day, there are number of
open facilities providing to the developers the infrastructure needed for
experimental Ad-Hoc, WSN or IoT studies, only 10.7% of the articles use
open platforms. Our compiled statistics tend to show that researchers would
rather favor their own setups for small-scale deployments. In fact, among the
392 articles exposing experimental results, 78% of them do not exceed 40
nodes for their experimental setup (see Figure 29).

Figure 29. Testbed utilization and scales

 100

Figure 30. Popularity of open testbeds

Figure 31. Motes Popularity

Hence, the increased difficulty to apprehend a remote open testbeds (e.g.
specific hardware and software, network topology, booking procedure) may
have induced researchers to set up their own relatively small scale networks.

Finally, we evaluated the popularity of the devices in homemade experiments.
In Figures 30 and 31 the utility of the open testbeds and motes is presented.
Even though a small number of articles experimented over open testbeds, we
pointed out the popular open platforms. As observed in Figure 30, Harvard’s

 101

Motelab comes first (11 articles), followed by TWIST (10 studies). That can be
simply explained as those facilities were the first to be open to the scientific
community. Regarding the Indriya testbed, even though it was made available
from 2011 only, it was used in 8 articles. The fact that users can interact with
the testbed through the same intuitive web-based interface as MoteLab’s
could explain this success among the community.

5.2.2 Reproducibility
We continue our study by investigating the feasibility of reproducing results
that are presented in the reviewed articles, both for simulation and
experimental campaigns. To proceed so, we looked for some critical
information (e.g. simulation setup, simulator indication, simulator details such
as version or library, number of nodes), that should be provided by the studied
articles. In order to reproduce the proposed solution, we assumed that the
authors should provide a complete simulation or experiment settings
subsection.

Regarding the simulation based evaluations, while only 43.3% of the articles
indicate the simulator, 78.5% of those do provide some details about
simulation setups. Among those, 72.5% precise the number of involved
nodes. Finally, we decided of non-complete setups as soon as there was a
lack of critical details regarding the tools used during simulations. For
instance, as earlier discussed, MATLAB stands as the most popular software
for simulations. In order to use it as a network simulator, researchers must
import external libraries (e.g. as developed by the WISLAB1 team). It is
difficult, if not impossible, to reproduce a simulation study when the version of
a publicly available simulator is unknown, and only 21.5% provide us with the
employed version or the utilized library of the simulator, which essentially
concludes our outcome about the reproducibility of the simulation-evaluated
articles.

We followed similar methodology for the experimental- based validations.
Taking into account the nature of open platforms, the 42 articles, we consider
that these articles in overall are reproducible. However, we counted 8 papers
where the authors tested their ideas over both custom and open testbeds,
with only 3 of them providing enough information to be assumed reproducible.
On the other hand, the experimental results that are retrieved through
homemade testbeds can be considered as difficult or even impossible to
reproduce. This is explained since most of them are deployed in offices,

 102

houses or even outdoor installations where the environmental radio activity
varies, due to the interpolation of external features such as mobile phones,
wireless routers and access points and so on. Nevertheless, owing to the
nature (e.g. application layer) of the tested solution, we detected 31
homemade-based studies that may be reproduced. Finally, by summarizing
the previous statements, we calculated that only 16.5% (65) of the
experimental-based papers present reproducible results.

 103

6. Conclusions & further discussions

6.1 Conclusions

Throughout this Thesis, we reviewed 674 papers that were published in four
major and representative conferences in Ad-Hoc and Wireless Sensor
Networks, over the period 2008-2013. We especially focused on the
performance evaluation procedures in order to raise the question of whether
simulations and experiments lead to scientific results or proofs of concepts. It
is undeniable that simulators make the whole process of validation easier,
faster and less expensive. On the other hand, with the growing development
of open and realistic testbeds, researchers may overcome the technical
challenges and economical barriers of real-world deployment to perform a
thorough experimental evaluation of their ideas in wide- scale platforms.
Simulators and open testbeds are two crucial and complementary design and
validation tools; theoretically development process should start from the
theoretical analysis by providing bounds and indication of its performance, be
validated and verified by simulations and finally confirmed in open testbeds.
Hence, once the entire procedure is successfully completed and the
performance results show coherence, then researchers could promote their
solution to engineers in order to proceed with real deployments.

Simulation evaluations should allow for reproducible setups, thus, producing
scientific results that can be reproduced and verified by anyone in the
community. In the context of experiments, our future work will focus on
allowing researchers to get guidance for conducting experimentations over
different testbeds, in order to cover larger sets of assumptions. Finally, as far
as it concerns the specific issues studied by our research community, they
can be considered a different approach from the one we followed, and binding
those findings with our study, will also be a straightforward extension to our
current work.

 104

6.2 Further discussions

6.2.1 Scientific results or proofs of concepts?
Scientific results are expected to be repeatable while a proof of concept is a
realization of an idea that demonstrates its feasibility. Our initial investigation
shows that most of the authors choose to validate their proposals over
experimental evaluation. Our investigation highlights some interesting
tendencies in the networking scientific community, especially around Ad Hoc
and Wireless Sensor Networks. As presented in previous Section, an
increasing number of papers validate their proposals by using experimental
evaluations.

We focused on the simulation and experimentation setups in order to
determine if they were sufficiently described to allow for repetition of the
evaluation procedure. While (Kurkowski et al., 2005) had focused on MANET,
thus, looking for simulation parameters specific to mobility (e.g. speed of
nodes, speed delta, pause time, pause delta), we aimed at a larger scope by
gathering various sets of setup parameters. This is especially true for all
observed experimentations among which setups are highly different (e.g.
hardware, physical topologies, radio environment). The reproducibility level of
experimental studies is lower than the simulation one. This is even more
dramatic as this latest has not varied much since the study of (Kurkowski et
al., 2005). More specifically, the authors had identified 29.8% of the
simulation-based articles that did not identify the simulator used in the
research. As already mentioned, for the 4 conferences we observed and over
the 2008-2013 period, this proportion has raised to 42,3%. In addition, they
calculated only 12.1% of the articles where the simulator version was
mentioned. Furthermore, the authors were concerned that more than 90% of
the published results may include bias. As a result, they conclude that
approximately 12% of the MobiHoc simulation-based results appear to be
repeatable. In (Kurkowski et al., 2005), numerous pitfalls throughout the
simulation lifecycle had already been observed. Those tendencies, as already
highlighted by take away from the goals of making the research repeatable,
unbiased, realistic, and statistically sound.

As previously observed, over the last six years, less and less papers have
actually considered simulations during their performance evaluation process.
Still, the simulation phase allows researchers to demonstrate that the main
principles of their proposal are indeed effective, before implementing them
over a testbed (Stojmenovic, 2008). However, in order that the users will be

 105

able to continue their proof of concept validation, we can avoid the necessity
that they have to get familiar with various simulators and testbed platforms.
Emulators such as TOSSIM or COOJA were developed to bridge the gap
between simulation and experimentation, by being very close to real
embedded systems in terms of architecture compilation targets. In fact, by
utilizing these simulators, the very same code remains unchanged over the
transfer from simulation to experimental campaign.

We are coming to a tradeoff between realism and reproducibility. More
specifically, on the one hand there are more published articles that are closer
to real deployment while on the other hand the reproducibility level of the
studies decreases. So far, the proportion of papers using experimentations
that allow reproducing the conditions of an experiment remains very low (<
11%). Moreover, all those testbeds are highly different (e.g. hardware,
physical topologies, radio environment) and each would require a specific
guidance to allow for scientific results to be obtained.

In (Kurkowski et al., 2005), the authors proposed a simulation study guidance.
If the enthusiasm for experiments in networking scientific papers is to be
confirmed, we should also be able to establish such mandatory steps to
ensure statistically sound results. The significant number of open access and
large-scale testbeds that have been deployed over the recent years (Gluhak
et al., 2011), provides appropriate tools and experimental facilities for
researchers and engineers to perform real experiments in order to further
analyze their protocols. Open testbeds allow users to easily deploy source
code (that could be the same with the one of the simulator) on a sensor node
and to flash it at no delay. Those open platforms thus allow for more rigorous,
transparent and replicable testing of proposed protocols and models.

Researchers, by connecting remotely (e.g. via SSH) to one open platform,
may set up and initiate an experiment by using the terminal. Hence, the
previously reported simulators along with open testbeds, allow the research
community to get a flavor of real deployments while maintaining a unique
programming code. More importantly obtaining performance evaluation
measurements over large-scale network (both for simulation and experiments)
can be at no cost at all.

 106

Figure 32. Main contributions of the 545 reviewed articles that include simulations or

experiments

Finally, after following all the previously presented steps, and by obtaining
coherent results, researchers may consider initiating a real deployment by
utilizing their verified and refined protocol.

6.2.2 Applications
While studying the 674 papers, we could observe that the vast majority of
papers actually mention some classical envisioned applications (e.g. defense,
environment monitoring) but then focus on networking solutions that are
application independent. Regarding the type and nature of the problems that
were addressed, we collected data about the correspondence of the studied
articles to the layers of the OSI model. We also identified papers that took into
account some cross-layer design methodology.

As observed from Figure 32, the most common approaches were at
application layer and with cross-layer design. While papers related to the
former were investigating new kinds of information that could be collected by
Ad-Hoc and WSN, contributions related to the latter were concerned with the
high constraints imposed by low-cost sensor and mobile devices that impose
to consider cross-layer approaches.

 107

6.2.3 Mobility
Mobility is a key aspect for the future designs. While the majority of existing
and used simulators allow to use and create mobility models, testing and
executing such scenarios during an experimentation procedure requires to
involve and combine advanced and intelligent technologies such as robots.
Consequently, very few of the widely popular open platforms do support
mobility (Tonneau, Mitton, & Vandaele, 2014). Actually, there are number of
challenges that need to be addressed having mobile robots in a testbed,
namely, charging, remote administration and maintenance of the robots.
Indeed, robots must be able to reach their docking stations automatically.
Conversely, remote users must be able to interact with robots over reliable
links (e.g. WiFi). Even though those challenges can be addressed, testbed
administrators then face the issue of localizing mobile devices in order to
allow for repeatable trajectories. Indoor deployments can not rely on GPS
solutions and thus impose distance approximations to be computed based on
other available inputs (e.g. received signal strength intensity) or on costly
technologies (e.g. 3D camera with range detector sensors for the mapping of
the environment). Furthermore, even with perfect localization of all robots,
trajectories would be very difficult to replay, especially due to the odometer
drift. Some 3D cameras using range detector sensor aim at handling this drift.
Still they lack to compute the path where not enough landmarks exist in open-
space and large-scale environments.

 108

Bibliography

Zeng, W., Chen, X., Kim, Y.-A., Bu, Z., Wei, W., Wang, B., et al. (2009). Delay
Monitoring for Wireless Sensor Networks: An Architecture Using Air Sniffers.
Military Communications Conference (MILCOM 2009) (pp. 1-8). Boston: IEEE
Computer Society.

Zeng, X., Bagrodia, R., & Gerla, M. (1998). GloMoSim: A Library For Parallel
Simulation of Large-Scale Wireless Networks. Proceedings. Twelfth
Workshop on Parallel and Distributed Simulation (PADS98) , 154-161.

ZigBee Alliance . (2002). ZigBee. Retrieved 2015, from ZigBee:
http://www.zigbee.org/

Zhang, Y., Simon, G., & Balogh, G. (2006). High-Level Sensor Network
Simulations for Routing Performance Evaluations. Third International
Conference on Networked Sensing Systems (INSS06). Chicago.

Zhou, H.-y., Wu, F., & Hou, K.-m. (2008). An Event-driven Multi-threading
Real-time Operating System Dedicated to Wireless Sensor Networks. Second
International Conference on Embedded Software and Systems (ICESS 2008)
(pp. 3-12). Chengdu, Sichuan, China: IEEE Computer Society.

Dong, J. S., Sun, J., Sun, J., Taguchi, K., & Zhang, X. (2008). Specifying and
Verifying Sensor Networks: an Experiment of Formal Methods. Proceedings
of 10th International Conference on Formal Engineering Methods (ICFEM
2008) (pp. 318-337). Kitakyushu-City, Japan: Springer Berlin Heidelberg.

Wu, H., Luo, Q., Zheng, P., & Ni, L. M. (2007). VMNet: Realistic Emulation of
Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed
Systems , 18 (2), 277-288.

 109

Wang, X., Wang, J., Zheng, Z., Xu, Y., & Yang, M. (2009). Service
Composition in Service-Oriented Wireless Sensor Networks with Persistent
Queries. 6th IEEE Consumer Communications and Networking Conference
(CCNC 2009) (pp. 1-5). Las Vegas: IEEE Computer Society.

Wang, C., Daneshmand, M., Li, B., & Sohraby, K. (2006). A Survey of
Transport Protocols for Wireless Sensor Networks. IEEE Network , 20 (3), 34-
40.

Werner-allen, G., Swieskowski, P., & Welsh, M. (2005). MoteLab: A Wireless
Sensor Network Testbed. Proceedings of the 4th International Symposium on
Information Processing in Sensor Networks (IPSN '05) (pp. 483-488). Boise,
ID, USA: IEEE Comouter Society.

Wireshark. (2006). Retrieved 2015, from www.wireshark.org

Yarvis, M., Kushalnagar, A., Singh, H., Liu, Y., & Singh, S. (2005). Exploiting
Heterogeneity in Sensor Networks. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2005). 2, pp. 878-890.
Miami, USA: IEEE Computer Society.

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey.
Computer Networks: The International Journal of Computer and
Telecommunications Networking , 52 (12), 2292-2330 .

Autodesk Inc. (2015). Retrieved from http://www.autodesk.com/

Adler, R., Flanigan, M., Huang, J., Kling, R., Kushalnagar, N., Nachman, L., et
al. (2005). Intel Mote 2: An Advanced Platform for Demanding Sensor
Network Applications. In Proceedings of the 3rd international conference on
Embedded networked sensor systems (SenSys '05) (p. 298). San Diego:
ACM.

 110

Agarwal, Y., Balaji, B., Gupta, R., Lyles, J., Wei, M., & Weng, T. (2010).
Occupancy-Driven Energy Management for Smart Building Automation.
Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Building (BuildSys '10) (pp. 1-6). Zurich: ACM.

Akyildiz, I. F., & Vuran, M. C. (2010). Wireless Sensor Networks. Chichester,
West Sussex, UK: John Wiley & Sons Ltd.

Akyildiz, I. F., Su, W., Sankarasubrama, Y., & Cayirci, E. (2002). A Survey on
Sensor Networks . IEEE Communications Magazine , 40 (8), 102 - 114 .

Alageswaran, R., Kiruthiga, O. G., Keerthika, T. K., & Prakash, B. (2013).
Design and Development of Routing Protocol for WSN Simulation in
GloMoSim. Journal of Artificial Intelligence , 6 (2), 181-186.

Anand, N., Aryafar, E., & Knightly, E. W. (2010). WARPLab: A Flexible
Framework for Rapid Physical Layer Design. Proceedings of the 2010 ACM
workshop on Wireless of the students, by the students, for the students (S3
'10) (pp. 53-56). Chicago, USA: ACM.

ANRG. (2009). Tutornet: A Low Power Wireless IoT Testbed. Retrieved 2015,
from Tutornet: A Low Power Wireless IoT Testbed:
http://anrg.usc.edu/www/tutornet/

Bagrodia, R., Meyer , R., Takai, M., Chen, Y.-a., Zeng, X., Martin, J., et al.
(1998). Parsec: A Parallel Simulation Environment for Complex Systems.
Computer , 31 (10), 77-85.

Barrenetxea, G., Ingelrest, F., Schaefer, G., & Vetterli, M. (2008). The
Hitchhiker’s Guide to Successful Wireless Sensor Network Deployments.
Proceedings of the 6th ACM conference on Embedded network sensor
systems (SenSys '08) (pp. 43-56). Raleigh, NC, USA: ACM.

 111

Boano, C. A., Tsiftes, N., Voigt, T., Brown, J., & Roedig, U. (2010). The
Impact of Temperature on Outdoor Industrial Sensornet Applications. IEEE
Transactions on Industrial Informatics , 6 (3), 1551-3203.

Brown, S., & Sreenan, C. J. (2013). Software Updating in Wireless Sensor
Networks: A Survey and Lacunae. Journal of Sensor and Actuator Networks ,
717-760.

Castalia. (2007). Retrieved 2015, from
https://castalia.forge.nicta.com.au/index.php/en/index.html

Chun, B. N., Buonadonna, P., AuYoung, A., Ng, C., Parkes, D. C.,
Shneidman, J., et al. (2005). Mirage: a Microeconomic Resource Allocation
System for Sensornet Testbeds. Proceedings of the 2nd IEEE workshop on
Embedded Networked Sensors (EmNets '05) (pp. 19-28). Sydney, Australia:
IEEE Computer Society.

Chaudhary, R., Sethi, S., & Keshari, R. (2012). A study of comparison of
Network Simulator-3 and Network Simulator-2. International Journal of
Computer Science and Information Technologies (IJCSIT) , 3 (1), 3085-3092.

Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., & Shenker, S. (2003).
Making Gnutella-like P2P Systems Scalable. Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM '03) (pp. 407-418). Karlsruhe,
Germany: ACM.

Chandy, K. M., & Sherman, R. (1989). The Conditional Event Approach to
Distributed Simulation. Distributed Simulation Conference. Miami.

Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas, G., & Pfisterer, D.
(2009). WISEBED: An Open Large-Scale Wireless Sensor Network Testbed.
First International Conference on Sensor Applications, Experimentation, and
Logistics (SENSAPPEAL 2009) (pp. 68-87). Athens, Greece: Springer.

 112

Chen, H., Tse, C. K., & Feng, J. (2009). Impact of Topology on Performance
and Energy Efficiency in Wireless Sensor Networks for Source Extraction.
IEEE Transactions on Parallel and Distributed Systems , 20 (6), 886 - 897.

Chiasserini, C.-F., & Garetto, M. (2004). Modeling the Performance of
Wireless Sensor Networks. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2004). Hong-Kong,
China: IEEE Computer Society.

Coulson, G., Porter, B., Chatzigiannakis, I., Koninis, C., Fischer, S., Pfisterer,
D., et al. (2012). Flexible Experimentation in Wireless Sensor Networks.
Communications of the ACM , 55 (1), 82-90.

Colesanti, U. M., Crociani, C., & Vitale, A. (2007). On the Accuracy of
OMNeT++ in the Wireless Sensor Networks Domain: Simulation vs. Testbed.
4th ACM International Workshop on Performance Evaluation of Wireless Ad
Hoc, Sensor, and Ubiquitous Networks (PE-WASUN'07) (pp. 25-31). Chania,
Crete Island, Greece: ACM.

Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., & Moore, D. (2010).
Environmental Wireless Sensor Networks. Proceedings of the IEEE , 98 (11),
1903-1917.

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J.,
Pedersen, C. O., et al. (2001). EnergyPlus: A New-Generation Building
Energy Simulation. Energy and Buildings - BUILDING SIMULATION '99 , 33
(4), 319–331.

Crossbow. (2003). MICA2 Datasheet. Retrieved 2015, from MICA2
Datasheet:
http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.
pdf

 113

El-Darymli, K., & Ahmed, M. H. (2012). Wireless Sensor Network Testbeds: A
Survey. In A. B. Abdullah, K. Ragab, & N. Zaman, Wireless Sensor Networks
and Energy Efficiency: Protocols, Routing, and Management (pp. 148-205).
IGI Global.

Erickson, V. L., Carreira-Perpiñán, M. Á., & Cerpa, A. (2011). OBSERVE:
Occupancy-Based System for Efficient Reduction of HVAC Energy.
Proceedings of the 10th International Conference on Information Processing
in Sensor Networks (IPSN 2011) (pp. 258-269). Chicago: IEEE Computer
Society.

Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., et al.
(2009). COOJA/MSPSim: Interoperability Testing for Wireless Sensor
Networks. Proceedings of the 2nd International Conference on Simulation
Tools and Techniques (Simutools '09). Rome: ICST.

Ertin, E., Arora, A., Ramnath, R., Nesterenko, M., Naik, V., Bapat, S., et al.
(2006). Kansei: A Testbed for Sensing at Scale. The Fifth International
Conference on Information Processing in Sensor Networks (IPSN 2006) (pp.
399-406). Nashville: IEEE Computer Society.

Ettus Research. (2010). Universal Software Radio Peripheral - The
Foundation for Complete Software Radio Systems.

Du, W., Mieyeville, F., & Navarro, D. (2011). IDEA1: A validated SystemC-
based system-level design and simulation environment for wireless sensor
networks. EURASIP Journal on Wireless Communications and Networking ,
143.

Du, W., Mieyeville, F., Navarro, D., O’Connor, I., & Carrel, L. (2014). Modeling
and Simulation of Networked Low-Power Embedded Systems: A Taxonomy.
EURASIP Journal on Wireless Communications and Networking , 106.

 114

Du, S., Saha, A. K., & Johnson, D. B. (2007). RMAC: A Routing-Enhanced
Duty-Cycle MAC Protocol for Wireless Sensor Networks. 26th IEEE
International Conference on Computer Communications (INFOCOM 2007)
(pp. 1478-1486). Anchorage: IEEE Computer Science.

Dubois-Ferriere, H., Meier, R., Fabre, L., & Metrailler, P. (2006). TinyNode: A
Comprehensive Platform for Wireless Sensor Network Applications. The Fifth
International Conference on Information Processing in Sensor Networks
(IPSN 2006) (pp. 358-365). Nashville: IEEE Computer Society.

Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors. Proceedings of the
29th Annual IEEE International Conference on Local Computer Networks
(LCN '04) (pp. 455-462). Tampa, Florida: IEEE Computer Society.

Dutta, P., & Culler, D. (2008). Epic: An Open Mote Platform for Application-
Driven Design. International Conference on Information Processing in Sensor
Networks (IPSN '08) (pp. 547-548). St. Louis, Missouri, USA: IEEE Computer
Society.

Des Rosiers, C. B., Chelius, G., Fleury, E., Fraboulet, A., Gallais, A., Mitton,
N., et al. (2011). SensLAB Very Large Scale Open Wireless Sensor Network
Testbed. 7th International ICST Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(TridentCOM 2011) (pp. 239-254). Shanghai, China: Springer.

Dietrich, I., & Dressler, F. (2009). On the Lifetime of Wireless Sensor
Networks. ACM Transactions on Sensor Networks (TOSN) , 5 (1), 5.1-5.39.

Dimokas, N., Katsaros, D., & Manolopoulos, Y. (2007). Node Clustering in
Wireless Sensor Networks by Considering Structural Characteristics of the
Network Graph. Fourth International Conference on Information Technology:
New Generations (ITNG 2007) (pp. 122-127). Las Vegas: IEEE Computer
Society.

 115

DOE-2. (1998). Retrieved 2015, from http://www.doe2.com/

Doddavenkatappa, M., Chan, M. C., & A. L., A. (2011). Indriya: A Low-Cost,
3D Wireless Sensor Network Testbed. 7th International ICST Conference on
Testbeds and Research Infrastructures for the Development of Networks and
Communities (TridentCom 2011) (pp. 302-316). Shanghai, China: Springer.

Dong, W., Chen, C., Liu, X., & Bu, J. (2010). Providing OS Support for
Wireless Sensor Networks: Challenges and Approaches. IEEE
Communications Surveys & Tutorials , 12 (4), 519-530 .

Dong, W., Chen, C., Liu, X., Liu, Y., Bu, J., & Zheng, K. (2011). SenSpire OS:
A Predictable, Flexible, and Efficient Operating System for Wireless Sensor
Networks. IEEE Transactions on Computers , 60 (1), 1788-1801 .

Dong, B., & Andrews, B. (2009). Sensor-based Occupancy Behavioral Pattern
Recognition for Energy and Comfort Management in Intelligent Buildings.
Eleventh International IBPSA Conference, Proceedings of Building Simulation
2009. Glasgow.

Farooq, M. O., & Kunz, T. (2011). Operating Systems for Wireless Sensor
Networks: A Survey. Sensors , 11 (6), 5900-5930.

Ferencik, I., Niemi, T., & Jolma, A. (2010). On site environmental modeling
and monitoring: the Nordic Scenario in HYDROSYS project. International
Congress on Environmental Modelling and Software Modelling for
Environment’s Sake. Ottawa, Canada.

Frank, C., & Römer, K. (2005). Algorithms for Generic Role Assignment in
Wireless Sensor Networks. Proceedings of the 3rd international conference
on Embedded Networked Sensor Systems (SenSys '05) (pp. 230-242). San
Diego: ACM.

 116

Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., & Madden, S. (2004).
Distributed Regression: an Efficient Framework for Modeling Sensor Network
Data. Proceedings of the 3rd international symposium on Information
processing in sensor networks (IPSN '04) (pp. 1-10). Berkeley, California,
USA: ACM.

Gay, D., Levis, P., Behren, R. v., Welsh, M., Brewer, E., & Culler, D. (2003).
The nesC Language: A Holistic Approach to Networked Embedded Systems.
Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation (PLDI '03) (pp. 1-11). San Diego: ACM.

Ganesan, D., Estrin, D., Woo, A., Culler, D., Krishnamachari, B., & Wicker, S.
(2002). Complex Behavior at Scale: An Experimental Study of Low-Power
Wireless Sensor Networks. UCLA, Computer Science Department.

Gerla, M. (2005). From Battlefields to Urban Grids: New Research Challenges
in Ad Hoc Wireless Networks. Pervasive and Mobile Computing , 1 (1), 77-93.

GDB: The GNU Project Debugger. (2006). Retrieved 2015, from
https://www.gnu.org/software/gdb/

Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil,
E., et al. (2004). A System for Simulation, Emulation, and Deployment of
Heterogeneous Sensor Networks. Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems (SenSys '04) (pp. 201-
213). Baltimore, Maryland: ACM.

Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., & Razafindralambo, T.
(2011). A Survey on Facilities for Experimental Internet of Things Research.
IEEE Communications Magazine , 49 (11), 58-67.

Gnuplot. (1986). Retrieved 2015, from http://www.gnuplot.info/

 117

Gracanin, D., Eltoweissy, M., Olariu, S., & Wadaa, A. (2004). On Modeling
Wireless Sensor Networks. Parallel and Distributed Processing Symposium
(IPDPS 2004). Santa Fe, New Mexico, USA: IEEE Computer Society.

Iyer, Y. G., Gandham, S., & Venkatesan, S. (2005). STCP: A Generic
Transport Layer Protocol for Wireless Sensor Networks. Proceedings of the
14th International Conference on Computer Communications and Networks
(ICCCN 2005) (pp. 449-454). San Diego, California, USA: IEEE Computer
Society.

Handziski, V., Kopke, A., Willig, A., & Wolisz, A. (2006). TWIST: A Scalable
and Reconfigurable Testbed for Wireless Indoor Experiments with Sensor
Networks. Proceedings of the 2nd International Workshop on Multi-hop Ad
Hoc Networks: from Theory to Reality (REALMAN '06) (pp. 63-70). Florence,
Italy: ACM.

Hammoudeh, M., Newman, R., & Mount, S. (2008). Modelling Clustering of
Wireless Sensor Networks with Synchronised Hyperedge Replacement. 4th
International Conference Graph Transformations (ICGT 2008) (pp. 490-492).
Leicester, United Kingdom: Springer.

Hiranandani, D., Obraczka, K., & Garcia-Luna-Aceves, J. (2013). MANET
protocol simulations considered harmful: the case for benchmarking. IEEE
Wireless Communications , 20 (4), 399-411.

Ju, X., Zhang, H., & Sakamuri, D. (2012). NetEye: A User-Centered Wireless
Sensor Network Testbed for High-Fidelity, Robust Experimentation.
International Journal of Communication Systems , 25 (9), 1213-1229.

Jin, Z.-Y., & Gupta, R. (2008). Improved Distributed Simulation of Sensor
Networks Based on Sensor Node Sleep Time. 4th IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS 2008) (pp.
201-218). Santorini, Greece: Springer.

 118

Jiménez-González, A., Martínez-de Dios, J. R., & Ollero, A. (2011). An
Integrated Testbed for Cooperative Perception with Heterogeneous Mobile
and Static Sensors. Sensors , 11 (12), 11516-11543.

Jha, V., & Bagrodia, R. L. (1993). Transparent Implementation of
Conservative Algorithms in Parallel Simulation Languages. Simulation
Conference Proceedings, Winter.

Johnson, D., Stack, T., Fish, R., Montrallo, D., Leigh, F., Robert, S., et al.
(2006). Mobile emulab: A robotic wireless and sensor network testbed. 25th
IEEE International Conference on Computer Communications (INFOCOM
2006) (pp. 1-12). Barcelona, Spain: IEEE Computer Society.

Kurkowski, S., Camp, T., & Colagrosso, M. (2005). MANET Simulation
Studies: The Incredibles. Mobile Computing and Communications Review , 9
(4), 50-61.

Keshav, S. (1988). REAL: A Network Simulator. Berkeley: University of
California at Berkeley.

Kdouh, H., Farhat, H., Zaharia, G., Brousseau, C., Grunfelder, G., & Zein, G.
E. (2012). Performance analysis of a hierarchical shipboard Wireless Sensor
Network. 23rd International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC 2012) (pp. 765-770). Sydney, Australia: IEEE
Computer Society.

Kling, R., Adler, R., Huang, J., Hummel, V., & Nachman, L. (2004). Intel Mote:
Using Bluetooth in Sensor Networks. Proceedings of the 2nd international
conference on Embedded networked sensor systems (SenSys 2004) (p. 318).
Baltimore, Maryland, USA: ACM.

Koliousis, A., & Sventek, J. (2007). Proactive vs Reactive Routing for Wireless
Sensor Networks . University of Glasgow, Department of Computing Science.
Glasgow, UK: University of Glasgow.

 119

Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., & Elliott, C. (2004).
Experimental evaluation of wireless simulation assumptions. Proceedings of
the 7th ACM international symposium on Modeling, analysis and simulation of
wireless and mobile systems (MSWiM '04) (pp. 78-82). Venice, Italy: ACM.

Langendoen, K., Baggio, A., & Visser, O. (2006). Murphy loves potatoes:
experiences from a pilot sensor network deployment in precision agriculture.
Proceedings of the 20th international conference on Parallel and distributed
processing (IPDPS '06) (p. 174). Rhodes Island: iEEE Computer Society.

Levis, P. A. (2006). TinyOS: An Operating System for Sensor Networks.
Proceedings of the 7th International Conference on Mobile Data Management
(MDM 06) (p. 63). IEEE Computer Society.

Levis, P., Lee, N., Welsh, M., & Culler, D. (2003). TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. Proceedings of the 1st
international conference on Embedded networked sensor systems (SenSys
'03) (pp. 126-137). Los-Angeles: ACM.

Liu, X., Hou, K. M., de Vaulx, C., Shi, H., & Gholami, K. E. (2014). MIROS: A
Hybrid Real-Time Energy-Efficient Operating System for the Resource-
Constrained Wireless Sensor Nodes. Sensors , 14 (9), 17621–17654.

Lim, C.-C., Low, Y.-H., Cai, W., Hsu, W. J., Huang, S. Y., & Turner, S. J.
(1998). An Empirical Comparison of Runtime Systems for Conservative
Parallel Simulation. In Parallel and Distributed Processing (pp. 123-134).
Orlando, Florida, USA: Springer.

Lim, R., Ferrari, F., Zimmerling, M., Walser, C., Sommer, P., & Beutel, J.
(2013). FlockLab: A Testbed for Distributed, Synchronized Tracing and
Profiling of Wireless Embedded Systems. International Conference on
Information Processing in Sensor Networks (IPSN 2013) (pp. 153-165).
Philadelphia, USA: IEEE Computer Society.

 120

Lo, S.-H., Ding, J.-H., Hung, S.-J., Tang, J.-W., Tsai, W.-L., & Chung, Y.-C.
(2007). SEMU: A Framework of Simulation Environment for Wireless Sensor
Networks with Co-simulation Model. Second International Conference in
Advances in Grid and Pervasive Computing (GPC 2007) (pp. 672-677). Paris,
France: Springer.

Nam: Network Animator. (2002, July 3). Retrieved 4 8, 2015, from
http://www.isi.edu/nsnam/nam/

Nati, M., Gluhak, A., Abangar, H., & Headley, W. (2013). SmartCampus: A
User-centric Testbed for Internet of Things Experimentation. 16th International
Symposium on Wireless Personal Multimedia Communications (WPMC 2013)
(pp. 1-6). Atlantic City: IEEE COmputer Society.

National Institute of Building Sciences. (2015). BLAST. Retrieved 2015, from
http://www.wbdg.org/tools/blast.php

National Science Foundation. (2002). Report of NSF Workshop on Network
Research Testbeds. National Science Foundation, Chicago, USA.

NED. (1998). Retrieved 2015, from
http://www.ewh.ieee.org/soc/es/Nov1999/18/ned.htm

NS-3. (2011). Retrieved April 7, 2015, from NS-3: https://www.nsnam.org/

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., & Anderson, J. (2002).
Wireless Sensor Networks for Habitat Monitoring. Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications (WSNA
'02) (pp. 88-97). Atlanta, Georgia, USA: ACM.

Mangharam, R., Rowe, A., & Rajkumar, R. (2007). FireFly: A Time
Synchronized Real-Time Sensor Networking Platform. Real-Time Systems ,
37 (3), 183-231 .

 121

Martin, R. C. (2003). Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall.

MathWorks. (1994). Matlab - The language of Technical Computing.
Retrieved 2015, from http://www.mathworks.com/products/matlab/

MEMSIC. (2011). IRIS Datasheet. Retrieved 2015, from IRIS Datasheet:
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0124-
01_B_IRIS.pdf

MEMSIC. (2004). MICAz Datasheet. Retrieved 2015, from MICAz Datasheet:
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0060-04-
B_MICAz.pdf

MEMSIC. (2004). TelosB Datasheet. Retrieved 5 20, 2015, from MEMSIC Inc.
- Wireless Sensor Networks:
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf

Meshkova, E., Riihijärvi, J., Oldewurtel, F., Jardak, C., & Mähönen, P. (2008).
Service-Oriented Design Methodology for Wireless Sensor Networks: A View
through Case Studies. IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC 2008) (pp. 146-153).
Taichung, Taiwan: IEE Computer Society.

Merrett, G. V., White, N. M., Harris, N. R., & Al-Hashimi, B. M. (2009). Energy-
Aware Simulation for Wireless Sensor Networks. Proceedings of the 6th
Annual IEEE communications society conference on Sensor, Mesh and Ad
Hoc Communications and Networks (SECON'09) (pp. 1-8). Rome, Italy: IEEE
Computer Society.

Misra, J. (1986, March). Distributed Discrete Event Simulation. ACM
Computing Surveys .

 122

Mouradian, A., Augé-Blum, I., & Valois, F. (2014). RTXP : A Localized Real-
Time Mac-Routing Protocol for Wireless Sensor Networks. Computer
Networks , 67, 43–59.

MOTEIV. (2005). Tmote Sky Datasheet. Retrieved 2015, from Tmote Sky
Datasheet:

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-
datasheet.pdf

Österlind, F., Eriksson, J., & Dunkels, A. (2010). Cooja TimeLine: A Power
Visualizer for Sensor Network Simulation. Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys '10)) (pp.
385-386). Zurich: ACM.

Österlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-
Level Sensor Network Simulation with COOJA. The 31st Annual IEEE
Conference on Local Computer Networks (LCN '06) (pp. 641-648). Tampa,
Florida: IEEE Computer Society.

Qualnet. (2008). Retrieved 2015, from http://web.scalable-
networks.com/content/qualnet

Qutaiba, A. I. (2012). Simulation Framework of Wireless Sensor Network
(WSN) Using MATLAB/SIMULINK Software. In V. Katsikis (Ed.), MATLAB - A
Fundamental Tool for Scientific Computing and Engineering Applications -
Volume 2. InTech.

Purdue University. (2008). MAP - Purdue University Wireless Mesh Network
Testbed. Retrieved 2015, from MAP - Purdue University Wireless Mesh
Network Testbed: https://engineering.purdue.edu/MESH

Papazoglou, M. (2003). Service-Oriented Computing: Concepts,
Characteristics and Directions. Proceedings of the Fourth International

 123

Conference on Web Information Systems Engineering (WISE 2003) (pp. 3-
12). Rome, Italy: IEEE Computer Society.

Papadopoulos, G. Z., Beaudaux, J., Gallais, A., Noel, T., & Schreiner, G.
(2013). Adding value to WSN simulation using the IoT-LAB experimental
platform. IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob '03) (pp. 485-490).
Lyon, France: IEEE Computer Society.

Petritsch, H. (2006). Service-Oriented Architecture (SOA) vs. Component
Based Architecture. Technology University of Vienna, Secure Systems Lab.
Vienna: TU Wien.

Salem, A. O., & Awwad, H. (2014, June). Mobile Ad-hoc Network Simulators:
A Survey and Comparisons. International Journal of P2P Network Trends and
Technology (IJPTT) .

Santini, S. (2009). tinyLAB: A Matlab-Based Framework for Interaction with
Wireless Sensor Networks. The First European TinyOS Technology
Exchange (ETTX 2009). Cork.

Sarkar, N. I., & Halim, S. A. (2011, March). A Review of Simulation of
Telecommunication Networks: Simulators, Classification, Comparison,
Methodologies and Recommendations. Multidisciplinary Journals in Science
and Technology, Journal of Selected Areas in Telecommunications (JSAT) .

Schroth, C., & Janner, T. (2007, May 29). Web 2.0 and SOA: Converging
Concepts Enabling the Internet of Services. IT Professional , 9 (3), pp. 36-41.

Sikka, P., Corke, P., Overs, L., Valencia, P., & Wark, T. (2007). Fleck - A
Platform for Real-World Outdoor Sensor Networks. 3rd International
Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP
2007) (pp. 709-714). Melbourne, Australia: IEEE Computer Society.

 124

Shnayder, V., Hempstead, M., Chen, B.-r., Allen, G. W., & Welsh, M. (2004).
Simulating the Power Consumption of Large-Scale Sensor Network
Applications. Proceedings of the 2nd international conference on Embedded
networked sensor systems (SenSys '04) (pp. 188-200). Baltimore: ACM.

Soroush, H., Banerjee, N., Corner, M. D., Levine, B. N., & Lynn, B. (2009).
DOME: A Diverse Outdoor Mobile Testbed. Proceedings of the 1st ACM
International Workshop on Hot Topics of Planet-Scale Mobility Measurements
(HotPlanet '09) (pp. 1-6). Kraków, Poland: ACM.

Stecklina, O., Vater, F., Basmer, T., Bergmann, E., & Menzel, H. (2011).
Hybrid Simulation Environment for rapid MSP430 system design test and
validation using MSPsim and SystemC. 14th IEEE International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS 2011)
(pp. 167-170). Cottbus, Germany: IEEE Computer Society.

Stojmenovic, I. (2008, December). Simulations in wireless sensor and ad hoc
networks: matching and advancing models, metrics, and solutions. pp. 102-
107.

Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo,
H., et al. (2005). Overview of the ORBIT Radio Grid Testbed for Evaluation of
Next-Generation Wireless Network Protocols. IEEE Wireless Communications
and Networking Conference (WCNC 2005). 3, pp. 1664-1669. New Orleans,
Louisiana, USA: IEEE Computer Society.

Rensfelt, O., Hermans, F., Gunningberg, P., Larzon, L.-Å., & Björnemo, E.
(2011). Repeatable Experiments with Mobile Nodes in a Relocatable WSN
Testbed. The Computer Journal , 54 (12), 1973-1986.

Ricci, R., Duerig, J., Stoller, L., Wong, G., Chikkulapelly, S., & Seok, W.
(2012). Designing a Federated Testbed as a Distributed System. 8th
International ICST Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities (TridentCom 2012) (pp. 321-
337). Thessaloniki, Greece: Springer.

 125

Rice University. (2006). WARP Project. Retrieved 2015, from WARP Project:
http://warpproject.org/trac/wiki/about

Riley, G. F. (2012). Retrieved 2015, from NetAnim:
https://www.nsnam.org/wiki/NetAnim

Riliskis, L., & Osipov, E. (2015). Symphony : A Framework for Accurate and
Holistic WSN Simulation. Sensors , 15 (3), 4677-4699.

Ringwald, M., & Romer, K. (2007). Deployment of Sensor Networks:
Problems and Passive Inspection. Fifth Workshop on Intelligent Solutions in
Embedded Systems (pp. 179-192). Leganes, Spain: IEEE Computer Society.

Roth, A. (2013). EnergyPlus Boosts Building Efficiency with Help from
Autodesk. Retrieved 2015, from Department of Energy:
http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-
autodesk

Titzer, B., Lee, D. K., & Palsberg, J. (2005). Avrora: Scalable Sensor Network
Simulation with Precise Timing. Proceedings of the Fourth International
Symposium on Information Processing in Sensor Networks (IPSN '05) (pp.
477-482). Los Angeles: IEEE Computer Society.

The Network Simulator - NS-2. (2011, November 5). Retrieved April 8, 2015,
from http://nsnam.isi.edu/nsnam/index.php/User_Information

Tonneau, A.-S., Mitton, N., & Vandaele, J. (2014). A Survey on (mobile)
Wireless Sensor Network Experimentation Testbeds. IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS) (pp. 263-
268). Marina Del Rey, California, USA: IEEE Compter Society.

 126

List of Figures

Figure 1. Wireless Networks Hierarchy .. 4	

Figure 2. Typical WSN Project Lifecycle .. 7	

Figure 3. Typical WSN System Requirements (Meshkova et al., 2008) 8	

Figure 4. Typical Energy Components in WSNs (Merrett et al., 2009) 10	

Figure 5. Typical WSN network topologies - (a) single-hop star, (b) multi-hop
grid, ... 14	

Figure 6. The WSN protocol stack .. 16	

Figure 7. Implementation of Design Models to System Components 20	

Figure 8. Typical Simulator Structure ... 29	

Figure 9 Typical WSN Network Model .. 30	

Figure 10. Tier-based Node Model ... 32	

Figure 11. Classification of Simulation Designs ... 34	

Figure 12. Simulators Taxonomy (Du et al., 2014) ... 37	

Figure 13. Objective Classification of WSN Testbeds (El-Darymli & Ahmed,
2012) ... 64	

Figure 14. Structured Classification of WSN Testbeds (El-Darymli & Ahmed,
2012) ... 65	

Figure 15. Crossbows‘ RK and its SW Platform ... 66	

Figure 16. Typical WSN-CT Architecture Scenarios 67	

Figure 17. Typical Sensor Node Structure ... 68	

Figure 18. Macroscopic structure of an OT .. 71	

Figure 19. Typical Federated Testbed model ... 72	

Figure 20. Number of articles per year (all conferences are considered) 93	

Figure 21. Appropriateness of our conference sample 94	

Figure 22. Publication flows over the period 2008 - 2013 94	

Figure 23. Mobility scenarios in performance evaluation procedures 95	

 127

Figure 24. Use of Mathematics (M), Simulations (S), Experiments (E) and
their combinations in validation procedures of 596 Ad-Hoc and WSN
related articles. .. 96	

Figure 25. Total simulation versus experimentation evaluated articles. 97	

Figure 26. Simulator usage and scales of simulated networks 98	

Figure 27. Popularity of simulators ... 98	

Figure 28. Programming language popularity for custom simulators 98	

Figure 29. Testbed utilization and scales ... 99	

Figure 30. Popularity of open testbeds ... 100	

Figure 31. Motes Popularity .. 100	

Figure 32. Main contributions of the 545 reviewed articles that include
simulations or experiments .. 106	

 128

List of Tables

Table 1. Characteristics of the different simulator types 39	

Table 2. Summarized simulators characteristics .. 40	

Table 3. Summarized motes characteristics ... 73	

Table 4. Summarized testbeds characteristics ... 81	

 129

Abbreviations

ACK Acknowledgment
ADC Analog-to-Digital Converter
ANP Accelerated Null Message Protocol
AP Access Point
API Application Programming Interfaces
ARQ Automatic Repeat Request
BB Back-Bone
BC Back-Channel
CAN Campus Area Network
CPU Central Processing Unit
CSMA Carrier Sense Multiple Access
CT Cluster Testbed
DTN Delay Tolerant Network

EPROM Erasable Programmable Read-Only
Memory

FEC Forward Error Correction
FPGA Field-Programmable Gate Array
FT Federated Testbed
GUI Graphical User Interface
GW Gateway
IoT Internet-of-Things
ISS Instruction Set Simulator
IT Information Technology
JNI Java Native Interface
LAN Local Area Network
MAC Medium Access Control
MAN Metropolitan Area Network
MANET Mobile Ad Hoc Network
MXT Multi-User Experimental Testbeds
NENM Node Emulators with Network Models

 130

NSF National Science Foundation
NSLU Network Link Storage Units
NSNE Network Simulators with Node Emulators
NSNM Network Simulators with Node Models

NSSNM Node System Simulator with Network
Models

OS Operating System
OSI Open Systems Interconnection
OT Overlay Testbed
P2P Peer-to-Peer
PAN Personal Area Network
Pcap Packet Capture
PCT Proof-of-Concept Testbeds
PDA Personal Digital Assistant
PH Processing Hub
QoS Quality-of-Service
RAM Radom Access Memory
RF Radio Frequency
RK Research Kit
S/CAN System-Cluster Area Network
SAN Storage Area Network
SEB Standard Extension Board
SH Storage Hub
SLDL System-Level Description Languages
SOA Service-Oriented Architecture
SSH Secure Shell
TCP Transmission Control Protocol
UDP User Datagram Protocol
USRP Universal Software Radio Peripheral
WAN Wide Area Network

WARP Wireless Open-Access Research
Platform

WLAN Wireless Local Area Network
WMN Wireless Mesh Network
WSN Wireless Sensor Network

