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Abstract 

The verification of theoretical analysis is a vital step to the development of an 
application or a protocol for wireless networks. Most of proposals are 
evaluated through mathematical analysis followed by either simulation or 
experimental validation campaigns. Up to this point, we provide a detailed 
description of the development process and limitations of Wireless Sensor 
Networks (WSNs) as well as analyze a large set of statistics on articles 
published (i.e. 674 papers in total) in Ad-Hoc and WSN related top 
representative conferences over the period 2008-2013 (i.e. ACM/IEEE IPSN, 
ACM MobiCom, ACM MobiHoc and ACM SenSys). We mainly focus on the 
evaluation methodologies provided by researchers. More specifically, our goal 
is to explore the role of simulators and testbeds in the theoretical analysis of a 
scenario throughout the application development procedure. We show that 
there is a tendency that more and more researchers rely on custom or open 
testbeds in order to evaluate the performance of their proposals. Simulators 
indeed fail to reproduce actual environment conditions of the deployed 
systems. Experimentation with real hardware allows our research community 
to mind the gaps between simulation and real deployment. Still, as 
experimental approach through custom testbeds comprises a low 
reproducibility level (i.e., 16.5%), we investigate to what extent such 
performance evaluation methods will be able to bridge those gaps. We finally 
discuss experimental testbeds and their potential to replace simulators as the 
cornerstone of performance evaluation procedures. 
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1. Introduction 

1.1 Motivation and Outline 

Computer networks can be considered as one of the greatest achievements 
of humanity, since they enable the users to communicate almost instantly, 
regardless of their location. However, after many decades of research, wired 
networks have reached maturity, thus evolving to new wireless technologies 
that further introduce a great diversity of possible applications, such as Ad 
Hoc and Wireless Sensor Networks (WSNs). These networking technologies 
emerged in order to provide solutions for different scientific problems, 
including health care, disaster recovery, environmental monitoring as well as 
smart cities and the modern Internet-of-Things (IoT) applications. 

The primary purpose of this B.Sc. Thesis is to provide a detailed overview 
considering the development lifecycle of Ad Hoc and WSN systems, and in 
particular to analyze the different performance evaluation methods, which are 
employed by the research community. Therefore, the Thesis is organized as 
follows. In Chapter 2, we introduce a brief description of a typical WSN 
research lifecycle along with the involved procedures. Next, Chapter 3 
provides a detailed description of the simulation requirements followed by a 
brief overview of the available WSN simulation tools. Similarly, Chapter 4 
describes the basic requirements and structures of the experimental testbeds, 
as well as it summarizes the different WSN hardware and experimental 
laboratories. Finally, after a thorough study of 674 scientific articles, Chapter 5 
analyzes various statistics concerning the current trend of validation 
methodologies in the research field of WSN and Ad Hoc networks. 

 

1.2 Computer Networking 

A computer network can be defined as the connection between two or more 
devices, over a common communication channel, in order to share data and 
resources. This definition can be very comprehensive, however its simplicity 
obscures the great diversity of possible network models and technology 
utilization such to achieve networking. In the modern era, people in their 
everyday life rely on networks without understanding the complexity of the 
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involved technology. This demand motivated a rapid evolution in network 
technologies, from wired communications to contemporary innovative wireless 
models. Despite the underlying architecture of networks, a broader 
classification can be applied based on the area coverage and transmission 
medium utilization. A brief description of the different types of networks can be 
introduced as follows. 

 

i. Local Area Network (LAN) 
Typically, a LAN is used to connect computers at a single area such as 
homes and small offices, where the users need to communicate amongst 
them and not with the outer world. A single person is usually the administrator 
and manages the network, which can be wired hubs and switches and/ or 
wireless access points.  

 

ii. Wireless Local Area Network (WLAN) 
A WLAN is a LAN that is based only on wireless connectivity (usually by 
employing IEEE 802.11 protocols). The users by employing wireless 
interfaces are able to exchange information through an access point. The air 
is considered to be the transmission medium. Therefore, every network 
interface is equipped with an antenna, which produces radio signals in order 
to be able to participate in the WLAN. 

 

iii. Metropolitan Area Network (MAN) 

A metropolitan network covers bigger area compering to LAN. A 
common MAN interconnects individual LANs within a city. Hence, a MAN 
should support routing services. 

 

iv. Wide Area Network (WAN) 
A WAN interconnects users within large areas, like countries or even the 
entire world (Internet). Separate LANs and MANs are interconnected in order 
to form a WAN, by utilizing router devices.  
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v. Campus Area Network (CAN) 
Computer networks that operate over university campuses or big corporation 
offices are referred as campus area networks. Following similar principles to 
MAN, individual LANs are connected in order to implement a CAN. However, 
the occupied area is smaller than MANs. 

 

vi. Storage Area Network (SAN) 
A storage network is used to connect servers with storage devices by utilizing 
Fiber technology in order to achieve high bandwidth. SAN improves storage 
efficiency for storage-oriented applications.  

 

vii. System or Cluster Area Network (S/CAN) 
A system or cluster area network interconnects high performance computers 
over fiber channels so as to provide high bandwidth. This class of networks is 
used in distributed computing for cluster configuration. 

 

viii. Personal Area Network (PAN) 

A PAN is the smallest network in terms of area coverage. The personal 
networks emerged in order to interconnect devices around a single person. 
Such networks typically involve PCs, telephones, Personal Digital Assistants 
(PDA), printers and so on, which communicate in a way to provide optimized 
services according to the requirements of the individual. Wired PANs may 
communicate over USB or FireWire interface, while wireless PANs employ 
Bluetooth, or IEEE 802.15 radio interfaces. 

 

1.3 Wireless Communications 

In the last two decades, wireless communications emerged as a result to the 
increasing utilization of Information Technology (IT) systems by the people, 
thus becoming an integral part of several types of communication devices, as 
it allows users to communicate even from remote areas. Wireless technology 
involves the transmission of information over a distance without wires, cables 
or any other form of electrical conductors.  
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Figure 1. Wireless Networks Hierarchy 

 

The transmitted distance varies from few meters to thousands of kilometers 
while providing freedom of movement and the ability to extend applications to 
different areas. Therefore many types of wireless networks and systems exist 
as presented in Figure 1, mostly by interconnecting various computer devices 
such as servers, PCs, laptops, smartphones, RFIDs, printers etc. Wireless 
networks can be installed conveniently while providing much more flexible and 
cost-effective solutions compared to traditional wired networks. However, our 
study will focus only on the wireless Ad Hoc networks and WSNs. 

 

1.4 Ad-Hoc Networks and WSNs: Similarities and Differences 

Ad Hoc Networks and WSNs are similar because both types can be 
considered as decentralized and distributed wireless networks while not 
requiring a significant network infrastructure in place. Two nodes of the 
network are able to communicate either directly (single-hop routing) or by 
involving intermediate relay nodes (multi-hop routing). Additionally, both Ad 
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Hoc and WSN nodes are typically powered over batteries thus requiring 
energy aware mechanisms in order to minimize the power consumption. 
Moreover, these networks communicate over an unlicensed radio spectrum 
and therefore they are vulnerable in interference by other radio technologies 
that operate in the same wireless band. Finally, both networks should support 
self-organization methods due to their distributed nature. 

However Ad Hoc networks were developed during 70 ́s by the scientist in 
order to be employed by the US military. As to the present day there are 
various commercial applications based on Ad Hoc technology, which is quite 
different from the previously developed military systems and therefore they 
require a new approach to the problem (Gerla, 2005). The military solutions 
are mostly developed for a single purpose, thus employing unique hardware 
and software solutions in addition to their high development cost, which can 
not be adopted by the commercial applications. 

Despite the aforementioned similarities, there are various fundamental 
differences, which most of them derive from their different nature. Ad Hoc 
networks were developed to interact closely with the user, since most of the 
nodes are devices used by human beings including laptops, PCs, PDAs, etc. 
On the other hand, WSNs do not focus on servicing the user, rather than 
interacting with the environment. Indeed, the nodes involved in a WSN are 
usually embedded devices that sense various environmental events and 
possibly actuate on their occurrence. Additionally, the number of nodes 
involved in a typical WSN scenario varies from tens to thousands of nodes, 
which introduces further density as well as scalability issues that are not 
required in a simple Ad Hoc network. 
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2. Research Process in WSNs  

A WSN system is a combination of software, network and embedded 
engineering. These fields are well defined and therefore, WSN developers 
should be aware of the currently employed technologies and methods in the 
previously mentioned domains, so as to efficiently design new solutions. 
However, some of these practices should be modified in order to fit the 
specifications of WSNs. As far as it concerns the development lifecycle of 
applications that incorporate WSN technology, there are various 
methodologies that can be adapted. The concepts of Service-Oriented 
Architecture (SOA), agile development methods and networking practices of 
Mobile Ad Hoc Networks (MANET) and Peer-to-Peer (P2P) domains can be 
combined so as to establish an effective development framework for WSNs.  

In a SOA-based system, the application is a logical set consisting of different 
software that incorporates in a way to perform certain tasks (Papazoglou, 
2003). Furthermore, SOA is a popular method that is broadly employed in the 
design process of Web Services (Schroth & Janner, 2007). Sensornets act in 
a similar way, by categorizing the involved nodes into groups according to the 
services that they provide and thus enabling researchers to adapt popular 
Internet technologies and protocols in their designs. Moreover, SOA methods 
have to be modified so as to include the complex services of WSNs such as 
storage, routing and sensor readings. However, this system architecture may 
utilize additional component-based models for more detailed designs. The 
main difference between these two approaches is that components define the 
actual functionality of the system, while services are used to describe the logic 
and the interactions amongst the components (Petritsch, 2006). 

On the other hand, WSNs are employed in a broad area of applications and 
therefore different parameters should be optimized accordingly. For instance, 
the data propagation time, the fault-resilience requirements, the network size, 
node mobility, code maintainability and re-usability are some parameters that 
differ in various scenarios. However, it is rational that improvement of some 
parameters affects negatively others. Balancing the major parameters of the 
system is a complex task and usually leads to iterative procedures between 
the designing and development phases of the project. Additionally, the project 
requirements often change from the initial ones during its lifecycle.  
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Figure 2. Typical WSN Project Lifecycle 

 

Hence, agile methodologies are appropriate for developing WSN applications. 
This type of development can be identified due to the short and iterative 
development cycle as well as the constant and direct interactions between the 
members of the development team (Martin, 2003). 

However, most WSN specific research projects follow relatively the same 
project lifecycle stages, which are the analysis phase, the designing- 
development phase, the performance evaluation phase and finally the real 
deployment phase, as presented in Figure 2. The following Sections in this 
Chapter are organized according to the aforementioned phases and further 
provide a brief description of the involved tasks as follows. 

 

2.1 Theory – Analysis 

Development process begins with the conception of the subjected problem. 
Researchers and engineers from various institutional or commercial 
departments cooperate in order to analyze and define the building blocks of 
the solution by collecting project requirements. 

Early stage analysis of the sensor networks requirements is a critical task, 
due to the difficulties of accessing and maintaining the WSN system later to 
the post-deployment phase. The unique characteristics of WSN applications 
present a diversity of specific challenges, which enables researchers to apply 
various formal methods for system specification, verification and synthesis. In 
order to apply this rich set of methods and theories, the very first task is to 
build a formal description of the sensor network. Usually, a formal system 
description requires to be defined over high-level mathematical models, which 
can later be used for a variety of system analysis tasks, including simulation, 
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verification and performance evaluation (Dong et al., 2008). Moreover, the 
formalization of the WSN description allows convenient and faster 
development of WSN systems, as well as it enables a partial automation of 
this process (Meshkova et al., 2008). 

Also the authors of (Meshkova et al., 2008) suggest a basic collection of 
parameters that need to be practically considered for any WSN system 
(Figure 3). These parameters can be further classified into four groups, 
according to the abstraction-levels of the development process that they are 
involved. Firstly, the main parameters specify the overall system performance 
and functionality, thus being the fundamental and the most important 
requirements of the project. Secondly, the network parameters describe the 
wireless network and its behavior according to the interactions between the 
nodes of the system. Next, the service parameters define the appropriate 
services and their behavior in conjunction with their inputs and outputs. 
Finally, the hardware and software requirements describe the devices and the 
employed software that collaborate in order to form the actual WSN system. 
Typically, these parameters are valuable during the designing and 
development stages of the project. A brief description of the aforementioned 
groups is introduced as follows.  

 

 

 
Figure 3. Typical WSN System Requirements (Meshkova et al., 2008) 
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2.1.1 Main Requirements 
The main requirements consist of five basic parameters, which are the project 
cost, the network lifetime, the propagation delay, the fault-resilience and the 
services that specify the overall WSN functionality.  

The total cost of the project is a combination of the hardware, the 
development and the deployment costs. The deployment cost also can 
increase in heterogeneous systems that employ individually specific nodes. 
Conversely, homogenous solutions are much cheaper due to their ability of 
self-organizing according to the overall system conditions. Nevertheless, in 
order to achieve this functionality, more effort is required during development 
and thus increasing the cost of this phase. Dynamic networks are more 
complex, however they provide a flexible structure that can self-adjust to 
various scenarios. Some examples of networking technologies that enable 
dynamic configuration are middleware frameworks in conjunction with code 
updates through the Erasable Programmable Read-Only Memory (EPROM) 
(Brown & Sreenan, 2013). On the other hand, static networks requires 
extensive designing efforts and test implementations in order to provide a 
convenient solution with minimal interference letter to real deployment. 

The network lifetime is a major requirement because the network is functional 
only when it is considered alive. In other words, the network lifetime depends 
on the individual lifetime of the involved nodes. As a measurement for energy 
consumption, it forms the upper bound for the utilization of the sensor network 
resources. The lifetime of a sensor node basically depends on how much 
energy it consumes over time in conjunction with the available energy for use 
(Dietrich & Dressler, 2009). Typically the motes are powered over batteries 
and therefore they have limited lifetime. However, there are various available 
technologies that can be employed in order to further increase the nodes’ 
lifetime. For instance, computational balancing can be applied by addressing 
parts of the processing load to the gateway or even to the user device. 
Although it has to be ensured that the gain from processing information on the 
gateway is greater than the communication cost of transferring data to it. 
Hence, this approach is suitable for small-scale networks. Additionally, energy 
harvesters are usually employed in order to extend the nodes’ energy 
resource, as depicted in Figure 4 according to the authors of (Merrett et al., 
2009). 
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As far it concerns the Quality-of-Service (QoS) of the project, two major 
parameters need to be considered, which are the propagation delay and the 
fault-resilience.  

The maximum allowable propagation delay between the gateway and the 
farthest node depends on the subjected scenario. For instance, health care 
and emergency control are some applications that are delay-sensitive, thus 
requiring strict synchronization between the nodes. Additionally, delay-
monitoring techniques are employed such to detect abnormal delays in the 
system (Zeng et al., 2009). Then the appropriate corrections must be applied 
so as to maintain the normal functionality of the network. 

Fault-tolerance can be considered as a parameter in all the involved models, 
including the hardware and software of the system along with the underlying 
node and network models. Furthermore, fault-resilience mechanisms manage 
and specify the tolerance of the sensor network to situations such as node 
failures, outdated and imprecise information in addition to data losses and 
malicious data injections. For instance, security add-ons may be employed on 
top of back-up and relay nodes. However, these methods introduce additional 
computational procedures and thus reducing the network lifetime. Moreover, 
this approach requires extra development effort and deployable devices that 
further increase the overall project cost. 

Finally, the services parameters specify the expected functionalities of the 
system, according to the user expectations and the purpose of its 
development. However, the initial requirements are based on assumptions 
that need further updating later on the development and validation phases of 
the project.  

 

 
Figure 4. Typical Energy Components in WSNs (Merrett et al., 2009) 
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2.1.2 Network Requirements 
The network requirements are considered to be critical because they describe 
the network where the application is about to be deployed. These parameters 
include information concerning the node mobility, the fault-tolerance, the 
appropriate bandwidth, the number of employed nodes, the geographical 
network coverage and the network symmetry by means of heterogeneity. The 
user can identify most network parameters, such as the expected bandwidth 
and node mobility, during the initial stage of conception. However, most of 
them are specified and adapted by the development team throughout the 
project lifecycle and thus affecting other requirements that need further 
adjustment. For instance, fluctuations in the geographical positions of the 
nodes influence the network coverage and heterogeneity requirements.  

Globally the network is modeled and organized based on the graph theory as: 

 

The graph consists of a set of vertices V  that represent the nodes of the 
network, in accordance to a set of edges E  that further contains numerous 
pairs of nodes as subsets of V , which represent the links between the nodes. 

An edge e = ninj( )∈ E  exists if and only if ni  is in the transmission range of nj  

and vice versa (Dimokas et al., 2007). 

Initially, general network parameters such as the network heterogeneity, 
density and scalability, must be estimated and translated into a graph. Later in 
the development phase, designing options are limited and thus more detailed 
graph representations of the network can be composed and evaluated. 
However, most WSN systems are developed by highly qualified small teams 
and therefore these processes are typically merged. 

 

 

G = V,E( )  with 

V = ( ni{ }
ι=1

ι=κ

∑ ) = n1,n2,  ... ,nk{ }  and 

E = ninj{ }∑( )     ∀ ni,nj ∈V      ni ≠ nj( )  
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2.1.3 Service Requirements 
Similarly to SOA, during the conception phase, WSN services are described 
based on high-level abstractions that provide generic design solutions. 
Furthermore these solutions aim on providing further formalization of the WSN 
development process, and thus they are suitable for systems that employ 
heterogeneous designs.  

Most WSN applications require various services in order to provide their 
functionality. For instance data aggregation, processing and decoding are 
crucial services performed by every node in the system. However in dense 
networks, such requirements can be satisfied by deploying special nodes that 
work as distributed service providers. Furthermore, the trade-off in service 
composition is to assign each required service to the appropriate service 
provider based on certain parameters such as the load balance, the 
propagation delay and the available network resources (Wang et al., 2009). 

Typically, the service requirements include all the expected functionalities and 
services of the system. Also each service should consider the expected 
influence on the nodes’ lifetime and the introduced information overhead in 
the network traffic. 

 

2.1.4 Software and Hardware Requirements 
The software and hardware requirements are valuable during the designing 
and development phases. The software parameters specify the required 
Operating System (OS), the minimum memory capacity of Radom Access 
Memory (RAM) and EPROM, as well as a list of software modules that are 
essential for the overall node and network functionalities. The hardware 
parameters specify the WSN hardware platform and its underlying 
components, including the type of sensors, memory, microcontroller chip, 
communication interfaces, radio and finally the available energy resources.  

 

2.2 Design – Development 

After the initial stage of gathering and analyzing the basic requirements of the 
subjected WSN solution, the researchers continue by investigating for 
available proposals that can be further adopted so as to minimize the 
development costs. However, in most cases the developers need to design 
new solutions so as to satisfy the requirement trade-offs between cost, 
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performance, network lifetime and QoS. Therefore, the initial task of the 
designing phase is to specify the appropriate network architecture. Next, the 
developers have to design the application by modeling the underlying protocol 
stack for the nodes of the network. Finally, at the development phase of the 
project, the abstract designing models are implemented into real code. A brief 
description of the procedures involved in the designing and development 
phases can be found as follows.  

 

2.2.1 Network Designing Procedure 
Through the network designing stage the developers have to decide on the 
corresponding network architecture that matches to the requirements of the 
project. As it is illustrated in Figure 5, the WSN network structure can be 
classified into four types, which are the single-hop star topology, the multi-hop 
mesh and grid topologies as well as the two-tier hierarchical clustered 
topology (Chen et al., 2009). The researchers should choose between these 
network architectures according to the scale of the network, by means of 
geographical latitude, as well as the behavior of the nodes such as mobility 
and fault resilience. 
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i. Single-hop star topology 

A single-hop star topology is the simplest WSN network structure, which 
consists of the nodes that are directly connected with the gateway, as 
presented in Figure 5.a. This type of networking enables handy designing and 
minimizes the overall project cost due to its simplified modeling abstractions. 
Hence, it is a suitable solution for small-scale networks were cost and fault-
resilience are often major concerns. For instance in medical applications the 
nodes should be free of deficiencies because even a single failure may lead 
to losses in the patient’s state. Cost is important in scenarios such as smart 
home applications, where most of the nodes have the same sensory 

 
(a)      (b) 

 
(c)      (d) 

 
 

Figure 5. Typical WSN network topologies - (a) single-hop star, (b) multi-hop grid,  
(c) multi-hop mesh, (d) two-tier clustered 
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capabilities. Furthermore, in small-scale networks the nodes can transfer 
computational load on the gateway device with low communication cost. 

 

ii. Multi-hop mesh and grid topologies 
For medium and large-scale networks there is a need to specify a routing 
process between the nodes of the network in order to transfer sensory 
information to the gateway. Therefore, each node relies to its neighbors to 
promote its data to the central sink or gateway, by adapting popular client-
server and P2P approaches (Chawathe et al., 2003). Furthermore, according 
to the type of deployment, the developers choose between mesh and grid 
topologies. Grid topology is suitable for scenarios where the nodes follow a 
structured deployment, as presented in Figure 5.b. On the other hand, a mesh 
topology is optimum in applications where the nodes are randomly deployed, 
similarly to Figure 5.c. 

 

iii. Two-tier hierarchical clustered topology  
Nevertheless, the most popular network model for large-scale networks is the 
two-tier hierarchically clustered topology. It is a complex and role-specific 
architecture where nodes perform different functionalities in the network. 
According to this topology the nodes of a specific field transmit their data to 
the cluster head node of their area, which further promote their data either to 
the central gateway or to other cluster heads from neighbor regions, similarly 
to Figure 5.d. By employing nodes with different capabilities it can significantly 
improve the network performance. On the other head, the complexity of 
developing heterogeneous networks increases the overall project cost. 
Typically, the cluster head nodes are designed to be more powerful by means 
of computational abilities and provide an in-network processing of the sensory 
data. Moreover, the introduced hierarchy may affect the network stability due 
to the strict coupling between the cluster head and its members. For instance, 
a possible failure of a cluster-head can lead to the disconnection of its 
underlying area from the rest of the network. Moreover, in scenarios with 
mobile nodes it is improper to employ hierarchical network structures due to 
the great cost of maintaining such hierarchy. 

 

 



 16 

2.2.2 WSN Protocol Stack and Application Designing 
After the designing of the network topology, the developers continue with the 
modeling of the application and communication protocols that are employed 
by the WSN system. Typically, the protocols are organized based on a 
protocol stack specific for WSN systems, similar to the traditional Open 
Systems Interconnection (OSI) model, as it is presented in Figure 6. The 
WSN protocol stack provides power efficient communication and routing 
through the wireless medium, as well as it promotes further collaboration 
between the nodes of the network by utilizing data and networking protocols 
(Akyildiz et al., 2002). Moreover, It consists of the Physical Layer, the Data-
Link Layer, the Network Layer, the Transport Layer and the Application Layer 
in addition to cross-layer services such as the Power, Mobility and Task 
Management services. However, the WSN stack formulation introduces 
iterations between the designing and the development phases so as to 
balance the major trade-offs, between flexibility, simplicity and efficiency. 
Typically, the developers first define the top services, and next continue to the 
lower layers. The cross-layer services are implemented last so as to readjust 
the main requirements if necessary. 

 

 

 
Figure 6. The WSN protocol stack 
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i. Physical Layer 
The Physical Layer protocols specify the radio frequency and the carrier 
frequency generation. Also they are responsible for the modulation, 
encryption, and transmission of the signal as well as to detect neighbor and 
sensory signals. Considering the high consumption of energy in long-term 
communication over the wireless medium, the developers have to design and 
apply protocols that promote power efficiency. Moreover, due to the 
environmental radio noise, the physical layer protocols should ensure the 
transmission signal integrity. 

 

ii. Data-Link Layer 
The Data-Link protocols control the multiplexing of the data streams, the data 
frame detection, the medium access and the error control as well as they are 
responsible to provide reliable point-to-point or point-to-multipoint connections 
between the nodes of the network. 

Moreover, the Medium Access Control (MAC) sub-layer addresses the issues 
of power conservation and data-centric routing. These unique features require 
a WSN specific MAC protocol that meets two goals. First, it should establish 
the links between the nodes, hop by hop, in order to be able to self-organize 
and transfer data. Second, it must provide fair sharing of the communication 
resources between the nodes. MAC protocols of traditional networking fail to 
accomplish these two goals, since power consumption is not a primary 
consideration in their design. 

Another important functionality of the Data-Link layer is the error control of the 
transmission data, which can be classified into two groups, the Forward Error 
Correction (FEC) and the Automatic Repeat Request (ARQ). However, ARQ 
is not an optimum solution for multi-hop networks due to the additional 
overhead introduced by the retransmissions and thus affecting the overall 
network lifetime. On the other hand, FEC methods overcome this issue by 
enhancing correction algorithms within the node stack. However, developers 
have to take under consideration the high complexity of implementing such 
decoding procedures. Therefore they should design simple error control 
codes with low encoding and decoding complexity in order to provide a 
convenient solution for WSN systems. 

 



 18 

iii. Network Layer 
The Network layer specifies the optimal paths between the intermediate 
nodes so as the data packets can surely reach the central gateway, which can 
be a sink node or a base station. Moreover, every node executes a distributed 
algorithm in order to acquire and establish a common routing table. Recovery 
from system error, node failures or topology changes is essential in order to 
guarantee the availability of data dissemination paths (Koliousis & Sventek, 
2007). The sensor nodes establish and maintain routes by employing either 
proactive or reactive data propagation technics.  

The proactive protocols periodically monitor the links between the nodes in 
order to ensure connectivity and path availability amongst the active node. 
Therefore, the nodes advertise a possible variation of their routing state to the 
entire network so as to maintain a fully traversable and common network 
topology.  

On the other hand, reactive protocols establish paths only upon request, for 
instance in response to a query, or an event. Generally, the node remains in 
an idle mode until it is required to generate a request packet or forward an 
incoming routing packet through its neighbor peers to the gateway. Next, the 
gateway responds over the reverse path with an Acknowledgment packet 
(ACK) so as to maintain an updated global routing table. Reactive data 
propagation is typically cheaper by means of overheads in the network traffic, 
since packets are generated only when it is necessary. Due to their simplicity, 
and inherent support for data on-demand, these protocols tend to be the best 
design choice for WSNs.  

Moreover, routing protocols provide two basic mechanisms, which are the 
neighbor discovery, to discover and maintain connectivity with neighbor 
nodes, and flooding, to disseminate the network state to distant nodes.  

 

iv. Transport Layer 

The Transport layer is required in order to enable the users of the system to 
access the sensor field through the Internet or other external networks. 
However, the traditional Internet transport protocols such as User Datagram 
Protocol (UDP) and Transmission Control Protocol (TCP) are limited due to 
the energy constrains and the data-centric communication imposed by WSNs 
(Iyer et al., 2005). For instance, it is well documented that the UDP protocol 
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does not provide any link reliability and TCP requires a global addressing 
scheme in order to transport data packets between the peers. 

Hence, there is a necessity for designing transport protocols which could 
address the unique characteristics of WSNs, including the network topology, 
system services, data traffic parameters and resource limitations by means of 
energy constrains and medium access fairness. Moreover, the transport 
protocol should provide high energy efficiency, flexible reliability and optimum 
QoS, in terms of link throughput, delay and packet loss rate (Wang et al., 
2006). Thus, the developers should design WSN transport protocols that 
enhance the functionalities of congestion control and loss recovery. These 
two components affect directly the overall network lifetime, reliability, and QoS 
parameters as it was previously explained. 

 

v. Application Layer – Cross Layer Services 
The key role of the Application layer is that it provides an abstraction of the 
underlying physical topology of the system, which further interacts with the 
actual WSN application. Moreover, this layer includes the appropriate 
interfaces that enable the users to monitor and manage the network 
infrastructure. In other words, the application layer includes the code of the 
main application as well as several management services. 

However, due to the great diversity of possible WSN scenarios and purposes, 
the design of an appropriate protocol is a challenging task. Actually, the 
formulation of a generic layer scheme is almost impossible, considering the 
various requirements in different WSN applications. Thus middleware and 
cross-layer designs emerge in order to provide optimum solutions, by tightly 
integrating, either parts, or the total layered protocol stack. Such services 
benefit from the boundless implementation amongst the layers and promote 
efficiency by reducing the overall network overhead. For instance, MAC and 
routing protocols can be enhanced into one protocol so as to combine their 
functionality and minimize the end-to-end delivery latency, as proposed in (Du 
et al., 2007) and (Mouradian et al., 2014). 

Additionally, further optimization of the network performance can be achieved 
by assigning different roles to the nodes, such as data storage, data 
aggregator or cluster head. These methods provide an in-network processing 
which can be activated either to individual nodes or to all the nodes of the 
network, according to the subjected scenario.  
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Figure 7. Implementation of Design Models to System Components 

 

In cases where the network topology is stable the role assignment can be 
applied statically. However, self-organization is essential for dense and multi-
hop networks and thus dynamic role assignment mechanisms emerge (Frank 
& Römer, 2005). Hence, these methods provide flexible solutions that further 
improve the system efficiency, as well as maximize the network lifetime. 
Nevertheless, the introduced complexity of the in-network functionalities 
requires greater development efforts and more detailed system models, so as 
to prevent resource mismanaging in terms of power consumption and traffic 
overhead. 

 

2.2.3 Development Procedures 
In the development phase of the project lifecycle, the researchers focus on 
implementing the designing abstractions of services and protocols into actual 
code that is processed by the node’s OS (Figure 7). However, traditional 
operating systems do not address the unique characteristics of WSN 
applications. Therefore the research community has developed various 
lightweight operating systems specific for WSNs, which support main 
functionalities, such as dynamic component linking, clock synchronization, 
task scheduling, interruption management, memory allocation and networking 
support. Furthermore, the previously mentioned functionalities provide 
resource abstractions in a way to enable the developers of the system to 
employ high-level Application Programming Interfaces (APIs) independently to 
the underlying hardware (Dong et al., 2010).  

The choice of the appropriate WSN OS is a critical decision since the 
supported programming models significantly induce the development 
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effectiveness of the application. Globally, there are two types of programming 
models, which are the event-driven and the multithreaded programming. It is 
most likely that application developers are more familiar with the traditional 
multithreaded model. 

 Nevertheless, this type of programming does not provide power awareness 
and thus being an unsuitable solution when it is applied to resource constraint 
systems such as WSNs. On the other hand, event-driven programming 
models tend to address the diverse nature and specifics introduced by WSNs 
but yet considered to be challenging for traditional application developers 
(Farooq & Kunz, 2011). Hence, researchers have implemented various hybrid 
WSN OS that adapt both programming models, such as the solutions 
proposed by  (Dunkels et al., 2004), (Zhou et al., 2008), (Dong et al., 2011) 
and (Liu et al., 2014).  

Moreover, additional efforts need to be taken by the developers, considering 
the implementation trades-offs between the code’s efficiency, complexity and 
comprehensiveness. For instance, complex codding introduces difficulties in 
future updates, maintenance and reusability, even though it is strongly related 
to the requirements and the services of the subjected system. However, code 
clarity and comprehensiveness can be supported by following a component-
based development approach in conjunction with coding primitives, such as 
variable naming and code commenting. On the other hand, by minimizing the 
introduced memory footprint and processing load of the code can contribute to 
resource awareness and improve the overall efficiency of the WSN 
application. Finally, as already mentioned in the previous Section, providing 
in-network functionalities by implementing cross-layer optimizations such as 
distributed coding, compression and encoding can increase the network 
lifetime and therefore its reliability. 

 

2.3 Performance Evaluation – Validation 

After the coding implementation of the system services and applications, the 
developers need robust validation tools and methods in order to verify the 
optimum functionality of the system components, prior to real deployment. 
Performance evaluation induces iterative procedures between the designing, 
development and testing phases in order to optimize the system modules and 
provide convenient solutions. After many years of technological evolution in 
the field of WSNs, has resulted in three main validation platforms, which are 
the sensor network simulators, emulators and the physical testbeds. However, 
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due to the complex nature of WSNs, each one of these methods has its own 
limitations when applied individually. Therefore, the researchers should 
combine all three in order to achieve more realistic conditions and retrieve 
valuable validation results (Coulson et al., 2012). A detailed presentation of 
the previously mentioned tools can be found in the upcoming Chapters; 
nevertheless a brief description is introduced as follows. 

 

2.3.1 Simulation-Emulation 
Simulation is the most widespread method for system validations across the 
research field of communication networks. Simulators enable scientists to 
evaluate their ideas and protocols in a convenient way by providing various 
levels of system abstractions in order to hide the complexity of low-level 
hardware functionionalities. Moreover, the researchers can investigate in 
depth the performance of the subjected solution by repeatably optimizing and 
isolating different system parametes in various scenarios (Papadopoulos et 
al., 2013). However, when it comes to the diverse nature of WSNs, there are 
many unique parameters that complicate the simulation fidelity, often making 
it unrealistic to test the instruction-level execution and its impact on the 
network lifetime. WSN simulations that do not consider the execution model of 
the node’s OS, as well as the introduced synchronization issue of time drift 
due to hardware delays, produce inconvenient performance results (Riliskis & 
Osipov, 2015). 

On the other hand, emulation is a special type of validation method that aims 
on bridging the gap between system simulation and real hardware 
performance. Moreover, the emulators try to provide the exact same 
instruction-set processing with real hardware by duplicating its functionality 
over detailed simulation models. Therefore, it is able to provide greater fidelity 
than simulation-based validations, as well as being more flexible and much 
cheaper than real hardware implementations such as purely physical 
testbeds. Despite its promising capabilities, emulation is a much less 
exploited approach in the field of WSNs. However, there are various scientific 
studies on the lower layers of the WSN systems, such as hardware drivers, 
networking and OS as well as cross-layer validation frameworks that 
incorporate emulation methods. For instance, emulators can compute the 
energy consumption of a particular WSN hardware platform according to 
detailed simulation of the radio model, as proposed in (Girod et al., 2004) and 
(Wu et al., 2007). 
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2.3.2 Testbeds 
Due to the simulation limitations in the modeling realism of the deployment 
challenges, has resulted in an increased interest in developing real hardware 
laboratories known as testbeds. These platforms excel in the fidelity of the 
provided validations by enabling rigorous, transparent, and replicable testing 
of mature WSN designs and models (Papadopoulos et al., 2013). However, 
WSN testbeds are expensive platforms by means of, development, 
deployment, maintenance and overall cost. Additionally, most of them provide 
limited flexibility and heterogeneity due to the fixed network topologies, single 
type of supported mote platforms, protocol stack and OS. Therefore, the 
majority of scientists conduct experiments over custom, small-scale (i.e. 
typically up to tens of nodes) and local testbeds that are not open to the 
research community and do not promote reproducibility.  

 

2.4 Real Deployment – Maintenance 

Deployment of sensornets is considered to be the final phase where the 
nodes have to be set up in a geographic field so as to monitor the 
phenomenon of interest. However, deployment is a labor-intensive and 
complex task since environmental fluctuations often degrade the network 
performance or trigger system errors that could not be discovered during the 
evaluation phase (Ringwald & Romer, 2007). However, there are various 
issues that need to be addressed in order to result with an efficient 
deployment with minimum maintenance. Thus, we can categorize these 
issues based on three discrete phases related to deployment, which are the 
pre-deployment and deployment phases, post-deployment phase and final the 
re-deployment phase (Akyildiz & Vuran, 2010). 

 

2.4.1 Pre-deployment and Deployment Phase 
Initially, the nodes can be placed either one by one in a field or they may be 
deployed randomly according to the specific application. For instance, nodes 
can be deployed in an indoor laboratory or outside by dropping them from an 
airplane or by a missile, as well as they can be placed one by one either by a 
human or even a robot. However, in most large-scale scenarios the great 
number of involved nodes, in conjunction with the diverse environmental 
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conditions makes it almost impossible to place the nodes according to a 
carefully designed plan. Therefore the schemes for initial deployment must 
reduce the installation cost, increase the flexibility of the nodes topology 
arrangement and promote self-organization and fault tolerance functionalities. 

 

2.4.2 Post-deployment Phase 
After the deployment phase is completed, the network topology may change 
due to various reasons. Moreover, in scenarios where the nodes introduce 
mobility, their movement influences directly the topology of the network for-
long time periods. On the other hand, the links between the nodes of the 
system can change in cases of radio jamming, environmental interference or 
noise while these factors affect the network topology for short-time periods. 
Also according to the sensing tasks of the nodes, the topology may change 
periodically, when certain nodes turn to sleep mode for a specific amount of 
time. Finally, the most critical case of topology change occurs when the nodes 
fail to participate in the network due to possible hardware deficiencies or lack 
of available power resources, which result in permanent changes. 
Consequently, the employed network protocols should enable the nodes to 
adapt to the aforementioned fluctuations in the topology. 

 

2.4.3 Re-deployment Phase of Additional Nodes 
The changes of the network topology introduced during the post-deployment 
phase, may require additional nodes to be deployed in order to overcome 
possible connectivity and fault tolerance issues. Therefore, additional nodes 
can be re-deployed at any time to replace the broken nodes or even to 
improve and expand the dynamics of the system. However the addition of 
new nodes introduces the requirement of network self-organization by utilizing 
special WSN and Ad-Hoc protocols.  
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3. Simulators 

Due to the great complexity of deploying and maintaining large scale WSNs, 
troubleshooting procedures after real deployment are extremely expensive. 
Hence, the researches should provide reliable solutions that are evaluated 
over extensive testing. Testbeds of this scale are also expensive to be 
developed and need great effort to be managed (Mainwaring et al., 2002), 
(Ganesan et al., 2002). Therefore, WSN simulators are designed to provide a 
software platform that addresses the key aspects of the overall performance 
of a sensor network. Moreover, simulators enable handy designing, 
development, debugging and evaluation of new algorithms and protocols prior 
to hardware implementation.  

However, it is almost impossible to duplicate the exact same conditions of real 
deployments. Therefore, studies based only on simulation practices affect the 
total credibility of the proposed research (Kotz et al., 2004). On the other 
hand, simulators can be considered essential for exploring WSN applications, 
acting as a common ground for the scientists to test their ideas. A single 
paper cannot puzzle out all the aspects of a complete application, but it can 
contribute in a way to promote further analysis and research in the field 
(Stojmenovic, 2008). 

In order to effectively evaluate a study over simulations, it is important to have 
a good knowledge of the existing simulators and their capabilities. Up to the 
present day there are a variety of simulators that differ in their designing and 
modeling abilities. Thus, developers can choose the appropriate tool 
according to their needs and identify possible errors in their applications with 
ease such to provide further improvement. Nevertheless, lack of knowledge in 
the features of the available simulators can lead to inaccurate assumptions 
and buggy applications. 

 

3.1 Simulator Design Requirements 

Any WSN simulator should provide a diversity of underlying tools so as to 
replicate the behavior of real deployments. The basic requirements that 
should be implemented by a simulator in order to provide convenient results 
can be briefly described as follows. 
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i. Fidelity and Heterogeneity  
In order to match any simulation needs, the software should provide accurate 
behavior of the underlying features of the simulated system. More specific, the 
models of the radio channel, the physical environment and network 
functionality should be faithfully implemented for optimum performance 
evaluation. Fidelity can be referred to both bit and temporal accuracies. For 
instance, the accuracy of simulating a transmission event is a correlation 
between the content of the transmission (bit accuracy) and the duration of the 
transmission time (temporal accuracy). Furthermore, by taking under 
consideration the nature of modern WSN applications, energy aware and 
heterogeneous mechanisms should be supported and replicated efficiently. 

 

ii. Reusability and Availability 

Globally, researchers are interested in challenging their novel proposals with 
keen current studies. Such feature enables detailed comparison between 
different simulated scenarios and applications so as to optimize new 
solutions. Hence, the simulators should provide a diversity of common WSN 
models that can be modified or even integrated with new ones. Those models 
should provide modularity in order to support fast prototyping by abstracting 
low-level functionality details. However, the existed variety of implemented 
WSN scenarios depends on the popularity and development support of the 
simulator in use. Recent protocols and applications that successfully involved 
and promoted evolution in the WSN field of study are mostly implemented in 
later versions. Also, availability can be referred to a cross-platform design of a 
simulator, by means of OS independency (Windows, Linux, etc). 

 

iii. Performance and Scalability 

Performance and scalability are critical tasks for modern WSN applications. 
As far as it concerns the simulators, those tasks depend on the underlying 
programming language that implements the simulation engine and its 
functionalities. It should not be confused with the programming language that 
implements the user-defined testing scenarios. Moreover, performance refers 
to the overall simulation speed, which is further defined as the ratio of the 
virtual simulated time to the physical run-time. Scalability is related to the 
ability of simulating large-scale networks and the effects of timely increasing 
network complexity on the overall performance. However, this mechanism is 
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limited to the memory, processing and storage features of the computer 
hosting the simulator. 

 

iv. Rich-Semantics Scripting Languages and Graphical User Interface 
Due to the great amount of information involved in the simulation process, 
rich-semantics scripting languages should be supported, in order to define 
simulation settings and retrieve output results. The Graphical User Interface 
(GUI) is considered to be a major requirement because it enables convenient 
debugging, fast network modeling and handy visualization of the results 
without the need to employ third party software. Inexperienced users can get 
an easier control of the simulations by using a simulator that provides a user 
friendly GUI. 

 

3.2 Discrete Time Simulations 

WSN simulators are discrete time software platforms, which means that 
simulations are driven by events that occur over discrete time. Furthermore, 
the architecture of the core mechanism comprises the scheduler and the 
simulation models. The simulation models implements the functionality and 
the logics that model a physical condition. On the other hand, the scheduler is 
responsible to provide the appropriate collaboration between the models, by 
managing the simulation time in accordance to the simulation models so as to 
induce and fluctuate the simulated system at discrete time points. The 
changes on the simulated system are introduced by varying the values of 
some state variables during simulation time.  

The scheduler can be designed as Time-Driven or Event-Driven, based on the 
way that the time points are divided, thus promoting the simulation events. 
Every time point introduced by the scheduler, which can be either a step or an 
event, is further processed by a function that is typically called handler. The 
handler is responsible to invoke the proper simulation models that need to 
cooperate in order to update the current state of the simulated system 
variables, if necessary. 
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Code Listing 1. Example of an Event-Driven Simulation 

 

i. Event-Driven 

The event-driven design induces the scheduler to divide the time into points 
that correspond to simulation events, for instance sending or receiving a 
packet, some change in the sensory field of interest etc. Differently to time-
driven designs, in event-driven schedulers there are various handler functions 
corresponding to every event. This method is considered to be more accurate 
than time-driven scheduling due to the ability of evaluating the simulated 
system only when the events occur, as presented in Code Listing 1. However, 
this method of scheduling introduces complexity and requires strong 
computational capacity and development effort to conduct event-driven 
simulations. 

 

ii. Time-Driven 
When the scheduler follows a time-driven design, the simulation time is 
divided into further points that stand off equal time length, for instance one 
point every minute, hour etc., always according to the tested scenario. 
Consequently, the events occur based on a list containing respectively 
timestamps. Globally in a time-driven scheduler there is a single handler 
function that performs evaluations of the system on every time step, 
regardless the presence of changes in the simulated system.  

 

1  while(true) 
2 { 
3   //Event queue  
4   if(!empty(eventQueue)) 
5  { 
6    // get the first event from the queue 
7    Event e = dequeue(eventQueue); 
8    // progress simulation time according to the event 
9    timeProgression(e.time); 
10    // call the handler of the specific event 
11    e.handler.handleEvent(); 
12   } 
13 } 
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Code Listing 2. Example of a Time-Driven Simulation 

 

Moreover, a time-driven design is considered to be more suitable in cases 
where the changes of the simulated system happens more or less periodically 
on some predictable time points, as presented in Code Listing 2. Hence, 
without the presence of overheads in managing the events as in event-based 
scheduling, simulations that follow a time-driven design are more convenient 
to implement. 

 

 

3.3 Simulation Models 

The key aspect of simulators is to provide convenient simplifications of real 
conditions and interactions between the underlying elements of a sensor 
network and the physical environment. The structure of the simulated 
condition is implemented in several models that individually define a specific 
feature or operation, along with their relations (Figure 8). Moreover, the 
simplifications should be well defined and detailed in order to acquire valuable 
results. 

 
Figure 8. Typical Simulator Structure 

1  for (every t) 
2 { 
3   //progress simulation time by t  
4   timeProgression(currentTime+t); 
5   //call simulation handler 
6   simulationHandler(); 
7 } 



 30 

Hence the simulated models should be based on realistic assumptions. 
However, the complex of precise modeling capabilities, in accordance with 
large-scale scenarios, increases dramatically the utilization of resources and 
finally affecting the overall simulation performance. Therefore, the 
fundamental trade-off is to provide accurate modeling while meeting the 
aforementioned simulator design requirements. In addition, many methods 
have been used to deal with scalability issues such as component-based 
design and parallel simulation. In a parallel simulation, the simulated 
components are distributed over several Central Processing Units (CPUs), 
where the sub-programs are concurrently executed, while the simulator 
scheduler is responsible for the overall synchronization. Despite the 
complexity of real systems, a general description of the main component 
models is introduced as follows.  

 

3.3.1 Network Model 
The network model is a broad simplification of the system network, which 
further incorporates the following individual models. Figure 9 depicts these 
models and their relations. 

 
Figure 9 Typical WSN Network Model 
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i. Nodes 
The node is the physical device that monitors a set of physical variables that 
simulate a physical condition of interest. Also the nodes are connected on a 
common radio channel in order to communicate with each other. The protocol 
stack that is implemented as part of the inner node model defines the 
connection and communication mechanisms. Unlike the classical network 
models, sensor networks introduce complex concepts such as mobility, 
energy efficiency, and sensory capabilities that are constrained by the 
physical environment. These concepts are also implemented as part of the 
inner node structure that further interacts with the environmental model. A 
typical simulation scenario can involve several numbers of nodes, however 
large-scale networks that introduce great scalability are still a challenging 
task. More detailed description about the node functionality is given in the 
Node Model section below.  

 

ii. Environment 
The environmental model is the main component that differs WSN models 
from the rest network types. This feature simulates real environmental 
conditions with sensed physical variables. Moreover, its basic functionality is 
to generate and propagate events that further trigger the node to initiate an 
activity of interest such as communicating with other nodes. Physical 
variables of interest include data such as temperature, seismic waves, sound, 
water pollution etc. However there are some simulators that they employ an 
agent for each physical variable. In other words, it means that the events 
generation is separated from the environmental model. 

 

iii. Radio Channel 

The radio channel consists of the propagation and the error models. 
The propagation model specifies the diffusion of the radio signal among the 
nodes of the network. The environmental model varies due to insertion loss 
and its effect on the signal quality. Furthermore, there are several propagation 
models that differ in complexity, however more complex models are globally 
more resource demanding, which can further affect the overall performance 
trade-off. In more detailed models, the use of a terrain component is 
connected to the environment and radio channel models and it is taken into 
consideration so as to compute the propagation, by influencing several 
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physical magnitudes. The error model addresses the random phenomenon 
that affects the rates of packet reception as well as packet loss. Normal 
distribution, Markov chain or empirical models are typically used and 
optimized in order to implement such error models. 

 

iv. Sink Nodes 
The sink nodes are special nodes that receive and process data from the rest 
sensor network. They are used to provide fast advancement of valuable 
information that is related to sensory data collected by the network nodes. 
The use of sink nodes depends on the subjected application and scenarios 
that are tested through the simulator. 

 

v. Agents 

The agent acts as the generator of events of interest in order to trigger the 
nodes. More specific, the agent may cause a variation in a physical 
magnitude, which is propagated through the environment and impels the 
sensors of the nodes. This component typically is implemented as part of the 
protocol tier that is described below, however it can be more effective if 
implemented separately from the node and the environment models (Figure 
9). 

 
Figure 10. Tier-based Node Model 
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3.3.2 Node Model 
The overall node mechanism depends on various models that incorporate in 
such way so as to form a cross-layer functionality. However, in order to 
facilitate the development process, these models are grouped into further 
classes according to their purpose. Those abstract tiers and their comprised 
models are briefly described below and are illustrated in Figure 10. 

 

i. Protocol Tier 
The protocol tier groups all the appropriate communication protocols. 
Globally, the protocol tier contains three layers, which are a MAC, a routing 
and a specific application layer. The functionality of the protocols depends on 
the state of the physical tier that is presented below, for instance a routing 
protocol may consider energy constraints in order to decide the packet route. 
Hence, efficient methods that enable information interchange between the 
tiers must be implemented. 

 

ii. Physical Node Tier 
The physical node tier simulates the resources of the node, by means of 
hardware and its effects on the performance, lifetime, capabilities and 
functions of the node. Actual composition of this tier may change depending 
on the specific application. Typically, that tier consists of the physical sensor 
model, the energy model and the mobility model. Physical sensors describe 
the sensory behavior of the monitoring hardware. A critical feature of WSN 
applications is the energy model, which simulates the power consumption 
during common node activity such as sensing, data processing and 
communication. Also there is a mobility model that defines possible 
movement of nodes by changing their position parameters during simulation 
time. Generally, the mobility is implemented either by a movement vector in 
accordance to the initial position or by a list of positions linked to timestamps. 

 

iii. Media Tier 
The media tier acts as a common ground between the nodes and the 
simulated physical environment. A node can interact with the environment 
through an ordinary radio channel that is further affected by the physical 
parameters as described previously in the radio channel Section. 
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Figure 11. Classification of Simulation Designs 

 

3.4 Simulation Design 

As described in previous Section, simulation models implement the logics and 
functions of simulated WSN applications. Furthermore, the simulation models 
are developed based on various designs that also play important role in order 
to implement the design requirements of WSN simulators. A broad 
classification of possible simulation designs is applied based on two key 
aspects that are the abstraction and multiprocessing capabilities, as illustrated 
in Figure 11. 

 

3.4.1 Abstraction Level Design 
The simulators can follow two types of designs based on their abstraction 
capabilities in order to address the requirements of the simulated system. 

 

i. Simulation Based Design 
Globally, simulations can be used to test the performance of new applications 
without considering constrains that may introduced by the employed 
hardware. Moreover, simulators provide handy modeling of the interior 
features of the subjected physical systems by simplifying the software 
development process for a particular WSN application. Simulation based 
designs do not provide fully accurate evaluation. However it allows fast 
prototyping because it provides handy development of WSN systems in high-
level abstractions.  
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ii. Emulation Based Design 
The emulators are a special type of simulators that aim on increasing the 
overall evaluation fidelity by modeling the subjected system in a realistic 
manner. In other words, emulators require cross-layer implementations of the 
models in addition to low-level functionalities. Furthermore, emulation based 
designs can improve the simulation performance, by employing real sensor 
motes and implementing their corresponding instruction set, so as to support 
native execution of actual WSN code. Emulators provide accurate simulations 
of WSN applications because an emulator executes the same machine code 
that runs on a real sensor node processor. Consequently, this type of design 
introduces overheads due to complex models and requires greater resources 
than a typical simulator.  

 

3.4.2 Processing Level Design 
Simulators can be divided in two types based on the way that they process 
the simulation events.  

i. Sequential simulators 
Simulations that follow a sequential design introduce the simulated events in a 
queue that is further addressed by a single processor. 

 

ii. Parallel simulators  
Simulators that employ a parallel design introduce the simulated models in a 
distributed system that further addresses individual processes either to a 
multi-core processor or to multiple processors. Therefore, this type of design 
can improve the overall simulation speed and performance. 

However, simulations based on distributed designs are able to provide limited 
speed and scalability due to great complexity in providing the temporal 
relations of the interactions between the simulated models. For instance, in a 
scenario that sensor nodes are simulated in parallel, their simulation speeds 
may vary due to differences in either the number of inputs or node models, in 
addition to lack of available processors so as to simulate all the nodes 
simultaneously. Since nodes may get simulated at different speeds, it 
becomes critical to preserve the causality of events for optimum simulation-
based evaluations (Titzer et al., 2005), (Jin & Gupta, 2008). 
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In order to overcome the above synchronization issues many protocols have 
been proposed. Globally, these parallel synchronization protocols can be 
classified into two groups according to their approaches, which are the 
conservative and optimistic protocols. 

In a conservative approach, a process is able to progress in simulation only 
when the causality is preserved. However, it is possible to result in a 
deadlock. Therefore conservative protocols require additional messages to be 
enhanced in order to transmit the local time between the different simulated 
processes, thus introducing a major overhead. On the other hand, an 
optimistic protocol allows the simulated process to progress in simulation time 
until it discovers a violation of casualty, where the process has to move 
backwards in time along with cancelling all the transmitted messages. This 
rollback is achieved by periodically saving the simulation state so they can be 
handled as checkpoints. Therefore, the major overhead in an optimistic 
approach is the processing of the rollback actions (Lim et al., 1998). 

 

3.5 Taxonomy of Simulators 

Simulators are the most wide spread evaluation tool amongst the WSN 
research community for designing new applications. The key features that 
play crucial role in the simulation process are the models of the subjected 
nodes, network and environment as described previously. However, 
environmental modeling is still a challenging task since the majority of the 
existing tools provide poor designs by means of details and abstraction 
(Hammoudeh et al., 2008). Additionally, many available proposals of WSN 
simulation frameworks, like the proposals of (Guestrin et al., 2004), 
(Chiasserini & Garetto, 2004) and (Gracanin et al., 2004), do not provide 
detailed environmental models. On the other hand, modern research studies 
try to address this controversy and provide more specific information and 
detailed frameworks so as to increase simulation efficiency, as the proposals 
of (Merrett et al., 2009), (Lo et al., 2007), (Corke et al., 2010) and (Ferencik et 
al., 2010). 
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Figure 12. Simulators Taxonomy (Du et al., 2014) 

 

Therefore, the following taxonomy will focus only on the simulators’ node and 
network modeling capabilities in accordance to the employed abstraction level 
design. Hence, WSN simulation tools can be divided into four categories, 
which are the Network Simulators with Node Models (NSNM), the Network 
Simulators with Node Emulators (NSNE), the Node System Simulator with 
Network Models (NSSNM) and finally the Node Emulators with Network 
Models (NENM), as depicted in Figure 12. A brief description of each category 
can be found below. 

 

i. Network Simulators with Node Models (NSNM) 
Network simulators with node models, typically, implement event-based 
scheduling designs among the underlying simulation models, such as the 
radio channel, the node and the network models. However, the main objective 
of this type of simulators is to emphasize on network modeling capabilities, 
which is the predominate entity. Hence, the node models are implemented in 
higher abstraction level, by means of functional complexity. Many popular 
simulators belong to this group, for instance NS-2, NS-3, OMNET++ and 
GloMoSim. 

 

ii. Network Simulators with Node Emulators (NSNE) 
Network simulators with node emulators, aim on addressing the advantages 
of the overall abstraction level classification, by employing network 



 38 

simulations in conjunction with node emulations. Furthermore, on the network 
simulation part, the developer implements the details of the network models. 
On the other hand, the node emulators process natively the nodes’ instruction 
set, which provides accurate performance results. However, the 
communication between the network simulator and the node emulator 
introduces overheads that lead to time-consuming evaluations. A popular 
example of simulator that belongs to this group is Qualnet. 

 

iii. Node System Simulators with Network Models (NSSNM) 
Node system simulators with network models, globally utilize System-Level 
Description Languages (SLDL), such as SystemC, in order to model the 
underlying node system. Moreover, SLDL enables researchers to design 
simultaneously high-level abstractions of the hardware and software 
components, as they would have been in a real system. Hence, researchers 
can focus on the overall functionality of the system instead of its 
implementation details, which promotes convenient evaluations of different 
architecture alternatives. Finally, the NSSNM compared to NSNM can provide 
faster execution due to the SLDL effectiveness (Du et al., 2011).  Some 
examples of this type of simulators are, IDEA1 (Du et al., 2011), 
SystemC/MSPSim platform (Stecklina et al., 2011). 

 

iv. Node Emulators with Network Models (NENM) 
A node emulator with network models can be considered as a conjunction 
between two further sets, which are the Instruction Set Simulator (ISS) and a 
WSN OS emulator. The ISS is used to simulate specific microcontrollers and 
processors, and eventually collaborates with an OS emulator that is used to 
emulate the execution of node application code over embedded WSN OS 
such as TinyOS, and Contiki. This type of simulators provides high timing 
accuracy of software execution compared to real implementations due to the 
ability of processing the embedded software directly in the simulation 
framework without modifications (Eriksson et al., 2009). Some examples of 
simulators that belong to this group are TOSSIM, COOJA, MSPSim and 
Avrora.  

Each one of the aforementioned simulator types aim on fulfilling different 
simulation requirements. Those identifying features that separate each type 
are briefly presented in Table 1 as proposed in (Du et al., 2014). 
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Table 1. Characteristics of the different simulator types 

Simulator Type Advantages Disadvantages 

Network Simulators with 
Node Models (NSNM) 

• Network modeling 
• Radio channel 

modeling 
• Scalability 

• Simple power 
model 

• Simple timing 
model 

Network Simulators with 
Node Emulators (NSNE) 
 

• Network modeling 
• Detailed channel 

modeling 
• Detailed timing 

model 

• Scalability 

Node System Simulators 
with Network Models 
(NSSNM) 
 

• Network modeling 
• Radio channel 

modeling 
• Scalability 

• Moderate timing 
accuracy 

• Moderate power 
accuracy 

Node Emulators with 
Network Models (NENM) 
 

• High timing 
accuracy  

• High energy 
accuracy 

• Simple network 
modeling  

• Simple channel 
modeling 

• Scalability 
 

 

3.6 Survey of WSN Simulators 

As already mentioned in the previous Section, according to the simulator 
taxonomy there are a number of available tools that can be employed based 
on the requirements of the subjected research. Moreover, by taking into 
consideration the popularity of the simulation tools presented in Chapter 5, a 
brief description of these simulators is presented below. Each further 
description is introduced with the following format: a summary of the 
simulator, the programming language in use, its key features and finally its 
limitations, as summarized in Table 2. 
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Table 2. Summarized simulators characteristics 

Simulator Language Key Features Limitations 

NS-2 • C++ 
• Tcl 

• Modular design 
• Extensible 
• Diversity of predefined 

models 
• Visualization tool 

called NAM 
• Packet level execution  

• Long learning curve 
• Predefined models 

can not be modified 
• Standard application 

layer models 

NS-3 • C++ 
• Perl 
• Python 

• Open-source, build 
from scratch 

• Realistic simulation 
models 

• Can be employed as 
real-time emulator 

• Pcap output files for 
further visualization by 
third party tools 

• Supports both IP and 
non-IP based networks 

• Not backward 
compatible with NS-2 

• Lack of credibility 
• Scalability depends 

on the host PC’s 
computational and 
memory resources  

OMNET++ • C++ 
• NED 

• Open-source 
• Modular design 
• Extensible 
• GUI based on Eclipse 

IDE 
• Extensions for real-

time simulation, 
emulation and 
SystemC models 

• High scalability 

• Lack of accuracy 
• Few predefined 

models 
• Difficult to combine 

the predefined 
models since they 
have been developed 
by different research 
teams 
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Simulator Language Key Features Limitations 

GloMoSim • PARSEC 

• C 

• Sequential and 
parallel simulation 
environment 

• Modular design 
• Extensible 
• Suitable for 

simulating mobile 
wireless IP networks 

• High scalability 
• User-friendly GUI 

• Lacks the ability of 
providing accurate 
simulations 

• Discontinued since 
2000 

Qualnet • PARSEC 

• C 

• C++ 

• Based on GloMoSim 
• High fidelity 
• Modular design 
• Sequential and 

parallel simulation 
environment 

• Individual 
measurements on 
each layer 

• Java-based GUI 

• Commercialized 
software 

• High CPU utilization 
• The GUI is slow in 

most computers 

TOSSIM • nesC 

• C 

• C++ 

• Python 

• Open-source 
• Simulation of 

TinyOS-based 
applications 

• High scalability 
• Powerful GUI 

• Lack of power 
consumption models 

• Limited to TinyOS 
applications 

• Lack of heterogeneity  

COOJA • Java 

• C 

• Open-source 
• Extensible 
• Simulation of 

ContikiOS-based 
applications 

• Simulation of 
heterogeneous 
networks 

• Convenient transition 
to real deployments 

• Binding with MSPSim 
• GUI and visualizer 
• JNI supports third-

party debugging tools 

• Limited to the Javas’ 
heap memory 

• Slow simulation time 
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Simulator Language Key Features Limitations 

MSPSim • Java • Open-source  
• Instruction-set 

emulation of MSP430 
microcontroller 

• Realistic simulation 
• Accurate timing 
• High scalability 
• Modular design 
• GUI 
• Convenient transition 

to real deployments 

• Limited to the Javas’ 
heap memory 

Avrora • Java • Open-source 
• Instruction level 

simulator 
• Cycle accurate 
• Language and OS 

independency 
• Based on Atmel AVR 

microcontroller 
• High scalability 

• Does not model clock 
drift 

• Lack of GUI 
• Does not support 

mobile scenarios 
• 50% slower than 

TOSSIM 

Matlab • C 

• Fortran,  

• Python 

• C++ 

• Perl 

• Java 

• ActiveX 

• .NET 

• High-scripting 
language 

• Flexible, reliable 
• Hundreds of build-in 

mathematical functions 
• Simulink and other 

frameworks for WSN 
simulation 

• Extendible 
• Friendly GUI 

• Commercial software 
• Interpreted language 
• Slower performance 

EnergyPlus • Fortran 

• C++ 

• Energy-management 
simulation tool 

• Modular design 
• Interface for external 

programs 

• Lack of GUI 
• Simulation based on 

input files 
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3.6.1 Network Simulator 2 (NS-2) 

i. Summary  

Network Simulator 2 is a discrete event simulator that aims on networking 
research in general (The Network Simulator - NS-2, 2011). Network simulator 
was developed in 1989 as an alternation of the REAL simulator (Keshav, 
1988), and since then three major versions has been released NS-1, NS-2 in 
1996 and NS-3 in 2008. As far as it concerns NS-2, it is designed based on a 
modular approach that enables effective extensibility (Sarkar & Halim, 2011). 
Furthermore, this simulator provides a variety of predefined models in order to 
support simulation of TCP, routing, and multicast protocols over wired and 
wireless (local and satellite) networks. However, the upgrade of simulating 
wireless network technologies, such as LTE, MANETs and WSNs, was 
introduced in later versions. Moreover, the simulation scenarios that are 
tested over the NS-2, follows strictly the OSI reference model. 

 

ii. Simulation language 
NS-2 simulations are conducted based on a combination of C++ functions, 
which models the behavior of the simulation nodes, and Tcl scripts that 
control the simulation process and specify further features, such as the 
network topology (Chaudhary et al., 2012). 

 

iii. Key features 
NS-2 is a popular simulator for WSN application due to the provided 
extensibility in conjunction with a great number of predefined protocols and 
models that are available within the simulator package. It follows an object-
oriented design that allows straightforward implementation of new protocols. 
The key features of WSN systems that are supported include sensor channel 
models, power models, lightweight protocol stack, hybrid simulations and 
finally, scenario generation tools. Moreover, a visualization software tool 
called Network AniMator (NAM) is employed in order to support topology 
layout, packet level animation, and various data inspection mechanisms 
(Nam: Network Animator, 2002). The simulations are executed in packet level, 
thus producing detailed results and enabling handy debugging. 
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iv. Limitations 
NS-2 requires a long learning curve and advanced skills in order to conduct 
valuable and repeatable simulations. A major drawback of NS-2 is that a user 
is unable to modify the provided protocols and models (Chaudhary et al., 
2012). Furthermore, the packet formats, the energy models, the MAC 
protocols and the hardware models differ between various WSN systems. A 
unique characteristic of sensor networks is the fact that the application layer 
interacts often with the lower protocol stack, nevertheless NS-2 lacks of the 
ability to provide a modifiable application model. 

 

3.6.2 Network Simulator 3 (NS-3) 

i. Summary 

The NS-3 simulator (NS-3, 2011) is a free open-source discrete-event 
network simulator especially devoted for research and educational use. The 
NS-3 project started in 2006 and it was first release to the public on July 2008 
with the version 3.1. Up to the current day the latest version is 3.23 that was 
released on May 2015. NS-3 was developed from scratch and it is not an 
extension of NS-2, thus not backward compatible (Chaudhary, Sethi, & 
Keshari, 2012). However, NS-2 community still continues to provide support 
and maintain the simulator package in order to study transition and integration 
mechanisms to NS-3. Furthermore, new features have been included 
compared to NS-2, in order to provide detailed simulation tests of any 
networking technology. Every three months, new stable version of NS-3 is 
shipped, containing new developed models that are documented, validated, 
and maintained by researchers.  

 

ii. Simulation language 
NS-3 simulations are conducted entirely in C++ with optional use of Python 
bindings. The network component models as well as the user-defined 
simulation scenarios are implemented either in C++ or PERL, however 
differently to NS-2, they can be totally written in C++ programming language.  
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iii. Key features 
NS-3 is open-source, and the project team maintain an open environment so 
as researchers across the globe to be able to contribute and share their 
proposals. Furthermore, the ns-3 software infrastructure encourages the 
development of simulation models, which are sufficiently realistic to allow NS-
3 to be used as a real-time network emulator, interconnected with real 
systems. For instance, users can send and receive NS-3 generated packets 
on real network devices, while NS-3 serves as an interconnection framework 
in order to provide a link between the virtual machines. Thus, many existing 
real world protocol implementations can be reused within NS-3. Furthermore, 
NS-3 generates Pcap (Packet Capture) packet trace files that can be 
processed by third-party visualization and tracing software, such as Wireshark 
(Wireshark, 2006), NetAnim (Riley, 2012) and Gnuplot (Gnuplot, 1986). 
Finally, its simulation core supports research on both IP and non-IP based 
networks. (NS-3, 2011) 

 

iv. Limitations 

One limitation of NS-3 is the credibility of the simulation results. The employed 
network simulation models are modifications of already available ones, and 
possible malfunctions may transfer and affect the performance of the 
simulated systems. Also the scalability of the introduced simulation scenarios 
is constrained to the available memory capacity and computational capability 
of the computer hosting the simulator. 

 

3.6.3 OMNET++ 

i. Summary 

OMNΕT++ is an extensible, modular, component-based and discrete-event 
simulation framework, primarily for building network simulators for wired and 
wireless networks. However, support for specific domain networks, such as 
sensor networks, wireless ad-hoc networks, MANETs etc., is provided by 
model frameworks, developed as individual projects like Castalia (Castalia, 
2007). OMNΕT++ offers an Eclipse-based IDE, a graphical runtime 
environment, and a powerful GUI library for animation, tracing and debugging 
support. There are extensions for real-time simulations, network emulations, 
database integrations, SystemC system models, and several other functions. 



 46 

Getting started with it is quite simple, due to its clean design. Finally, 
OMNET++ was developed to fill the gap between open-source and research-
oriented simulation software tools such as NS-2 and the expensive 
commercial alternatives like OPNET. 

 

ii. Simulation language 
The OMNΕT++ framework is totally implemented in C++ programming 
language. However the underlying network models can be grouped in broader 
structures called components by using NED, which is the topology description 
language employed by OMNET++ (NED, 1998). 

 

iii. Key features  
OMNET++ is an open architecture simulation environment with an 
embeddable simulation kernel that enables extensibility and handy integration 
of new protocols and network technologies. The ease of modifying the sensor 
network properties and its scalability makes OMNeT++ an excellent tool for 
simulation-based evaluations of WSN applications and systems. Moreover, 
the provided graphical user interface enables handy tracing and debugging 
procedures.  

 

iv. Limitations 
A drawback of OMNET++ is that it lacks of available protocols in its library, 
compared to other simulators like NS-2. However, OMNET++ is becoming a 
popular tool and new contributions have extended the initial framework. 
Nevertheless, most of the available models have been developed by different 
research groups and do not share a common architecture, thus combining 
them is a challenging task. Another major concern is the accuracy of the 
simulated models. The authors in (Colesanti et al., 2007) prooved that 
simulation performance results retrieved from OMNET++, differ significantly 
from real experimental results. 
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3.6.4 GloMoSim 

i. Summary 

Global Mobile Information System Simulator, known as GloMoSim  (Zeng et 
al., 1998) is a discrete-event sequential and parallel simulation environment 
for wireless networks. Its library is classified according to the OSI reference 
model and consists of modules that respectively model a specific procedure in 
the protocol stack. GloMoSim follows a modular design in order to support 
extensibility, thus enabling researchers to modify, develop and share new 
modules and protocols. Moreover, simulation scenarios can be executed in 
shared memory and distributed computers by employing a variety of 
synchronization protocols in order to improve simulation performance. 
Moreover, several choices are provided within its library for radio propagation, 
Carrier Sense Multiple Access (CSMA) MAC protocols and implementations 
of UDP and TCP. GloMoSim is suitable for simulating mobile wireless IP 
networks. However, the development and support of the GloMoSim project 
has been discontinued since 2000 and replaced with the commercial Qualnet 
project. 

 

ii. Simulation language  
Simulations in GloMoSim are conducted using PARSEC (Bagrodia et al., 
1998). PARSEC is a simulation language implemented in C, by the Parallel 
Computing Laboratory at UCLA for sequential and parallel execution of 
discrete-event simulation models, thus enhancing this ability to GloMoSim. 

 

iii. Key features  
GloMoSim is a powerful simulation tool due to its ability to execute parallel 
models and scenarios in a distributed manner. This can be achieved by 
employing one of the three different conservative synchronization algorithms 
that are provided within the package of the simulator. The provided algorithms 
are the null message protocol (Misra, 1986), the conditional event protocol 
(Chandy & Sherman, 1989) and the Accelerated Null Message Protocol 
(ANP) (Jha & Bagrodia, 1993). The choice of the conservative runtime 
algorithm is introduced as an option in the execution command. Hence, 
GloMoSim is able to handle large-scale scenarios with optimum performance. 
Furthermore, like most simulators, GloMoSim is an extensible simulator that 
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implements the underlying network models as modified modules, thus 
enabling handy development of new proposals. 

 

iv. Limitations  
GloMoSim provides basic protocols and functionalities for wireless 
communication networks. However, researchers like in (Alageswaran et al., 
2013) try to address this deficiency by implementing and evaluating WSN 
specific protocols though GloMoSims’ simulation engine. Moreover, 
GloMoSim similarly to NS-2, lacks the ability of providing accurate simulations 
of the packet formats, the energy models, and the MAC protocols 
functionalities compared to real WSN systems. Finally, GloMoSim project has 
been discontinued since 2000 and commercialized as Qualnet project. 

 

3.6.5 Qualnet 

i. Summary 
Qualnet is a commercial communication simulation platform based on the 
core of GloMoSim. It was released on 2000 by Scalable Network Technology 
(SNT) for commercial use in order to simulate the functionality of real wired 
and wireless communications networks, as long as the underlying network 
devices (Qualnet, 2008). Qualnet extends significantly the availability of build-
in protocols and models compared to GloMoSim. Furthermore, it supports 
advanced wireless modules and provides powerful tools for handy designing, 
developing and debugging of new ideas. Qualnet, similarly to its predecessor 
is a discrete-event sequential and parallel simulator. 

 

ii. Simulation language 
Qualnet uses PARSEC to conduct simulations, therefore the models and the 
build-in libraries are implemented in C and C++ programing languages. 

 

iii. Key features 

Qualnet aims on providing high fidelity by supporting many popular protocols 
and network device models. Moreover, due to its parallelization design it can 
produce the same fidelity for different scale scenarios with increasing 
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scalability. Qualnet has a modular layer structure that enables comparative 
performance evaluations of alternative protocols by collecting individual 
measurements on each layer. 

 

iv. Limitations 
Compared to most available simulators, Qualnet is a very powerful simulation 
tool that provides convenient simulation results, however it is not an open 
source project. Users have to pay in order to acquire a licensed Qulanet 
package. Nevertheless, the worst drawback of Qualnet is the extreme high 
CPU utilization of its Java-based GUI, which runs very slow on most 
machines. 

 

3.6.6 TOSSIM 

i. Summary  

TOSSIM is a discrete event simulator and part of the TinyOS project (Levis, 
2006), which is an embedded operating OS specialized for wireless sensor 
networks, both developed at Berkeley University of California (Levis et al., 
2003). Thus, TinyOS applications can be compiled directly into the TOSSIM 
framework, which can further simulate thousands of nodes running complete 
applications. Furthermore, TOSSIM replaces the low-level components of a 
TinyOS system, such as the Analog-to-Digital Converter (ADC), the Master 
Clock, the EEPROM and several of the components in the radio stack in order 
to emulate their real behavior. Programs developed through the TOSSIM 
framework can be transferred to real motes without any modification, thus 
enabling researchers to easily transition between running an application on 
motes and in simulation. Also it provides a GUI that enables handy 
visualization, designing and debugging of running simulation scenarios in a 
controlled and repeatable environment. Moreover, TOSSIM simulates the 
network functionality at bit granularity due to low-level assumptions. 
Therefore, TOSSIM aims on simulating the execution of TinyOS applications, 
rather than simulating the real world. While TOSSIM can be used to 
understand the behavior observed in the real applications, it does not take 
into consideration all the details, and should not be used individually for 
absolute evaluations. 
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ii. Simulation language 
TOSSIM framework was developed in nesC (Gay et al., 2003), which is an 
extended library of C programming language, aiming to provide a component-
based programming model for embedded systems. Furthermore it supports 
Python and C++ programming languages. 

 

iii. Key features 
TOSSIM is an open source project with a large community that provides 
online documentation and support. Moreover, it comes with a visualization 
tool named TinyViz, which enables users to design easily WSN applications 
and monitor their functionality. Simulation scenarios are modeled in low-level 
abstractions that enable detailed debugging and support for large-scale 
experimentation including thousands of nodes. Overall, it is very simple and 
powerful WSN emulator for TinyOS-based networks. 

 

iv. Limitations 
TOSSIM is limited to TinyOS implementations and is not able to simulate any 
other type of network or protocol. Moreover, power consumption models are 
not supported, however users can employ PowerTOSSIM (Shnayder et al., 
2004), which is an extenstion of the TOSSIM framework in order to simulate 
accurately the power consuption of the nodes. Furthermore, heterogenous 
networks are not supported because all the simulated nodes share the same 
TinyOS application. 

 

3.6.7 COOJA 

i. Summary 

COOJA is an open source and flexible simulator for the Contiki OS 
specialized for sensor node (Dunkels et al., 2004), which allows cross-layer 
simulations between the different levels of the WSN system, such as the OS, 
the network and the instruction set levels. Simulation scenarios provide low-
level abstractions of the underlying mote hardware in conjunction with high-
level abstractions of the network behavior. It was developed following an 
extensible design through all of the simulated models, including the sensor 
node platform, the radio transceivers and propagation models etc. Moreover, 
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COOJA is able to simulate heterogeneous networks with different types of 
nodes, by means of hardware and software. The node type may be shared 
between several nodes and determines properties common to all these 
nodes. Contiki applications can be executed either as native code on the host 
CPU or by employing a specific instruction set emulator for MSP430 boards 
named MSPSim (Eriksson et al., 2009). Additionally, the applications 
developed through COOJA can be transferred directly to real mote hardware, 
thus minimizing the transition effort to real deployments. Finally, COOJA 
enables users to save simulation state in order to later restore the simulated 
scenarios or even skipping back simulation over time (Österlind et al., 2006). 

 

ii. Simulation language  
COOJA simulation engine is implemented in Java programming language, 
and all the interactions with C-based Contiki code are addressed through the 
Java Native Interface (JNI). 

 

iii. Key features 

COOJA is a free, open source, code level simulator for sensor networks that 
simulates nodes hosting Contiki OS, thus enabling convenient transition to 
real deployments. However nodes with different OS and characteristics may 
be included in a simulated scenario. Moreover, Java-based nodes provide fast 
simulations but do not run deployable code. On the other hand, by emulating 
nodes with MSPSim provides more detailed results compared to Java-based 
nodes or nodes running native Contiki applications. Nevertheless, native code 
simulations are more efficient than node emulations and additionally they 
evaluate deployable code. COOJA provides extendibility in two ways. First, by 
modeling the hardware peripherals of the simulated nodes as interfaces, 
which enable the Java simulator to detect and trigger events such as 
incoming radio traffic. Secondly, all the interactions between the simulator 
engine and the simulated nodes are performed via plugins, for instance 
starting or pausing the simulation progress. Moreover, a GUI is provided in 
order to design and develop the simulated WSN system, with an additional 
visualization tool named TimeLine, for presenting the radio traffic and radio 
usage of the simulated network (Österlind et al., 2010). Finally, the Java 
Native Interface enables Contiki code debugging by employing third party 
tools like GDB (GDB: The GNU Project Debugger, 2006).  
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iv. Limitations 
COOJA, due to its extendibility, is limited to the Javas’ heap memory. 
Simulating many nodes with several interfaces requires a lot of calculations 
and thus increasing the simulation run time.  

 

3.6.8 MSPSim 

i. Summary 

MSPSim is an open source instruction set emulator that is able to simulate 
complete WSN motes such as Tmote Sky, as well as custom WSN motes 
based on Texas Instruments MSP430 microcontroller. MSPSim aims on 
providing realistic simulations with accurate timing in conjunction with handy 
debugging control. Furthermore, extendibility is supported through a variety of 
available build-in implementations of different peripheral devices as 
components, which are further simulated based on a discrete-event approach. 
Moreover, the ability to process and interpret real hardware firmware enables 
handy transition to real implementations. MSPsim is part of the Contiki OS 
project and can be enhanced in cross-level simulation scenarios conducted 
under the COOJA framework (Eriksson, et al., 2009). 

 

ii. Simulation language 
All the underlying models developed under the MSPSim framework are 
implemented in Java programming language. 

 

iii. Key features  
MSPSim is a powerful emulator due to its even-based simulation kernel that 
enables accurate execution timing with low resource utilization, thus providing 
high simulation performance even in scenarios involving thousands of nodes. 
In order to achieve this functionality, MSPSim processes the simulation 
events based on two queues that address the events to the simulator 
scheduler according to their time criticality. The first queue includes the 
events concerning the internal components of the MSP430, such as the 
analog-to-digital converter, and are scheduled based on the CPU clock 
cycles. Secondly, events concerning external components, like the radio 
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transceiver, are scheduled based on a simulated high-resolution clock. 
Furthermore, MSPSim provides a modular design for the simulated mote 
hardware peripherals such as the sensors, communication ports, the radio 
transceiver and LEDs. Hence, the user is able to modify the mote abilities 
according to the specifications of the simulated application. Finally, a GUI is 
integrated and enables handy simulation designing, debugging and 
visualization of statistics like CPU utilization over different scenarios. Also an 
accurate graphical representation of the sensor board is presented and 
simulates its visual behavior, for instance the color and flashing of the on-
board LEDs. 

 

iv. Limitations 
Similarly to COOJA, MSPSim is implemented in Java and thus its 
extendibility, is limited to the heap memory of the Java Virtual Machine (JVM). 

 

3.6.9 Avrora 

i. Summary 

Avrora is an open source instruction level sensor network simulator with a 
cycle accurate behavior (Titzer et al., 2005). Unlike other simulators that are 
able to simulate only specific platforms, such TOSSIM, Avrora has language 
and OS independency due to the ability of processing actual machine code. 
The provided simulation and analysis tools are designed to emulate Crossbow 
Mica2 and MicaZ mote platforms, as well as custom motes that are based on 
the Atmel AVR microcontroller. Avrora simulates a network of motes that 
process real microcontroller programs, in preference to model-based 
abstractions so as to provide convenient evaluations. Additionally, the 
underlying components of the mote are simulated as individual software that 
interacts with the simulator core through respective virtual interfaces. Finally, 
the Avrora project was transferred to sourceforge on 2008 and its 
development has been discontinued since 2013 (Avrora - SourceForge.net, 
2013)  
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ii. Simulation language  
The Avrora framework is implemented in Java programming language in order 
to provide flexibility and portability. 

 

iii. Key features 

One of the key features of Avrora includes its accuracy on simulating the time 
model based on the clock cycle. Moreover, the host computer processes all 
the simulated nodes as individual threads that are further synchronized when 
necessary, in order to ensure global timing and communication order. 
Moreover, large-scale scenarios can be efficiently simulated with reasonable 
performance according to the number of the available processors. 
Additionally, in order to execute the subjected applications, the simulated 
events are processed based on an event-queue that takes advantage of the 
sleeping-mode property of the nodes, thus promoting performance efficiency. 
The developers of Avrora claim that it is able to scale networks of up to 
thousands of nodes. 

 

iv. Limitations 
A major drawback of Avrora is that it does not model clock drift, which is a 
situation that occurs when nodes may run at slightly different clock 
frequencies over time due to manufacturing tolerances, temperatures, and 
battery performance. Furthermore, Avrora lacks of a graphical user interface, 
thus conducting and analyzing simulations is a complex task. Finally 
compared to TOSSIM, Avrora does not support mobility and is 50% slower, 
however it provides more accurate and scalable evaluations. 

 

3.6.10 Matlab 

i. Summary 

MATLAB (MATrix LABoratory), is a software package and a high–level 
scripting language which enables high performance numerical computation 
and visualizations of new ideas (MathWorks, 1994). It is the most popular 
software package for scientific research due to its powerful capabilities by 
means of analysis, flexibility and reliability. MATLAB provides a user-friendly 
environment that includes hundreds of reliable and accurate built-in 
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mathematical functions. These functions can be optimized and collaborate in 
order to provide solutions on a broad field of mathematical problems such as 
matrix algebra, complex arithmetic, linear and nonlinear systems, differential 
equations, signal processing etc. Therefore, MATLAB is particularly an 
appropriate tool to serve as a generic data-managing platform, as well as in 
the field of wireless sensor networks. 

 

ii. Simulation language 
The core functions and the build-in libraries are implemented in C and Fortran 
programming languages, however external libraries written in Python, C, C++, 
Perl, Java, ActiveX or .NET can be directly called from MATLAB. 

 

iii. Key Feutures 

The most important feature of MATLAB is its programming interface, which is 
very easy to learn and operate even from users with basic programming skills. 
Moreover, users are able to develop their own functions by using its native 
framework or by accessing custom libraries written in different programming 
languages through specific external interfaces. Furthermore, there are several 
optional toolboxes in order to support special application designs such as 
signal processing, control systems design, system identification, statistics, 
neural networks, fuzzy logic, symbolic computations, and so on. Additionally, 
MATLAB is able to simulate sensor networks by employing the modeling 
abilities of the Simulink framework, which is an integrated software package 
for modeling, simulating, and analyzing dynamical systems (Qutaiba, 2012). 
However, MATLAB provides an extendible design and is not limited only to 
Simulink, thus enabling researchers to implement different WSN simulation 
frameworks such as tinyLAB (Santini, 2009) and Prowler (Zhang et al., 2006). 

Finally, MATLAB is the most famous framework for developing customized 
simulators aiming to study particular problems in WSN applications. 

 

iv. Limitations 

The only drawback of MATLAB is that it is an interpreted language thus 
resulting in slower processing performance. Moreover, MATLAB is a 
commercial software and requires users to pay in order to purchase the 
complete package. 
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3.6.11 EnergyPlus 

i. Summary 

EnergyPlus is an open-source next generation energy and building 
performance simulation tool, which was derived by combining the two well 
documented energy simulation engines of DOE-2 and BLAST (Building Loads 
Analysis and System Thermodynamics) (National Institute of Building 
Sciences, 2015), along with new capabilities. DOE-2 (DOE-2, 1998) is a 
popular freeware aiming to provide energy consumption predictions for 
buildings, while BLAST can be used to predict and analyze heating and 
cooling energy consumption within buildings. EnergyPlus provides a 
completely new and modular structure, where different modules can easily be 
included into the simulation so as to combine different concepts and aspects 
of building energy consumptions (Crawley et al., 2001).  

 

ii. Simulation language 
EnergyPlus was initially written in FORTRAN, a programming language for 
scientific supercomputing applications. However since version 8.2.0 Autodesk  
(Autodesk Inc., 2015), a leader in developing engineering software, has 
translated the simulation core, which comprises more than 700,000 lines of 
computer code, into C++ programing language (Roth, 2013). 

 

iii. Key Feutures 
The modular design of EnergyPlus is a key feature because it enables 
researchers to quickly add new modules to the program or even links to 
external programs. The C++ implementation provides the advantages of 
running on modern hardware like multi-core processors. Moreover, C++ is a 
popular and powerful programming language, thus increasing the accessibility 
of EnergyPlus to many more developers, who can customize their own 
programs. Therefore, energy management applications based on sensor 
networks can be also evaluated through the EnergyPlus simulation engine, 
similarly to the proposals of (Dong & Andrews, 2009), (Agarwal et al., 2010) 
and  (Erickson et al., 2011). 
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iv. Limitations 
A major drawback of EnergyPlus is that it lacks of a graphical interface and it 
can be accessed only from a console environment. Hence, simulations are 
mainly based on input files, which further increase the effort of defining all the 
necessary input data. 
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4. Testbeds 

The growing interest of the research community in the WSN field of study 
imposes more accurate performance evaluation tools and methods. However, 
most of the WSN applications introduce significant challenges due to 
hardware availability, fluctuations of environmental radioactivity, resource 
constrains, energy autonomy, management, cost etc. Therefore, testing and 
verifying new designs, protocols and applications only over simulation may 
lead to inaccurate results, given the great complexity of real deployments.  

This was a leading reason that motivated universities and research institutes 
across the globe, to implement and design experimental laboratories known 
as testbeds, so as to be able to reflect the exact environmental conditions that 
may face during real deployments. A testbed is a platform consisting of a 
number of low-cost and low-power devices known as nodes or motes, which 
are deployed in a controlled and manageable environment. Typically, the 
motes are equipped with sensors that communicate via wireless connection 
and monitor a phenomenon according to the testing scenario. Nevertheless, 
there are various testbed architectures based on their functionality and their 
modeling ability.  

 

4.1 Testbed Requirements 

An experimental physical testbed, in order to be able to address the diverse 
characteristics of WSN systems should be flexible in a way to support a 
number of different network topologies and protocols. Moreover the 
underlying infrastructure should enable the developers to test their solutions in 
the most realistic manner possible, by means of scalability, functionalities, 
environmental conditions and limitations. According to (Tonneau et al., 2014), 
the requirements of a WSN testbed can be classified into four main groups, 
which are the experimentation requirements, the hardware requirements, the 
mobility features and the maintenance considerations. 
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4.1.1 Experimentation Requirements 
The experimentation requirements specifies the appropriate tools and actions 
that need to be supported by the testbed infrastructure in order to enable the 
users to design, conduct and analyze their experiments in a convenient and 
reliable way. These requirements include the experimental scenario 
specification, the communication interfaces, the experiment repeatability and 
simulation. 

 

i. Scenario Specification 
The first stage of the experimental process over a testbed is to indicate the 
appropriate resources such as the type of sensors and the number of nodes 
as well as the employed protocol stack, firmware and the data format. 
Therefore, the initial experimental setup of the subjected scenario is 
considered to be important in order to retrieve meaningful results. 

 

ii. Interfaces 

Communication interfaces enable the users to interact with the nodes and the 
other networking devices of the WSN testbed. Moreover, the researchers 
should be able to adjust and optimize the network parameters as well as to 
monitor and debug the ongoing progress of an experiment. It is of a great 
importance for the researchers to have access to network metrics, such as 
delay, throughput, overhead and energy consumption in order to be able to 
collect and analyze the resulted data. 

Typically, there are two ways to access the testbed facility. The simplest type 
of access is to establish a Secure Shell connection with the use of the Secure 
Shell (SSH) protocol. However, modern laboratories employ web services to 
provide the appropriate interfaces for the users in order to interact with the 
network resources. Additionally, the web services technology provides the 
ability to the researchers to develop special client applications according to 
their needs. Nevertheless, this type of access introduces further security 
issues that should be taken into account.  

 

iii. Repeatability  
The researchers, in order to effectively evaluate their proposals, should be 
able to conduct a number of different experimental scenarios by varying 
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specific parameters, so as to investigate their influence on the overall system 
performance. Moreover the testbed facility must provide the ability to the 
users to implement their experiments independently to the underlying 
infrastructure so as to acquire more representative results. Therefore there 
are various methods that address experimental repeatability such as the 
standardization of the scenario specifications and the firmware of the nodes, 
as well as storing the traces of the experimental execution. 

However, repeatability is still a challenging task due to environmental and 
system fluctuations related to radio interference, node mobility and hardware 
platform. For instance, environmental noise may cause instability between the 
links of the nodes that may further mask significant system events (Rensfelt et 
al., 2011). 

 

iv. Simulation 
As already mentioned, simulation-based validations for WSN applications lack 
of accuracy in capturing realistic environmental conditions, such as radio 
propagation. Nevertheless, there is a modern tendency among the research 
community in developing testbeds capable of combining both simulation 
methods and physical hardware experimentation. Such facilities benefit from 
the increased flexibility provided by the simulators and are able to test 
scenarios with high scalability (Coulson et al., 2012). 

 

4.1.2 Hardware Requirements 
As far as it concerns the hardware requirements, they play a critical role for 
the realistic performance evaluation of the subjected application. The testbed 
of choice should correspond to the appropriate hardware requirements of the 
application in order to enable the researchers to investigate in depth its 
functionality prior to real deployment. The hardware parameters of a physical 
WSN platform include the network heterogeneity, scale and federation. 

 

i. Heterogeneity 
Modern concepts that incorporate WSN technology such as IoT applications, 
rely completely on heterogeneous networks where the underlying devices 
play different roles and reserve various amount of resources. However, this 
application model introduces high complexity, thus requiring the testbed 
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platform to provide special designing and development tools that enable the 
researchers to conveniently conduct such experiments. Typically, 
heterogeneity can be distinguished into three types (Yarvis et al., 2005). First 
is the computational heterogeneity where some of the nodes have increased 
computational abilities such as the sink nodes and the gateways. Second is 
the link heterogeneity where some of the nodes may have wired interfaces in 
order to provide reliable communication links. Final is the energy 
heterogeneity where the nodes have various energy resources. 

 

ii. Scale 
Most WSN systems are deployed in large areas such as smart-city 
applications, where thousands of nodes are involved in the network. Hence, 
the researchers need to test their solutions in scenarios with increased 
scalability. However, most physical testbeds consist of only few nodes, from 
tens to hundreds, due to the high cost of developing such hardware. On the 
other hand, modern hardware technologies have significantly decreased in 
cost, thus enabling scientist to develop new physical experimental platforms 
or to extend existing ones, so as to be updated and address the contemporary 
challenges. 

 

iii. Federation 

Another method that is employed in order to address scalability and 
heterogeneity issues in WSN testbeds, is the federated model. This feature 
enables local experimental platforms to interconnect under a common 
framework in order to share their resources and provide more powerful 
evaluations. Therefore, the scientists are able to authenticate and reserve 
simultaneously the appropriate resources amongst several local testbeds that 
are members of the same federation (Chatzigiannakis et al., 2009). However, 
a major challenge of this concept is to maintain link reliability between the 
interconnected testbeds; thus requiring QoS models to be employed so as to 
ensure efficient real-time execution of the subjected experiment (Ricci et al., 
2012). 
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4.1.3 Mobility Features 
There are many WSN applications that involve mobile nodes, which require 
communicating so as to interchange sensory data and information. Hence, 
there is a need to develop experimental facilities that employ robotic and 
automation systems in order to enable researches to test such applications. 
However, the mobility feature in WSN testbeds introduces some important 
issues that need to be considered in order to effectively design and conduct 
experimental evaluations. These issues include the mobility type, power 
recharging, localization, designing and management. 

 

i. Mobility models 
Globally there are two types of mobility models, which are the undergone and 
the controlled mobility. By the term undergone refers to the mobility of a node 
that is attached to either an object or an entity, which cannot be controlled by 
the device itself. Moreover, as far as it concerns entities such as animals or 
humans, the mobility pattern is not possible to be predicted. On the other 
hand, in cases where objects such as public transport buses and trains that 
carry nodes, the mobility patterns are predictable since the routes are always 
predefined. However, considering the great complexity and cost of 
implementing robotic systems, only few testbeds support real-time 
experiments with mobile nodes. For instance undergone mobility has been 
implemented and supported by (Des Rosiers et al., 2011) and (Nati et al., 
2013), as well as controlled mobility by (Jiménez-González et al., 2011), 
which introduces further management issues by means of locating and 
charging. 

 

ii. Autonomous recharging & localization 
Also in cases of hardware failure, mobility introduces further challenges 
considering the localization of the nodes. Moreover, the mobile components of 
the facility such as the robots should be able to locate the recharging point so 
as to promote the continuity of the experiment. Therefore, the WSN testbeds 
in order to provide autonomous experimentation should facilitate the process 
of maintenance by implementing accurate positioning and path planning 
mechanisms with obstacle avoidance.  
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iii. Designing and management tools 
From the perspective of the user, the testbeds also should implement a 
number of tools that would facilitate the development and management of the 
mobile scenarios. These tools include software frameworks that provide 
hardware abstractions in order to enable the researchers to develop the 
appropriate embedded firmware and services. Additionally, visualization tools 
must be provided so as to define experimental parameters such as the paths 
of the nodes as well as to present experimental data in real-time. 

 

4.1.4 Maintenance 
Similarly to the general maintenance requirements that were described in 
previous Chapter, the WSN testbed maintenance is equally important in order 
to ensure the proper functionality of the system. Therefore a daily 
maintenance is appropriate to verify that the hardware and the software 
architecture are still operational so as address effectively the experimental 
queue. Additionally, scheduled maintenance must take place in order to 
update the provided services and hardware components such as the 
batteries, in a way to optimize the functionality and extended the lifetime of 
the facility. 

 

 

4.2 Testbed Architectures 

In a report that was conducted during the 2002 Workshop of National Science 
Foundation (NSF) (National Science Foundation, 2002), the authors analyze 
the experimentation process in the wireless networking research field. By 
adopting the NSF’s perspective of analysis, we can classify the WSN testbeds 
into two groups, first based on their main objective and second based on their 
underlying structure (El-Darymli & Ahmed, 2012). 

 

4.2.1 Objective-Based Classification 
WSN testbeds can be distinct into two categories, based on their functional 
objectives, which are presented in Figure 13. 
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Figure 13. Objective Classification of WSN Testbeds (El-Darymli & Ahmed, 2012) 

 

i. Multi-User Experimental Testbeds (MXT) – open testbeds 
An MXT is designed to provide the research community with the ability of 
evaluating new network architectures, protocols and applications. The 
institution that manages the MXT is responsible to provide the researcher with 
access to its tools and its underlying infrastructure. 

 

ii. Proof-of-Concept Testbeds (PCT) – custom testbeds 
This kind of testbed is designed to advance and evaluate scenarios of specific 
research issues. New ideas are tested in a more constraint environment, in 
order to promote technology optimization. Moreover, the PCTs can be 
considered as the critical stage for the final commercialization. Ordinarily, if 
the concept is proofed then the PCT is no more of use. 

 

From the above stated reasons, it is obvious that the missions of MXTs and 
PCTs are quite different. An MXT provides its services to a wide range of 
users, whom research can be focused in various issues. By contrast, the 
PCTs aim in a particular research objective. Choosing the suitable type of 
testbed, in accordance with the nature of the problem, can play a crucial role 
for conducting optimum performance evaluation tests.  
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4.2.2 Structure-Based Classification 
Furthermore, WSN testbeds, based on their structure, can be categorized into 
four groups that are relative to each other. The most simplified structure of 
WSN can be considered the Research Kit (RK). Next, the Cluster Testbed 
(CT) provides a broad infrastructure that employs similar elements with the 
RKs. Overlay Testbed (OT) is overlaid on an existing testbed, which can be 
irrelevant to WSN technologies. Last, but not least is the Federated Testbed 
(FT), which is a wider class and is able to involve and combine all the 
previous structures. Figure 14 illustrates this affinity. Further description of the 
above-mentioned categories can be found below.  

 

i. Research Kit (RK)  
A WSN Research Kit is a pack of WSN software and hardware, produced and 
developed by various vendors. The relatively low price of an RK combined 
with its convenient installation, render a suitable solution for researchers to 
built their own local testbeds.  

 

 
Figure 14. Structured Classification of WSN Testbeds (El-Darymli & Ahmed, 2012) 
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Figure 15. Crossbows‘ RK and its SW Platform 

 

Due to the great diversity of research applications, the vendors develop 
different RKs with the appropriate components. However all the RKs have a 
common basic structure, consisted by a number of nodes and base stations. 
The nodes have sensors such as light, temperature, humidity, motion etc. and 
a programmable firmware in order to implement their functionality. They can 
be powered either over USB or batteries. Monitoring and management 
software is also provided, like the MoteView by Crossbow. Finally, with 
respect to scalability, the vendors have developed software platforms to 
support this feature, like Crossbows’ MoteWorks as depicted in Figure 15. 

 

ii. Cluster Testbed (CT) 

A Cluster Testbed (CT) is an experimental laboratory, enabling researchers to 
perform extensive evaluations of their solutions in large scale, over real 
deployment emulations. It can be accessed remotely only by authorized 
users. The majority of existing testbeds belong to this category. Regardless 
the different characteristics of a CT, it should be flexible into adopting various 
configurations. In other words, the users should be able to experiment on 
modular network architectures and topologies, in order to control certain 



 67 

features, such as scalability, power consumption, transmission power, etc. 
Hence, many CTs are designed to be open and expandable. Moreover, the 
CTs should have a support team for maintaining and troubleshooting the 
undelaying infrastructure, so as the researchers can focus on the 
experimentation process of their study. Some examples of CT are Motelab, 
TWIST, Indriya, Mirage, NetEye. Even thought there is not any specific 
framework for developing a CT, the majority shares similar interconnection 
model between their components. Those typical architecture scenarios are 
illustrated in Figure 16, followed by a brief description of the underlying 
elements. 

 
 

 

 Figure 16. Typical WSN-CT Architecture Scenarios 
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Figure 17. Typical Sensor Node Structure 

 

A. Sensor Nodes – Motes 

WSN motes are small, low-cost, wireless electronic devices that are capable 
of gathering and processing sensory data, like temperature, humidity, motion, 
pressure etc. There are various vendors that produce different types of motes 
with various capabilities. However, almost every mote employs similar 
components. Figure 17 depicts a generic internal structure and interactions 
between the elements of a node.  

The sensors can be categorized into active and passive, based on their 
probing ability. An active sensor probes continuously the environment within 
its range, like sonar and radar. On the other hand, a passive sensor collects 
its measurements without actually manipulating the environment by active 
probing. Most of the researchers choose passive sensors for their solutions. 
However, any sensor produces analog signals that are further translated into 
machine language, through a conjunction of the ADC and the microcontroller. 
Moreover, the microcontroller is responsible to perform all those tasks, 
between the internal components, that are critical for the overall functionality 
of a mote. Additionally, there is a memory to store the required flash data so 
as to program the node, as well as application related data. In order to 
communicate with neighbor nodes, data exchange can be achieved through 
the transceiver. Ordinarily, communication and processing functionalities 
consumes the most energy. Nodes have low power source that can be either 
a battery or an energy harvester, thus raising a constraint for adopting energy 
efficient protocols. 

Finally, according to the abilities of a node, we can classify node deployments 
in two groups. Homogenous sensor nodes are those that share similar 
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abilities, like transmission range, memory capacity, computing. Hence, 
heterogeneous sensor nodes have different abilities. Both groups can be 
deployed hierarchal in multiple layers or blended in a unified layer. 

 

B. Processing Hub (PH) 

Taking into consideration the small size of a node, it is obvious that its 
recourses by means of storage, processing and energy are limited. Thus, 
Processing Hub emerged to content the need for a more powerful mote. The 
PHs are more expensive than the common nodes due to their expanded 
sufficiency, and can be assumed as base stations. In order to advance the 
network resource utilization, the PHs collects sensory data from the other 
nodes and produce compact information that is further promoted to the 
network. 

 

C. Storage Hub (SH) 

As it was stated previously, sensory data from nodes are transferred to central 
base stations for additional processing due to storage constrains. 
Nevertheless, there is a necessity to point out some important events before 
data reaches the end user. This feature can be implemented by deploying an 
SH, which by its side utilizes data mining and feature extraction software 
tools. The presence of SHs in WSN testbeds is not obligatory. 

 

D. Gateway (GW) 

The Gateways act as the last step in the information route, by bridging the 
sensor network with the rest of the network. It is an IP addressable 
component, and aggregates data from the base stations to the servers and 
vise versa. 

 

E. Back-Channel (BC) 

The back channel is a critical element for optimum performance and 
maintenance of any WSN testbed. It is the data transmission medium 
between the gateways and the sensor network, enabling node programming, 
monitoring, data logging etc. The BC can be either wired or wireless, both 
having their pros and cons. The wired BC is used extensively through indoor 
sensor deployments, due to handy use of USB or Ethernet cable channels. 
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Supporters of wired back-channel assert that utilization of such technology 
can avoid network congestion in the wireless channel, in order to be devoted 
only to application related traffic (Handziski et al., 2006), (Werner-Allen et al., 
2005). On the opposite side there are some researchers claiming that 
adopting wired models leads to impractical solutions (Dimitriou, Kolokouris, & 
Zarokostas, 2007). 

 

F. Back-Bone (BB): 

The BB is the infrastructure of the testbed that interconnects various elements 
of the network. Typically, it provides a communication path between the 
gateways and the servers of the network. Various technologies can be used 
to implement a BB, either wireless or wired Ethernet and USB. The 
researchers choose between wired and wireless solutions based on the WSN 
scalability and location. Ordinarily, indoor testbeds employ wired technologies, 
while outdoor WSNs utilize wireless solutions. Sometimes designers deploy 
the back-channel as part of the back-bone. 

 

G. Private and Public Servers  

Servers host a number of software tools that are applied on a central 
database, containing information about the WSN testbed. The database takes 
on an intermediary role between public and private servers. The remote users 
place requested tasks on the public server that are further retrieved and 
processed by the private server. Moreover, the database interacts with the 
sensor network in order to be updated with the current status of the testbed 
elements, as well as storing logging and localization information about the 
motes. Additionally, the servers should provide an interface so that the end 
users can log on and access the database and its tools. Finally the servers 
communicate with the base stations and the motes, through the gateways that 
are connected to the backbone. 
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Figure 18. Macroscopic structure of an OT 

 

iii. Overlay Testbed (OT) 
 

The OT follows the same concept as the Internet being overlaid on the 
telecommunications network (Figure 18). In the research community of 
wireless communications, OT is widely accepted as the most efficient tool for 
evaluating new protocols and applications, because it allows explicit 
investigation of unforeseen network models. During the deployment of an 
overlay testbed, the underlying network is not affected. Typically, OTs are 
developed to experiment wireless communications in general, hence they 
may not have been designed for testing sensor networks. However, there are 
cases that a WSN is overlaid by a broader testbed. 

The structure of an OT is a combination of the underlying infrastructure of the 
overlay testbed, with the comprised elements of the internal sensor network. 
Moreover, the structure of the overlaid WSN follows similar principles with 
previously explained cluster testbeds. A famous example of an OT is the early 
Emulab. However, the evolution in the network technologies has expanded 
the concept of OTs to virtual federated testbeds. 

  

iv. Federated Testbed (FT) 
The development of a federated testbed can be achieved by interconnecting 
various locally manageable testbeds, in different geographic locations. Those 
individual laboratories are connected through the Internet, in order to frame a 
broad platform that enables vast experimentation of new applications.  
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Figure 19. Typical Federated Testbed model 

 

Due to the great variation in the underlying infrastructure and the complexity 
of the employed network architecture of an FT, researchers can investigate 
unpredicted issues that may occur. Furthermore, the heterogeneous hardware 
diversity, along with the unlimited capabilities by means of recourses, 
promotes cost efficiency in WSN research projects. Hence, any experimental 
model can be adopted conveniently, without facing the constraint environment 
of a single facility. However, a generic architecture can be modeled and is 
depicted in Figure 19. 

The FTs’ structure is an ensemble of the underlying individual WSN testbeds 
that communicate through a federal overlay network. The member 
laboratories are developed and maintained by different institutions and their 
architecture is equivalent to the CTs described above. Each testbed owner 
has full jurisdiction over its own facility and allows authenticated local access 
by utilizing a web server. The overlay network is equipped with a member 
portal server that connects the individual testbeds using the Internet, in order 
to be perceived as a whole by the end user. This feature enables the 
researchers to experiment over a distributed virtual testbed with modular 
capabilities and resources. Such innovative network technology offers 
boundless research opportunities for new solutions. Examples of federated 
WSN testbeds include, FIT-IoT Lab, modern Emulab, WISEBED. 
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4.3 Survey of WSN Hardware Motes 

As already described in the previous Section, the key component of any 
sensornet is the employed node platform. Moreover the actual hardware that 
hosts the application determines the basic capabilities of the application as 
well as the overall efficiency of the system performance. Hence the 
researchers are able to choose between various hardware platforms 
according to the requirements of their application. By taking into account the 
results of our research concerning the popularity of the motes as presented in 
Chapter 5, a brief description of those motes are summarized in Table 3 and 
can be introduced as follows.  

 

Table 3. Summarized motes characteristics  

Mote Microcontroller Antenna Power Sensors and I/O 
Boards 

TelosB TI MSP430 Internal Batteries or 
USB 

External sensors 
and I/O 
peripherals 

TmoteSky TI MSP430 Internal Batteries or 
USB 

On-board 
humidity, light, 
temperature 
sensors and 
external optional 
I/O peripherals 

MICA2 Atmel ATmega 
128L 

External Batteries or 
external 
source 

External sensors 
and I/O 
peripherals 

MICAz Atmel ATmega 
128L 

External Batteries or 
external 
source 

External sensors 
and I/O 
peripherals 

USRP Software radio 
system 

Up to 8 
External 

External power 
supply 

Up to 2 
transceiver I/O 
daughterboards 

WARP FPGA Xilinx 
Virtex-6 chip 

2 external External power 
supply 

Optional I/O add-
on boards 

iMote ARM7 Bluetooth 
external 

Batteries Optional I/O 
components 
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Mote Microcontroller Antenna Power Sensors and I/O 
Boards 

IMote2 PXA271 XScale 
CPU 

Internal and 
optional 
external 

Rechargeable 
batteries or 
USB  

Both side 
connectors for I/O 
peripherals 

IRIS Atmel 
ATmega1281 

External Batteries Optional I/O 
peripherals 

EPIC MSP430 External Battery inputs 
or external 
source 

68-pin chip USB 
and Storage 
modules 

FireFly Atmel 
Atmega32L 

Internal Batteries On-board light, 
audio, 
temperature, 
dual-axis 
acceleration and 
passive infrared 
motion sensors 
and optional I/O 
peripherals 

Fleck Atmel Atmega 
1281 

External Battery set in 
addition to an 
inbuilt solar 
charging circuit 

On-board 
temperature 
sensor and 
optional I/O 
peripherals and 
analog screw 
terminals 

TinyNode MSP430 Internal, 
optional 
external 

Batteries or 
external 
source 

On-board 
temperature 
sensor and an 
expansion 
connector for the 
SEB board 

 

4.3.1 TelosB 
The TelosB (MEMSIC, 2004) mote is an open-source platform designed by 
UC Berkeley to support the development of low-power research 
experimentation, which can deliver fast wake-up from sleep mode and thus 
extending the battery lifetime. Moreover, the mote is equipped with a USB 
interface that enables the researcher to program and communicate with the 
hardware without consuming battery energy, since it can be powered from the 
host computer. However, if TelosB is always connected thought the USB port, 
there is no need to load a battery set on the node. Also the Texas Instruments 
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MSP430 microcontroller of the mote is designed with an extended memory in 
order to be compatible with TinyOS applications as well as to interface with an 
optional sensor suit. Finally, TelosB communicates wirelessly through an 
integrated antenna that is connected to an IEEE 802.15.4 radio chip and is 
able to store up to 1 MB of logging data in an external flash storage. 

 

4.3.2 Tmote Sky 
The Tmote Sky (MOTEIV, 2005) was developed in replacement of the TelosB 
by UC Berkeley so as to increase the performance, functionality and 
expansion capabilities of the mote. It has on-board humidity, light and 
temperature sensors that further increase the hardware robustness as well as 
minimizing the cost and the size of the device. Additionally, its IEEE 802.15.4 
radio chip enables the on-board antenna to communicate with high data rate 
within a rage of 128 meters from the node while providing link-layer hardware 
encryption and authentication. Finally, Tmote Sky employs an MSP430 
microprocessor that supports TinyOS and later ContikiOS applications and is 
designed to load a protected OS image from the flash memory so as to 
recover in case of application failure.  

 

4.3.3 MICA2 
The MICA2 (Crossbow, 2003) mote is a commercial battery powered WSN 
hardware platform based on the Atmel ATmega 128L microprocessor. It 
supports TinyOS applications that are stored in an internal flash memory 
along with the communication protocols. Moreover, the mote is equipped with 
a radio chip that is compatible with 868/916MHz, 433 or 315MHz protocols 
and requires an external antenna in order to communicate with neighbor 
nodes. The device also provides expansion connectors and analog inputs so 
as to connect a wide variety of external sensors and peripherals such as 
serial or parallel interfaces that facilitate the programming of the hardware.  

 

4.3.4 MICAz 
The MICAz (MEMSIC, MICAz Datasheet, 2004) mote, similarly to its 
predecessor is a battery powered WSN hardware based on the Atmel 
ATmega 128L microprocessor. Moreover the microprocessor runs 
applications that are developed under MoteWorks, which is a TinyOS-based 
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framework. The employed radio transceiver is compatible with the 2.4GHz 
IEEE 802.15.4 standard and requires an external antenna so as to be 
wirelessly accessible. MICAz also provides expansion connectors and analog 
inputs to connect external sensors and peripherals such as Ethernet or USB 
interfaces that facilitate both programming and data communication. 

 

4.3.5 USRP 
The Universal Software Radio Peripheral (USRP) (Ettus Research, 2010) is a 
family of wireless hardware platforms that enable fast prototyping of flexible 
software radio systems. Moreover, the designing of the software modules is 
implemented in GNU Radio, which is an open-source software radio and 
signal processing package. Hence, the user after installing the GNU Radio 
software on his computer is able to communicate with the USRP hardware 
through either a high-speed USB interface or a Gigabit Ethernet link. 
Additionally, there are some USRP models that integrate a microprocessor 
capable of providing the appropriate functionalities in order to provide a 
standalone solution. Generally a USRP platform requires an external power 
supply and consists of a basic motherboard and a modular front-end that can 
accommodate up to two transceiver daughterboards with the corresponding 
external antennas. This modular approach enables the researchers to 
experiment with a great diversity of Radio Frequency (RF) up to 5.9 GHz. 

 

4.3.6 WARP 
The Wireless Open-Access Research Platform (WARP) (Rice University, 
2006) is a scalable and extensible programmable wireless hardware that 
enables prototyping of advanced wireless networks. Its great advantage is 
that it combines a high-performance hardware suite along with an online 
open-source repository containing reference algorithms and support 
documentation, which is updated by the research community. The first two 
versions of the platform were developed by Rice University, however Mango 
Communications Inc. released the latest version on 2012 and ever since is 
the most active contributor of the project. The WARP hardware is powered 
over an external supply and consists of a main Field-Programmable Gate 
Array (FPGA) based on Xilinx Virtex-6 chip, thus offering a flexible way to 
implement different components of a wireless transmission system on various 
networking levels. Moreover the platform integrates two programmable RF 
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interfaces with external antennas as well as a variety of peripherals including 
an SD card slot, two Gigabit Ethernet interfaces, a USB port and other user 
I/O features. However the Ethernet interfaces are employed only to send and 
receive data traffic to the host computer. Therefore, the researchers are able 
to program the platform through its USB port. Finally, Mango as well as third 
party vendors develop a number of optional I/O add-on boards that extend the 
basic capabilities of the platform.  

 

4.3.7 iMote  
The iMote (Intel Mote) (Kling et al., 2004) is a hardware developed by Intel 
Reserch Labs in order to provide to the research community with a sensor 
node platform that is equipped with increased CPU performance, improved 
radio bandwidth and reliable. Moreover the hardware is powered over a 
battery set and consists of an ARM7 microcontroller, a wireless Bluetooth 
radio chip with external antenna, RAM and Flash memory as well as a 
number of optional user I/O components such as a USB and serial 
interfaces. The basic Bluetooth protocol was modified in order to meet the 
WSN specifications such as the “scatternet” mode of Bluetooth, which has 
been successfully adapted in order to be able to form networks of multiple 
piconets. Furthermore, networking and routing functionalities have been 
implemented on top of a TinyOS base in order to provide multi-hop 
networking and self-organizing abilities. 

 

 

4.3.8 IMote2 
The IMote2 (Adler et al., 2005) is an advanced wireless sensor node platform 
developed by Intel Research Labs as a replacement of its predecessor iMote. 
The structure of the platform consists of a low-power PXA271 XScale CPU 
running TinyOS as well as an IEEE 802.15.4 radio chip that is connected 
either to an integrated antenna or to an optional external antenna. 
Furthermore, IMote2 provides a modular design with interface connectors in 
order to enable the researchers to easily connect expansion boards on both 
sides of the board. Moreover, the top connectors provide a standard set of I/O 
interfaces for basic expansion boards. The bottom connectors provide further 
high-speed interfaces for application specific I/O in addition to a mini USB 
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port. The mote can be powered either through the USB port or by a battery 
board, which can be connected to either side. Furthermore, a special battery 
board can be employed in order to provide the option of mounting 
rechargeable batteries.  

 

4.3.9 ZigBee-based Motes 
ZigBee (ZigBee Alliance , 2002) is actually a standards-suite, which provides 
specifications for wireless communication protocols for PAN applications 
operating on small, low-power digital radios, rather than an actual hardware 
device. Moreover, the ZigBee protocol suite enhances and extends the IEEE 
802.15.4 functionalities by providing low data-rates, low-power consumption, 
security and reliability due to the implementation of self-organizing mesh 
networking. Therefore ZigBee specifies a decentralized network topology very 
similar to the Internet that allows nodes to establish new routes through the 
network in cases of topology changes caused by system failures thus being a 
suitable solution for IoT applications. As far as it concerns hardware platform 
implementations, there are various vendors that produce ZigBee Certified 
devices and products that can be further employed by the researchers 
according to their needs.  

 

 

4.3.10 IRIS 
The IRIS (MEMSIC, 2011) is a 2.4 GHz battery powered mote module 
designed for low-power, wireless sensor networks. The mote structure 
consists of an Atmel ATmega1281 microprocessor and an IEEE 802.15.4 
radio chip with an external antenna capable of yielding ranges as far as 500 
meters without amplification. The microprocessor can support TinyOS 
applications and is able to load the MoteWorks framework from its internal 
flash memory. Moreover , IRIS is equipped with an expansion connector that 
enables the researchers to attach a great variety of optional interfaces and 
peripherals, including different sensor boards and a USB interface for both 
programming and data communication. 
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4.3.11 EPIC 
The EPIC (Dutta & Culler, 2008) mote is a family of open hardware 
components developed by UC Berkeley as a solution for application-driven 
designs. General-purpose motes may introduce difficulties during the system 
development, since most applications require to be tightly coupled with the 
underlying hardware. Therefore, the modular approach of the EPIC mote 
enables the researchers to customize their hardware design by choosing the 
components that enhance the appropriate functionality. The EPIC family 
includes three individual components, which are the Core, USB and Storage. 
These components are compact multi-chip modules that can be conveniently 
integrated into new hardware designs through their 68-pin leadless chip 
carrier (LCC-68) footprint. Moreover, the Epic Core is a fully functional mote 
consisting of an MSP430F1611 microcontroller, flash memory and a radio 
chip that requires a power source and an external antenna. The Epic USB can 
be employed to support UART-over-USB, JTAG-over-USB, reprogramming, 
alkaline and Lithium battery inputs, Lithium battery recharging and automatic 
power source selection. Finally the Epic Storage provides a rich memory 
hierarchy of four different flash memories (NAND, two NOR, and FRAM), all 
with different read, write, and erase characteristics. 

 

 

4.3.12 FireFly 
FireFly (Mangharam et al., 2007) is a low-cost hardware platform developed 
by Carnegie Mellon University capable of providing both data processing and 
multi-hop mesh communication. The mote structure consists of an Atmel 
Atmega32L microcontroller that loads Nano-RK OS from a flash memory, as 
well as an IEEE 802.15.4 radio transceiver that is connected with an 
integrated antenna. Moreover, the hardware platform is equipped with various 
sensors providing light, temperature, audio, dual-axis acceleration and 
passive infrared motion measurements as well as I/O connectors that can 
enhance expansion boards including a USB interface and an AM receiver. 
Also there is an SD card slot for additional data storage. The AM receiver is 
employed in order to acquire the periodical synchronization pulses that are 
generated by a global AM carrier current transmitter. 
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4.3.13 Fleck 
The Fleck (Sikka et al., 2007) motes are a series of WSN nodes developed by 
CSIRO ICT Centre aiming on outdoor applications where long range and 
energy self-sufficiency are crucial. The latest hardware platform from the 
group is the Fleck3B mote, based on an Atmel Atmega 1281 microprocessor 
capable of loading TinyOS applications from an 1Mb integrated flash memory. 
Moreover, it is equipped with a radio transceiver with an external antenna that 
can work in three different transmission bands including 433MHz, 868MHz 
and 915MHz. Furthermore, the mote provides a single connector for 
programming and access over serial ports, expansion connectors for 
enhancing Fleck daughter boards as well as screw terminals that enable 
convenient connection of analog and digital sensors; even though there is an 
integrated temperature sensor on board. Finally, the board requires 3.4-8V of 
power that can be supplied by a battery set in addition to an inbuilt solar 
charging circuit for NiMH batteries. 

 

4.3.14 TinyNode 
The TinyNode (Dubois-Ferriere et al., 2006) is an ultra-low power platform 
that provides a convenient way to add wireless communication to WSN 
systems. TinyNode consists of an MSP430 microcontroller optimized to run 
TinyOS from an internal flash memory as well as a radio transceiver that is 
connected to an integrated wired antenna with an optional connector for an 
external one. Moreover, the platform is equipped with an on-board 
temperature sensor in addition to an expansion connector, which is used to 
enhance the so-called Standard Extension Board (SEB). The SEB supports 
further analog, digital and serial interfaces along with the power supply that 
can be either external or a set of batteries. 

 

4.4 Survey of WSN Tesbeds 

After providing the aforementioned descriptions of the most popular mote 
platforms, it would be beneficial to continue with a brief survey of the 
experimental physical testbeds that were involved in our research as 
presented in Chapter 5. Therefore in this Section we will try to specify the key 
aspects and functionalities of the different experimental laboratories around 
the globe that can be employed by the researchers in order to validate their 
proposals. A brief summarization can be found in Table 4. 
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Table 4. Summarized testbeds characteristics 

Testbed Nodes Key Features 

MoteLab Fixed array of 30 
MICAz and 190 
TelosB 

One of the first open WSN testbeds. MySQL 
back-end server, a PHP web server, a Java-
based data logger and a Job Daemon for 
assigning tasks to the motes. Wall-powered 
with in-situ power measurement device in 
addition to temperature, humidity and light 
sensors. 

TWIST 102 TmoteSky and 
102 eyesIFX 

The testbed has a central PostgreSQL server 
and is hierarchically organized in three layers, 
the servers, the super nodes and the sensor 
nodes. USB powered with light and 
temperature sensors. The super nodes are 
Network Link Storage Units. 

Indriya 139 TelosB Based on MoteLab. The nodes are powered 
over the USB backchannel and equipped with 
light, temperature, acoustic, magnetometer, 2-
axis accelerometer and infrared sensors. 

Intel Mirage 97 MICA2 and 51 
MICA2DOT motes 

Based on a resource allocation system where 
the testbed resources are allocated according 
to a repeated combinatorial auction. The motes 
are equipped with pressure, temperature, light 
and humidity sensors and powered over 
Ethernet. 

UMass 
DieselNet 

40 buses with GPS 
devices and 
HaCom Open 
Brick computer 
with 3 radios 

A vehicular DTN of 40 public transport busses 
and various throwboxes that work as relays that 
promote the messages to the central repository. 

Emulab 580 PC nodes with 
USRP Mobile 
testbed with 6 
MICA2 robots and 
30 stationary 
MICA2 

A combination of hardware and software tools. 
There are many instances of the Emulab 
framework deployed in more than two dozens 
sites around the world. 

WARPLab Up to16 WARP 
nodes controlled 
by a single PC 

An experimental framework for experimentation 
of physical layer protocols by interfacing WARP 
nodes directly with MATLAB. 
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Testbed Nodes Key Features 

FLOCKLAB 30 Observers 
equipped with any 
four of Tmote Sky, 
OpenMote, 
MSP430-CCRF, 
TinyNode, Opal, 
and Iris motes 

A mixed indoor/outdoor topology, able to 
support different services such as measuring 
power consumption and time accurate tracing 
and actuation. 

ORBIT 400 nodes WITH 
MORE THAN more 
than 1500 radio 
devices. 

A radio grid network testbed that consist of a 
remotely accessible indoor testbed, in addition 
to an outdoor trial network with mobile nodes.  

Tutornet 13 Stargates, 91 
TmoteSky and 13 
MICAz motes 

A simple three-tiered, clustered WSN testbed 

MAP 32 static mesh 
routers, 5 laptops 
and 16 PDAs 

An experimental WMN laboratory. The testbed 
do not provide power consumption awareness.  

NetEye 130 TelosB motes, 
15 laptops 

An open WSN experimental testbed equipped 
with light sensors and a mixed USB and 
Ethernet backchannel  

KANSEI 210 stationary 
nodes equipped 
with a Stargate, a 
TmoteSky and an 
Extreme Scale 
Mote. 50 portable 
Trio motes and five 
robots 

A heterogeneous, hybrid experimental WSN 
laboratory that combines hardware motes, 
simulation engines and data generation 
devices. 

 

4.4.1 MoteLab 
MoteLab (Werner-allen et al., 2005) was one of the very first fully functional 
and open WSN testbeds that was deployed at Harvard University in the three 
floors of Maxwell Dworkin Laboratory, the Electrical Engineering and 
Computer Science departments. The testbed provides a web interface that 
enables the users to easily create, manage and schedule experimental 
scenarios. Moreover, it automates the reprogramming of the motes as well as 
providing easy access to the testbed database that contains the generated 
data logs from the experiments. Additionally, the web services enable the 
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users to interact in real time with the nodes that are employed during an 
experiment. MoteLab consists of 30 MICAz and 190 TelosB motes deployed 
in a fixed array, as well as a MySQL back-end server, a PHP web server, a 
Java-based data logger and a Job Daemon that is responsible of assigning 
tasks to the motes. Moreover, the motes are wall-powered and equipped with 
an optional in-situ power measurement device in addition to temperature, 
humidity and light sensors. Finally every node is connected through an 
Ethernet interface to the back channel for convenient reprogramming and 
logging.  

 

4.4.2 TWIST 
The TKN Wireless Indoor Sensor network Testbed (TWIST) (Handziski et al., 
2006) is an open, scalable and flexible indoor WSN testbed deployed in three 
floors at the Technical University of Berlin. The testbed structure is 
hierarchically organized in three layers, which are the servers, the so-called 
super nodes and the sensor nodes. The sensor nodes of the networks consist 
of 102 TmoteSky and 102 eyesIFX motes that are equipped with light and 
temperature sensors. The motes are powered over a USB interface that is 
also required for programming and further communication through USB hubs 
with the super nodes. The super nodes are Network Link Storage Units 
(NSLU) running a customized Linux OS while providing gateway functionality 
between the nodes and the servers. The servers and the control PCs are 
connected to the Ethernet back channel, thus requiring from the super nodes 
to be equipped with both USB and Ethernet interfaces. The control PCs are 
employed in order to manage and conduct the experiments as well as to 
support a central PostgreSQL server to store application and logging data. 
Finally, the testbed provides a web interface that enables the users to 
schedule and control their experiments. 

 

4.4.3 Indriya 
Indriya (Doddavenkatappa et al., 2011) is an open, large-scale, low-cost WSN 
testbed deployed at the National University of Singapore in three floors of the 
School of Computing. The users are able to access the testbed infrastructure 
through a web interface based on the framework proposed by the MoteLab 
engineers. Therefore the researchers can conveniently upload their programs 
to the nodes, create and schedule jobs as well as accessing the logging 
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information that are store in the central database after the completion of the 
experiments. Moreover, the testbed consists of 139 TelosB motes where most 
of them are equipped with light, temperature, acoustic, magnetometer, 2-axis 
accelerometer and infrared sensors. Additionally, the nodes are connected to 
the USB backbone that is used for programming and data logging as well as 
powering supply.  

 

4.4.4 Intel Mirage 
Intel Mirage (Chun et al., 2005) is a resource allocation system where the 
testbed resources are allocated based on a repeated combinatorial auction 
that is build over a closed virtual currency environment. Moreover, the users 
of the laboratory compete for its resources by submitting bids that correspond 
to combinations of interest in space and time along with a maximum value of 
virtual currency that the user is willing to pay. For instance a user’s bid would 
be “any 32 MICA2 motes for 8 hours anytime in the next three days”. Next, a 
combinatorial auction periodically collects the bids and specifies the winning 
users based on the overall availability and demand. The Mirage system was 
developed over a 148 node indoor testbed, deployed at Intel Research 
Laboratory in Berkeley. The testbed consist of 97 MICA2 and 51 MICA2DOT 
motes equipped with pressure, temperature, light and humidity sensors as 
well as an Ethernet interface that is used for power supply, programming and 
debugging. 

 

4.4.5 UMass DieselNet  
DieselNet (Soroush et al., 2009) is a vehicular Delay Tolerant Network (DTN) 
developed by the University of Massachusetts (UMass) deployed on 40 public 
buses that serve the surrounding area of the UMass Amherst campus. The 
DieselNet testbed is open to the research community for experimentation in 
addition to a number of stored traces that can be utilized for further simulation. 
Every bus carries a GPS device that records times and locations as well as a 
Linux-based HaCom Open Brick computer that is further connected to three 
radios; including an 802.11b/g Access Point (AP) to provide DHCP access to 
passengers, a second PCI-based 802.11b/g/a interface that constantly scans 
the surrounding area for DHCP offers and other buses, and a longer-range 
MaxStream XTend 900MHz radio to communicate with the so called 
throwboxes. The throwboxes are stationary wireless nodes that work as 



 85 

relays and consists of a modified TelosB mote that is powered over a set of 
batteries that can be recharged by an attached solar sell. Moreover, the AP 
on each bus transmit its SSID every 100 ms. The second radio continuously 
scans for SSID broadcasts. On discovering a remote bus’s AP, the 
discovering bus obtains an IP address from the remote bus. Then, a TCP 
connection is established between those buses, initiating a contact event, and 
data is continuously transmitted to the remote bus until the TCP connection is 
broken when the buses move out of range. Once the socket reports an error 
or closure, the contact event is marked as ended and logged. For each 
contact, the receiver logs the ID of the sender, the time, duration, and the 
number of bytes received. These bus-to-bus transfer records are transmitted 
to a central repository whenever a bus is able to associate with a throwbox. 

 

4.4.6 Emulab 
Emulab (Johnson et al., 2006) is a network testbed developed by the Flux 
Group and it is deployed at the School of Computing at the University of Utah. 
The testbed provides a combination of hardware and software that enable the 
researchers to experiment with a wide range of environments. Currently, there 
are many instances of the Emulab framework deployed in more than two 
dozens sites around the world. The scientists can access the facility without 
charge through a web interface that unifies the different environments and 
provides a more convenient solution for system evaluations and resource 
reserving. The laboratory consists of more than 580 PC nodes able to run any 
OS and emulate a great variety of systems and topologies. Moreover some 
nodes are equipped with USRP devices that enable the researchers to have 
the total control of the physical layer and its operations. Also many nodes are 
equipped with two 802.11a/b/g wireless boards that may act as access points, 
clients, or ad-hoc nodes and can be programmed through a wired interface. 
Moreover, a mobile testbed that is build over the Emulab network provides the 
ability to the researchers to experiment with six robots that are equipped with 
six customized MICA2 motes respectively in addition to 30 stationary MICA2 
nodes deployed on the ceiling in a grid topology.  
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4.4.7 WARPLab 
WARPLab (Anand et al., 2010) is an experimental framework that enables the 
researchers to rapidly prototype and evaluate new physical layer protocols by 
interfacing WARP nodes directly with MATLAB. Moreover, the baseband 
processing is performed within MATLAB while providing the ability to 
interconnect up to 16 WARP nodes that can be controlled by a single host 
PC. Every node within a WARPLab system consists of an FPGA board and a 
radio daughterboard with four large buffers respectively to the antennas. The 
FPGA handles the communication between MATLAB and the radios by 
transferring control signals and data between the host PC and the radio 
buffers. A typical WARPLab experiment cycle starts from MATLAB where the 
transmitted samples are first generated in addition to the baseband 
processing of the signal. Next, the processed signal is transferred over 
Ethernet to the radio buffers through the FPGA boards along with the 
appropriate control signals depending on the role of each node. Then 
MATLAB synchronizes all the nodes in order to start the experiment, where 
the transmitting node flushes its buffers through its radios while the receiving 
nodes immediately loads their buffers with incoming data. Finally, after the 
end of transmission the receiving nodes transfer the received signals to the 
host PC for further processing within MATLAB’s interface. 

 

4.4.8 FLOCKLAB  
FlockLab (Lim et al., 2013) is a WSN testbed, developed and deployed at the 
Computer Engineering and Networks Laboratory at the Swiss Federal Institute 
of Technology Zurich in Switzerland. The testbed provides 30 powerful 
customized nodes in a mixed indoor/outdoor topology, able to support 
different services such as measuring power consumption and time accurate 
pin tracing and actuation. The customized nodes that are called observers are 
small Linux based computers that offers four target adapter slots to which 
different motes can be attached, including Tmote Sky, OpenMote, MSP430-
CCRF, TinyNode, Opal, and Iris. Moreover, the testbed is organized in three 
tiers, where the lowest layer consist of the sensor motes that run the 
applications, the second layer consists of the observers computers that 
communicate over LAN or WLAN and transfer the data of the motes to the 
higher layer and vise versa. Finally, the third tier is a dedicated server that 
synchronizes all the observer nodes and provides basic functionalities such 
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as node configuration, experimental scenario management, as well as 
collecting, analyzing and visualizing data to the user. 

 

4.4.9 ORBIT 
ORBIT (Raychaudhuri et al., 2005) is a radio grid network testbed developed 
by the WINLAB research team at Rutgers University. It is an open facility that 
provides flexible, scalable and reproducible performance evaluations of next-
generation wireless network protocols. Moreover, the ORBIT testbed consists 
of 400 nodes deployed indoors in a controllable radio grid structure, in 
addition to an outdoor trial network of vehicular and stationary nodes to 
support end-user validations in real environmental conditions. However, only 
the indoor deployment is accessible and programmable though a web 
interface, which provides various services that allow the user to interact with 
the testbed infrastructure in a convenient manner. Furthermore, the ORBIT 
nodes are customized hardware with a total of more than 1500 radio devices, 
including WiFi, WiMAX and LTE boards, USRP radios, WARP nodes, 
Bluetooth, ZigBee and TelosB motes. Therefore, ORBIT is capable of 
experimenting with end-to-end wired and wireless technologies through a 
common Ethernet back channel that is managed by a central server for equal 
resource sharing and data logging. 

 

4.4.10 Tutornet  
Tutornet (ANRG, 2009) is a three-tiered, clustered WSN testbed developed by 
Networked Systems Laboratory (NSL) and deployed at Ronald Tutor Hall at 
the University of Southern California, currently is managed by the 
Autonomous Networks Research Group (ANRG). Moreover, the laboratory is 
structured in three layers consisting of a central server, 13 Stargates version 
7.3, 91 TmoteSky and 13 MICAz motes respectively. Every Stargate works as 
a cluster head and a base station by connecting seven member nodes 
through a USB hub. The Stargates establish an 802.11b connection with the 
server in order to interchange data as well as to reprogram the motes of the 
network. Additionally, the users benefit from a web interface that provides 
convenient communication with the underlying infrastructure of the laboratory. 

 



 88 

4.4.11 MAP 
MAP is an experimental wireless mesh network (WMN) testbed designed and 
deployed at the School of Electrical and Computer Engineering at Purdue 
University (Purdue University, 2008). Moreover, the testbed consist of 32 
static mesh routers, which are connected through wireless links to each other, 
while providing 802.11b connectivity to end-hosts including 5 laptops and 16 
Compaq IPAQ PDAs. Moreover, the routers are small computers equipped 
with a second radio in order to establish 802.11a/b/g connections between the 
nodes and communicate through a central gateway with the server of the 
network. However, researchers are not able to experiment with other multi-
hop wireless networks such as sensor networks since the testbed do not 
provide power consumption awareness.  

 

4.4.12 NetEye  
NetEye (Ju et al., 2012) is an open WSN experimental testbed deployed in an 
office at the Computer Science Department at Wayne State University. 
Moreover, the testbed structure is organized in tiers consisting of 130 TelosB 
motes, 15 Dell Vostro1400 laptops and a central server. The nodes are 
equipped with a light sensor and a USB interface in order to be powered and 
communicate with the laptops though a USB hub. The laptops also work as 
cluster heads that host from 6 to 12 nodes each, while they are connected 
with the server through the wired Ethernet backchannel in order to be able to 
capture log data and reprogram the nodes. Also the server provides web 
interface so as to enable the users to easily create and mange experimental 
scenarios as well as to visualize the retrieved results.  

 

4.4.13 KANSEI 
Kansei (Ertin et al., 2006) is a heterogeneous, hybrid experimental WSN 
laboratory deployed at The Ohio State University that provides high fidelity 
with increased scalability. Moreover, Kansei is able to run experiments in 
large scale due to the combination of hardware motes, simulation engines and 
data generation devices. The basic structure consist of 210 stationary node 
array where each node carries three platforms; a Stargate a TmoteSky and an 
Extreme Scale Motes (XSMs) equipped with light, passive infrared, 
temperature and magnetometer sensors, as well as a microphone. The 
Stargate serves as a controller and a data collector for the TmoteSky and 
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XSM motes, which is connected through a dedicated 51-pin connector. 
Furthermore the Stargate is connected to the Ethernet backchannel in order 
to communicate with the central server. Furthermore, the testbed provides 50 
portable Trio motes and five robots, each one equipped with a Stargate, a 
TmoteSky and a WSMote. Kansei has been designed to be highly fault 
tolerant, autonomic and self-organizing, thus ensuring the researchers to 
spend less time designing, conducting and troubleshooting their experiments. 
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5. Research  
Ad-Hoc and Wireless Sensor Networks (WSNs) have enabled a large variety 
of applications. Environmental and wildlife monitoring, clinical medical and 
homecare monitoring, monitoring and control of industrial processes including 
agriculture, smart houses and cities are just some of the examples of Ad-Hoc 
and WSN applications, where low-cost, and easily deployed multi-functional 
sensor nodes is the ideal solution (Yick et al., 2008). As a result, during the 
last years we experience the emergence of a new paradigm called Internet of 
Things (IoT) in which smart and connected objects cooperatively construct a 
wireless network of things (Gluhak et al., 2011). However, the unique features 
of Ad-Hoc and WSN technologies can pose significant challenges. Hence, 
envisioned solutions must be verified before being deployed in a real-world 
WSN deployment, either by utilizing simulators and emulators or through 
experimentations by employing testbeds. 

Simulation evaluation is an essential phase during the design and 
development of an Ad-Hoc or WSN infrastructure. However, environments in 
which Ad-Hoc or sensor networks evolve are often application-specific and 
too complex to be reproduced precisely. More specifically, simulators allow 
users to implement some basic assumptions, such as link quality, radio 
propagation, medium interferences and network topologies (Papadopoulos et 
al., 2013). Even tough, the majority of the simulation models cannot capture 
real world complexity, as proposed by (Hiranandani et al., 2013) and 
(Barrenetxea et al., 2008), they are often utilized as a first step. Our purpose 
is to show that this step is not sufficient to show the consistency of a solution 
as well as that low cost devices have steered researchers and engineers to 
enrich performance evaluation with testbeds. 

Experimental evaluation is performed either custom or over open testbeds, 
and exhibits potential unexpected failures and problems that the proposed 
solutions by researchers would face during real deployments. Even though 
performing well over testbeds, those remain in vitro deployments with more or 
less controlled environment conditions. Such a proof of concept must then be 
transposed into the real world. Designing and setting up a complete Ad-Hoc 
or WSN system under real conditions that can support robust applications is a 
very complex task (Kdouh et al., 2012). Researchers and production system 
developers, first need an appropriate plan of deployment and later number of 
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tools, simulators/emulators and testing facilities for real experiments, in order 
to initially validate their concept or model and then to develop the appropriate 
infrastructure. 

Throughout this study, we compile a large set of statistics on a literature 
review of 674 articles published in top conferences that are related with Ad-
Hoc and WSNs over the 2008-2013 period. We focus on the evaluation 
provided by authors, and especially to what extent experiments on testbeds 
have become a must for performance evaluation of new communication 
algorithms and protocols. Hence, we exhibit the tendency where performance 
evaluation procedures rely on experiments with real hardware and 
environment, to the detriment of simulations. The question of scientific results 
versus proofs of concepts therefore arises. Indeed, we discuss the meaning of 
reproducibility and of a proof of concept as a prototype being designed to 
determine feasibility. In this paper, we also analyze the selection of the 
evaluation methodology (e.g. simulator, testbed), and simplicity of the overall 
design that should be provided for validation, understanding and explanation. 
Finally, this work aims to investigate and gather the pros both from simulation 
and experiments so that real- world experiments could lead to reproducible 
scientific results for our research community. 

 

5.1 Performance Evaluation Procedures 

In a typical research process cycle, once the modeling phase is done, network 
researchers and developers continue with the validation procedure in which 
they evaluate their concept by using either a simulator or an emulator. Later, 
network engineers and developers may proceed with experimentation to 
further cross-verify their proposal (Stojmenovic, 2008). Thus, once both the 
simulation performance and the experimental measurements are satisfactory 
then real deployments can be initiated. 

 

5.1.1 Simulating protocols or experimenting algorithms 
When facing too complex environments to be theoretically analyzed and 
considering the difficulties of setting up a real-world (e.g. large-scale) 
deployment, simulations used to emerge as the good mean to study Ad-Hoc 
and WSNs. Many open source and freely available simulators allow users to 
have a better control of the nodes by often employing a GUI, and to retain or 
simplify some assumptions in order to evaluate their solutions. Simulation 
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evaluation is a provisioning procedure during the protocol development. 
However, even if the simulation performance presents coherent results with 
mathematical analysis, past real-world deployments show that it is not 
recommended to proceed directly with real deployment since engineers may 
face unpredictable phenomenon such as node crashing or network 
disconnection (Barrenetxea et al., 2008), (Langendoen et al., 2006). 
Intermediate experimentation platforms can therefore be considered to bridge 
the gap between simulations and real world deployments. Nevertheless, 
simulations can offer wider sets of assumptions to test and potentially more 
complete evaluations. On the other hand, testbed experimentations do 
impose many characteristics, such as the physical environment, real 
hardware and network topology. Such facilities offer the opportunity to have 
their solutions facing real conditions, thus being more realistic than those 
modeled under software simulators. Yet, numerous parameters, including 
radio dynamics, link stability and symmetry, impact of the weather on 
communications (Boano et al., 2010), appear so unpredictable that they may 
lead to results that can not be reproduced with sufficiently tight confidence 
intervals. The ambition of obtaining scientific results should then lead 
researchers to allow for further repeatability of the presented results. As a 
result, during the simulation evaluation the environmental conditions should 
not affect the behavior of the nodes. Hence, it would be ideal if the authors 
first verify their model by employing experimental tests in order to reflect the 
reality that their proposals would face during real deployment. 

 

5.1.2 A Thorough Literature Study 
Throughout this Thesis, we carry out a thorough study over top representative 
conferences that are strongly related to Ad-Hoc and WSN research fields. In 
particular, we have studied all articles that have been published at the 
ACM/IEEE International Conference on Information Processing in Sensor 
Networks (IPSN), ACM Annual International Conference on Mobile Computing 
and Networking (MobiCom), ACM International Symposium on Mobile Ad Hoc 
Networking and Computing (MobiHoc) and ACM Conference on Embedded 
Networked Sensor Systems (SenSys) conferences in order to derive the 
current tendency of the validation methodology that authors follow with 
respect to previously reported issues. Hence, we go through and study 674 
articles in total published in the conference proceedings for the last six years 
from 2008 to 2013 where 596 are related to Ad-Hoc & WSN (see Figure 20). 
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Indeed, we identified 78 articles that deal with other wireless technologies 
such as WiFi and WiMAX, that are studied in the context of cellular networks. 
All of these papers have been found in MobiCom (i.e. 140 out of 185) and 
MobiHoc (i.e. 142 articles out of 175) conferences (see Figure 21), which are 
not entirely dedicated to Ad-Hoc and WSN but have a broader scope on 
mobility and wireless communications. We further emphasize our 
investigation over these 596 articles. During our investigation, we observe and 
obtain plethora of information for each work and later we categorize the 
articles based on their common features. 

 

 

 
Figure 20. Number of articles per year (all conferences are considered) 
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Figure 21. Appropriateness of our conference sample 

 
Figure 22. Publication flows over the period 2008 - 2013 

 

Figure 22 provides detailed information about the total number as well as the 
Ad-Hoc & WSN related published articles per proceeding year. We actually 
observe that, there is a decreasing tendency of the published articles in the 
proceedings, indeed we identified 43 articles less from 2008 to 2013.  
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More specifically, MobiHoc and IPSN reduced the total accepted papers, from 
44 to 24 (MobiHoc) and from 41 to 24 (IPSN) respectively, while MobiCom 
and SenSys kept a steady flow. 

Modern technologies introduced the feature of mobility. Consequently, the 
research community focuses into developing and testing such aspects and 
scenarios. Our study results justify this trend, owing to the 148 articles 
(57.7%) that simulated mobile scenarios. Still, our statistical results for 
MobiHoc and MobiCom, the mobile oriented conferences, show that not all of 
their articles implement mobility scenarios. For instance, during the 2008 
MobiHoc conference we determined only 13 out of 28 simulation-based 
articles that introduced mobility in their tests. As shown in Figure 23, 57% of 
articles having mobile scenarios are less induced by our conference sample 
(half of the conferences, MobiCom and MobiHoc, being theoretically focused 
on mobility-related topics) than by the global enthusiasm for mobile scenarios, 
all four conferences being considered. 

 

 

 
Figure 23. Mobility scenarios in performance evaluation procedures 
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Figure 24. Use of Mathematics (M), Simulations (S), Experiments (E) and their 

combinations in validation procedures of 596 Ad-Hoc and WSN related articles. 

 

5.2 Results Of Analysis 

 

5.2.1 Evaluation procedures 
In this subsection, we expose our analysis on the validation procedures that 
the authors followed. As a first step, we aimed to categorize the reviewed 
articles according to the employed evaluation method. In particular, we 
examine the proportion of simulation, experimental and mathematical (i.e. 
modeling or analysis) evaluated works. Our primary analysis exposes 
interesting results. More specifically, our investigation shows that the majority 
(i.e. 561) of the articles provide an analytical representation of their solution. 
The remaining 35 have only simulation or experimentation results. 
Furthermore, 284 verify their proposal by employing simulation evaluation 
while on the other hand 392 of the articles include experimental evaluation for 
their validation. Finally, only one out of five (i.e. 20.3%) articles proceed 
through all three phases of the research process cycle (i.e. analysis, 
simulation and experimentation). The number of articles with the previously 
stated properties (with respect to 596 studied papers) is illustrated in Figure 
24. 
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Figure 25. Total simulation versus experimentation evaluated articles. 

 

We now present the characteristics of the articles that we studied. The 
percentage of simulation versus experiment-based studies (with respect to 
596 studied articles) is illustrated in Figure 25. As can be observed, while 
simulations and experiments used to be equally until 2009, the usage of 
simulations is decreasing every year (except in 2011) while experimentations 
still remain present at a relatively stable rate. 

Over the period 2008-2013, 284 studies followed a simulation-based 
evaluation to test their proposal. We noted the simulator usage, the scales of 
simulated networks and the programming languages used for custom 
simulators. Only 43.3% are validated through a known simulator while 42.3% 
of articles did not even provide any information about the tool that they have 
utilized (see Figure 26). Finally, 14.4% (with respect to 284 studied 
simulation-evaluated articles) developed a homemade simulator (Figure 26), 
by utilizing programming languages, such as Python and Java (see Figure 28) 
for the distribution of the most popular programming languages). 

We are next interested in determining the usage of the simulators. As can be 
observed from Figure 27, MATLAB is the first choice in our community 
counting more than 35 articles, followed by TOSSIM, which has been utilized 
in almost 20 articles. Furthermore, Network Simulator 2 (ns-2) comes third 
with 13 articles. 
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Figure 26. Simulator usage and scales of simulated networks 

 
Figure 27. Popularity of simulators 

 
Figure 28. Programming language popularity for custom simulators 
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Nowadays, the research community is able to evaluate proposed protocols, 
models, and even new technologies over open testbeds at a very large-scale 
(Gluhak et al., 2011). Increasingly, network researchers are using 
experimentations to enlarge the scope of their performance evaluation, as it is 
illustrated in Figure 25. Moreover, as it can be observed from Figure 29, our 
investigation shows that the majority of the researchers, 91.3%, choose to set 
up their own testbeds. Even though to the current day, there are number of 
open facilities providing to the developers the infrastructure needed for 
experimental Ad-Hoc, WSN or IoT studies, only 10.7% of the articles use 
open platforms. Our compiled statistics tend to show that researchers would 
rather favor their own setups for small-scale deployments. In fact, among the 
392 articles exposing experimental results, 78% of them do not exceed 40 
nodes for their experimental setup (see Figure 29).  

 

 
Figure 29. Testbed utilization and scales 
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Figure 30. Popularity of open testbeds 

 
Figure 31. Motes Popularity 

 

Hence, the increased difficulty to apprehend a remote open testbeds (e.g. 
specific hardware and software, network topology, booking procedure) may 
have induced researchers to set up their own relatively small scale networks. 

Finally, we evaluated the popularity of the devices in homemade experiments. 
In Figures 30 and 31 the utility of the open testbeds and motes is presented. 
Even though a small number of articles experimented over open testbeds, we 
pointed out the popular open platforms. As observed in Figure 30, Harvard’s 
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Motelab comes first (11 articles), followed by TWIST (10 studies). That can be 
simply explained as those facilities were the first to be open to the scientific 
community. Regarding the Indriya testbed, even though it was made available 
from 2011 only, it was used in 8 articles. The fact that users can interact with 
the testbed through the same intuitive web-based interface as MoteLab’s 
could explain this success among the community. 

 

5.2.2 Reproducibility 
We continue our study by investigating the feasibility of reproducing results 
that are presented in the reviewed articles, both for simulation and 
experimental campaigns. To proceed so, we looked for some critical 
information (e.g. simulation setup, simulator indication, simulator details such 
as version or library, number of nodes), that should be provided by the studied 
articles. In order to reproduce the proposed solution, we assumed that the 
authors should provide a complete simulation or experiment settings 
subsection. 

Regarding the simulation based evaluations, while only 43.3% of the articles 
indicate the simulator, 78.5% of those do provide some details about 
simulation setups. Among those, 72.5% precise the number of involved 
nodes. Finally, we decided of non-complete setups as soon as there was a 
lack of critical details regarding the tools used during simulations. For 
instance, as earlier discussed, MATLAB stands as the most popular software 
for simulations. In order to use it as a network simulator, researchers must 
import external libraries (e.g. as developed by the WISLAB1 team). It is 
difficult, if not impossible, to reproduce a simulation study when the version of 
a publicly available simulator is unknown, and only 21.5% provide us with the 
employed version or the utilized library of the simulator, which essentially 
concludes our outcome about the reproducibility of the simulation-evaluated 
articles. 

We followed similar methodology for the experimental- based validations. 
Taking into account the nature of open platforms, the 42 articles, we consider 
that these articles in overall are reproducible. However, we counted 8 papers 
where the authors tested their ideas over both custom and open testbeds, 
with only 3 of them providing enough information to be assumed reproducible. 
On the other hand, the experimental results that are retrieved through 
homemade testbeds can be considered as difficult or even impossible to 
reproduce. This is explained since most of them are deployed in offices, 
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houses or even outdoor installations where the environmental radio activity 
varies, due to the interpolation of external features such as mobile phones, 
wireless routers and access points and so on. Nevertheless, owing to the 
nature (e.g. application layer) of the tested solution, we detected 31 
homemade-based studies that may be reproduced. Finally, by summarizing 
the previous statements, we calculated that only 16.5% (65) of the 
experimental-based papers present reproducible results. 
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6. Conclusions & further discussions  

6.1 Conclusions 

Throughout this Thesis, we reviewed 674 papers that were published in four 
major and representative conferences in Ad-Hoc and Wireless Sensor 
Networks, over the period 2008-2013. We especially focused on the 
performance evaluation procedures in order to raise the question of whether 
simulations and experiments lead to scientific results or proofs of concepts. It 
is undeniable that simulators make the whole process of validation easier, 
faster and less expensive. On the other hand, with the growing development 
of open and realistic testbeds, researchers may overcome the technical 
challenges and economical barriers of real-world deployment to perform a 
thorough experimental evaluation of their ideas in wide- scale platforms. 
Simulators and open testbeds are two crucial and complementary design and 
validation tools; theoretically development process should start from the 
theoretical analysis by providing bounds and indication of its performance, be 
validated and verified by simulations and finally confirmed in open testbeds. 
Hence, once the entire procedure is successfully completed and the 
performance results show coherence, then researchers could promote their 
solution to engineers in order to proceed with real deployments. 

Simulation evaluations should allow for reproducible setups, thus, producing 
scientific results that can be reproduced and verified by anyone in the 
community. In the context of experiments, our future work will focus on 
allowing researchers to get guidance for conducting experimentations over 
different testbeds, in order to cover larger sets of assumptions. Finally, as far 
as it concerns the specific issues studied by our research community, they 
can be considered a different approach from the one we followed, and binding 
those findings with our study, will also be a straightforward extension to our 
current work. 
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6.2 Further discussions 

6.2.1 Scientific results or proofs of concepts? 
Scientific results are expected to be repeatable while a proof of concept is a 
realization of an idea that demonstrates its feasibility. Our initial investigation 
shows that most of the authors choose to validate their proposals over 
experimental evaluation. Our investigation highlights some interesting 
tendencies in the networking scientific community, especially around Ad Hoc 
and Wireless Sensor Networks. As presented in previous Section, an 
increasing number of papers validate their proposals by using experimental 
evaluations. 

We focused on the simulation and experimentation setups in order to 
determine if they were sufficiently described to allow for repetition of the 
evaluation procedure. While (Kurkowski et al., 2005) had focused on MANET, 
thus, looking for simulation parameters specific to mobility (e.g. speed of 
nodes, speed delta, pause time, pause delta), we aimed at a larger scope by 
gathering various sets of setup parameters. This is especially true for all 
observed experimentations among which setups are highly different (e.g. 
hardware, physical topologies, radio environment). The reproducibility level of 
experimental studies is lower than the simulation one. This is even more 
dramatic as this latest has not varied much since the study of (Kurkowski et 
al., 2005). More specifically, the authors had identified 29.8% of the 
simulation-based articles that did not identify the simulator used in the 
research. As already mentioned, for the 4 conferences we observed and over 
the 2008-2013 period, this proportion has raised to 42,3%. In addition, they 
calculated only 12.1% of the articles where the simulator version was 
mentioned. Furthermore, the authors were concerned that more than 90% of 
the published results may include bias. As a result, they conclude that 
approximately 12% of the MobiHoc simulation-based results appear to be 
repeatable. In (Kurkowski et al., 2005), numerous pitfalls throughout the 
simulation lifecycle had already been observed. Those tendencies, as already 
highlighted by take away from the goals of making the research repeatable, 
unbiased, realistic, and statistically sound. 

As previously observed, over the last six years, less and less papers have 
actually considered simulations during their performance evaluation process. 
Still, the simulation phase allows researchers to demonstrate that the main 
principles of their proposal are indeed effective, before implementing them 
over a testbed (Stojmenovic, 2008). However, in order that the users will be 
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able to continue their proof of concept validation, we can avoid the necessity 
that they have to get familiar with various simulators and testbed platforms. 
Emulators such as TOSSIM or COOJA were developed to bridge the gap 
between simulation and experimentation, by being very close to real 
embedded systems in terms of architecture compilation targets. In fact, by 
utilizing these simulators, the very same code remains unchanged over the 
transfer from simulation to experimental campaign. 

We are coming to a tradeoff between realism and reproducibility. More 
specifically, on the one hand there are more published articles that are closer 
to real deployment while on the other hand the reproducibility level of the 
studies decreases. So far, the proportion of papers using experimentations 
that allow reproducing the conditions of an experiment remains very low (< 
11%). Moreover, all those testbeds are highly different (e.g. hardware, 
physical topologies, radio environment) and each would require a specific 
guidance to allow for scientific results to be obtained. 

In (Kurkowski et al., 2005), the authors proposed a simulation study guidance. 
If the enthusiasm for experiments in networking scientific papers is to be 
confirmed, we should also be able to establish such mandatory steps to 
ensure statistically sound results. The significant number of open access and 
large-scale testbeds that have been deployed over the recent years (Gluhak 
et al., 2011), provides appropriate tools and experimental facilities for 
researchers and engineers to perform real experiments in order to further 
analyze their protocols. Open testbeds allow users to easily deploy source 
code (that could be the same with the one of the simulator) on a sensor node 
and to flash it at no delay. Those open platforms thus allow for more rigorous, 
transparent and replicable testing of proposed protocols and models. 

Researchers, by connecting remotely (e.g. via SSH) to one open platform, 
may set up and initiate an experiment by using the terminal. Hence, the 
previously reported simulators along with open testbeds, allow the research 
community to get a flavor of real deployments while maintaining a unique 
programming code. More importantly obtaining performance evaluation 
measurements over large-scale network (both for simulation and experiments) 
can be at no cost at all. 
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Figure 32. Main contributions of the 545 reviewed articles that include simulations or 

experiments 

 

Finally, after following all the previously presented steps, and by obtaining 
coherent results, researchers may consider initiating a real deployment by 
utilizing their verified and refined protocol. 

 

6.2.2 Applications 
While studying the 674 papers, we could observe that the vast majority of 
papers actually mention some classical envisioned applications (e.g. defense, 
environment monitoring) but then focus on networking solutions that are 
application independent. Regarding the type and nature of the problems that 
were addressed, we collected data about the correspondence of the studied 
articles to the layers of the OSI model. We also identified papers that took into 
account some cross-layer design methodology. 

As observed from Figure 32, the most common approaches were at 
application layer and with cross-layer design. While papers related to the 
former were investigating new kinds of information that could be collected by 
Ad-Hoc and WSN, contributions related to the latter were concerned with the 
high constraints imposed by low-cost sensor and mobile devices that impose 
to consider cross-layer approaches. 
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6.2.3 Mobility 
Mobility is a key aspect for the future designs. While the majority of existing 
and used simulators allow to use and create mobility models, testing and 
executing such scenarios during an experimentation procedure requires to 
involve and combine advanced and intelligent technologies such as robots. 
Consequently, very few of the widely popular open platforms do support 
mobility (Tonneau, Mitton, & Vandaele, 2014). Actually, there are number of 
challenges that need to be addressed having mobile robots in a testbed, 
namely, charging, remote administration and maintenance of the robots. 
Indeed, robots must be able to reach their docking stations automatically. 
Conversely, remote users must be able to interact with robots over reliable 
links (e.g. WiFi). Even though those challenges can be addressed, testbed 
administrators then face the issue of localizing mobile devices in order to 
allow for repeatable trajectories. Indoor deployments can not rely on GPS 
solutions and thus impose distance approximations to be computed based on 
other available inputs (e.g. received signal strength intensity) or on costly 
technologies (e.g. 3D camera with range detector sensors for the mapping of 
the environment). Furthermore, even with perfect localization of all robots, 
trajectories would be very difficult to replay, especially due to the odometer 
drift. Some 3D cameras using range detector sensor aim at handling this drift. 
Still they lack to compute the path where not enough landmarks exist in open-
space and large-scale environments. 
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