

Bachelor of Science Thesis

Building a Testbed for the Internet of

Things

Barcelona, April 2014

ALEXANDER TECHNOLOGICAL INSTITUTE OF
THESSALONIKI

School of Technological Applications

Department of Computer Science Engineers

Author: Vasileios Karagiannis

Registration Number: 07/3273

Thesis Supervisor : Dr. Jesus Alonso Zarate

 Head of M2M Department

 CTTC, Barcelona, Spain

Thesis Advisor : MSc Francisco Vazquez Gallego

 Senior Researcher

 CTTC, Barcelona, Spain

Academic Supervisor : Dr. Periklis Chatzimisios

 Associate Professor

 ATEITHE, Thessaloniki, Greece

Page 2 of 91

Abstract

Over the past few years a technological outbreak has been noticed in the area of

electronics and computer networks, granting eligibility to connect these fields in

the direction of building intelligent systems. These systems have the ability to

increase the growth of Information and Communication Technologies (ICT) in

urban environments and to provide services able to significantly upgrade the

general well-being of individuals and societies. The whole concept of an Internet of

Things (IoT) is reviewed in this thesis, architectures are discussed and some

notable commercial solutions are presented. We then build our own development

platform by setting up a wireless network of sub-GHz devices and connecting it to

a virtual Internet cloud. Moreover, software applications are designed to complete

an End-to-End Machine to Machine (M2M) communication network and therefore,

emulate an entire Internet of Things environment. The communication framework

that is developed, allows us to research a variety of IoT concepts including the

upcoming smart grid which is a significant improvement to the current electric

power distribution system.

Keywords: Internet of Things, M2M Communications, IoT Cloud Platforms,

Wireless Networks, Testbed, Gateway Engineering, Android programming, Electric

Power Grid, Smart Grid.

Page 3 of 91

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my Erasmus

placement supervisors Dr. Jesus Alonso Zarate Head of the M2M Department at

CTTC Spain, and Francisco Vazquez Gallego Senior Researcher at CTTC Spain,

for welcoming me into the world of research. Without their guidance this

dissertation would not have been possible. Special appreciation also to my

university supervisor Dr. Periklis Chatzimisios, Associate Professor at the

Department of Computer Science Engineering (ATEI of Thessaloniki, Greece) for

consulting and aiding me in writing the current thesis. Finally I would like to

acknowledge the technical support of the Centre Tecnologic de

Telecomunicacions de Catalunya (CTTC) for providing the facilities and the

necessary equipment to produce and complete this thesis.

Vasileios Karagiannis

Page 4 of 91

Table of Contents

INTRODUCTION .. 11

1.1 RELATED WORK ... 12

1.2 THESIS OVERVIEW .. 12

RESEARCH ON THE INTERNET OF THINGS ... 14

2.1 THREE-LAYER IOT MODEL .. 14

2.1.1 The Perception Layer .. 14

2.1.2 The Network Layer .. 15

2.1.3 The Application Layer .. 15

2.2 INTERNET OF THINGS COMPONENTS .. 15

2.2.1 End-Devices .. 17

2.2.2 Communication Protocols for the IoT .. 17

2.2.3 Internet of Things Operating Systems ... 23

2.2.4 Gateway for the M2M Area Network ... 25

2.2.5 Message Queues .. 26

2.2.6 Application Layer Protocols for the IoT ... 29

2.2.7 IoT Cloud Platforms ... 34

2.3 THE OPENREMOTE PLATFORM .. 38

2.3.1 OpenRemote Controller .. 39

2.3.2 OpenRemote Designer .. 39

2.3.3 OpenRemote Control Panels .. 40

2.4 SUGGESTED ARCHITECTURE FOR THE TESTBED ... 40

AN IOT TESTBED ... 42

3.1 THE PANSTAMP PROJECT ... 43

3.1.1 PanStamps .. 43

3.1.2 Base Boards .. 45

3.1.3 PanStick .. 46

3.1.4 Lagarto Servers ... 47

3.2 RASPBERRY PI ... 54

3.2.1 Raspberry Pi PanStamp Shield ... 57

3.2.2 The Raspberry Pi as a Gateway ... 58

3.2.3 Practical Implementation ... 59

3.3 TESTED CLOUD PLATFORMS ... 61

3.3.1 ThingSpeak ... 61

3.3.2 OpenSense.. 62

3.4 SECURITY ASPECT .. 63

3.5 THE PUBLIC IP APPROACH ... 64

Page 5 of 91

3.6 ALTERNATIVE COMPONENTS FOR THE TESTBED ... 65

IMPLEMENTED REAL LIFE SERVICES .. 68

4.1 ANDROID PROGRAMING ... 68

4.1.1Google Maps Android API v2 ... 69

4.2 SMART PARKING APPLICATION .. 70

4.3 GEO FENCING APPLICATION .. 72

APPROACHING THE ELECTRIC POWER GRID .. 75

5.1 THE CURRENT POWER GRID ... 75

5.1.1 Generation ... 76

5.1.2 Transmission ... 76

5.1.3 Substations .. 77

5.1.4 Distribution ... 78

5.1.5 Supervisory Control and Data Acquisition ... 79

5.2 THE NEED FOR IMPROVEMENT ... 80

5.3 THE IOT PERSPECTIVE OF A SMART POWER GRID .. 81

5.3.1 Smart Grid ... 82

5.3.2 IEC 61850 and GOOSE .. 83

5.3.3 Phasor Measurement Units and GOOSE generation ... 83

5.3.4 Gateway for the GOOSE ... 84

CONCLUSIONS – FUTURE WORK .. 87

REFERENCES ... 89

Page 6 of 91

List of Figures

Figure 1: Three-layer IoT model [24] .. 14

Figure 2: IoT components... 16

Figure 3: IoT end-device .. 17

Figure 4: Zigbee representation on the OSI model ... 19

Figure 5: 6LowPAN representation on the OSI model .. 21

Figure 6: M-Bus representation on the OSI model ... 22

Figure 7: Modbus representation on the OSI model ... 23

Figure 8: Internet connected end-device network ... 26

Figure 9: Publish-Subscribe concept .. 27

Figure 10: Polling mechanism .. 31

Figure 11: Long-polling ... 32

Figure 12: WebSocket session ... 33

Figure 13: ThingSpeak channel [52] ... 35

Figure 14: OpenSense public Senseboard [31] .. 37

Figure 15: OpenRemote Designer [29] ... 39

Figure 16: Suggested testbed architecture ... 41

Figure 17: PanStamp modules [37] .. 44

Figure 18: PanStamp base board [32] .. 46

Figure 19: PanStick [34] ... 47

Figure 20: Lagarto architecture [39] ... 48

Figure 21: SWAP packet structure [42] .. 49

Figure 22: Lagarto SWAP monitor interface ... 52

Figure 23: Lagarto MAX event interface [38] .. 54

Figure 24: Raspberry Pi board (model B) [46] .. 55

Figure 25: Raspberry Pi (model B) design [45] ... 56

Figure 26: PanStamp shield for the Raspberry Pi [35] ... 57

Figure 27: PanStamp shield attached to the Raspberry Pi [35] 58

Figure 28: Connection among servers ... 60

Figure 29: Implemented end-device network with Internet connectivity 61

Figure 30: Temperature/humidity monitoring from ThingSpeak channel 62

Figure 31: OpenSense monitor/control interface .. 63

Page 7 of 91

Figure 32: The public IP approach of an IoT testbed .. 65

Figure 33: Arduino Uno, MSP-EXP430G2, Nanode, STM32VLDISCOVERY (left to

right) ... 66

Figure 34: BeagleBone Black, UDOO, MinnowBoard Max and HummingBoard (left

to right) ... 67

Figure 35: Android connectivity to the end-devices .. 69

Figure 36: Android HTTP GET request .. 71

Figure 37: Smart Parking Android application .. 72

Figure 38: GeoFencing Android application ... 73

Figure 39: Power grid overview [51] ... 76

Figure 40: High-voltage transmission lines [51] .. 77

Figure 41: Distribution system [51] ... 79

Figure 42: PMU device ... 84

Figure 43: Mbed, Wiznet (left to right) .. 85

Figure 44: Gateway for the GOOSE ... 85

Page 8 of 91

List of Acronyms

3G

6LoWPAN

AES

AGPL

API

CoAP

CPU

CRC

CSV

CTP

DDR

EEPROM

FTSP

GOOSE

GPIO

GPS

GPU

GW

HDMI

HTTP

ICT

ID

IDE

IEC

IED

IEEE

IETF

IoT

IP

IPv4

3rd Generation

IPv6 Low Wireless Personal Area Network

Advanced Encryption Standard

Affero General Public License

Application Programming Interface

Constrained Application Protocol

Central Processing Unit

Cyclic Redundancy Check

Comma Separated Values

Collection Tree Protocol

Double Data Rate

Electrically Erasable Programmable Read Only Memory

Flooding Time Synchronization Protocol

Generic Object Oriented Substation Events

General Purpose Input Output

Geographical Positioning System

Graphics Processing Unit

Gateway

High Definition Multimedia Interface

Hyper Text Transfer Protocol

Information Communication Technology

Identity Document

Integrated Development Environment

International Electrotechnical Commission

Intelligent Electronic Device

Institute of Electrical and Electronics Engineers

Internet Engineering Task Force

Internet of Things

Internet Protocol

Internet Protocol version 4

Page 9 of 91

IPV6

ISM

JSON

JSONP

LAN

LED

LGPL

LLC

LTE

M-Bus

M2M

MAC

MCU

MQTT

NAT

NIST

NOOBS

OS

OSI

PMU

RAM

RCA

REST

RF

RFC

ROM

RPL

RTC

RTU

Rx

SCADA

SMA

SPI

Internet Protocol version 6

Industrial Scientific Medical

JavaScript Object Notation

JavaScript Object Notation with Padding

Local Area Network

Light Emitting Diode

Lesser General Public License

Logical Link Control

Long Tern Evolution

Meter Bus

Machine to Machine

Media Access Control

Micro Controller Unit

Message Queue Telemetry Transport

Network Address Translation

National Institute of Standards and Technology

New Out Of the Box Software

Operating System

Open System Interconnection

Phasor Measurement Unit

Random Access Memory

Radio Corporation of America

Representational State Transfer

Radio Frequency

Request For Comments

Read Only Memory

Routing Protocol Low power

Real Time Clock

Remote Terminal Unit

Receive

Supervisory Control and Data Acquisition

SubMiniature version A

Serial Peripheral Interface

Page 10 of 91

SWAP

TCP

Tx

UART

UDP

UI

uIP

URL

USB

Wi-Fi

WLAN

WSN

XML

ZMQ

μC

Simple Wireless Abstract Protocol

Transmission Control Protocol

Transmit

Universal Asynchronous Receiver Transmitter

User Datagram Protocol

User Interface

Micro Internet Protocol

Uniform Recourse Locator

Universal Serial Bus

Wireless Fidelity

Wireless Local Area Network

Wireless Sensor Network

Extensive Markup Language

Zero Message Queue

Micro Controller

Page 11 of 91

Chapter 1

Introduction

The expression Internet of Things, also referred to as IoT, was first put together by

Kevin Ashton in a presentation in 1999 in order to characterize an Internet-based

information architecture [21]. The term became popular and is widely used ever

since, but coming up with an accurate and precise definition is not a simple task.

IoT is the interconnection and Internet-connection of all the things that surround us

and comprises the sciences of telecommunications and electronics. With any

possible innovation in these fields, IoT grows even more powerful so its definition

has to be flexible enough to follow. It can be described as the need emerging from

all the entities of a developed environment to communicate with each other. Not

only things but living organisms as well can be part of it. For this reason, Cisco has

decided to coin the term Internet of Everything. Each element associated with the

IoT has the ability to make decisions based not only on its own surroundings but

on anything affecting its living, regardless distance or connectivity concerns.

Connecting thousands of devices and giving them enough intelligence to act at

will, is a way to get a glance at the scenario of an IoT.

The main objective of this thesis is to deploy an IoT testbed comprising the

following elements:

1. A wireless M2M area network to connect sensors and actuators. In

particular, sub-GHz transmissions have been chosen due to their suitability

for the IoT, as it will be discussed later.

2. A gateway providing the wireless M2M area network with connectivity to

the public Internet.

3. A cloud platform to store data gathered from the real world and properly

formatted to be used by end-users facilitating the so-called smart

applications.

4. An application on a smartphone (or tablet) to get access to the cloud and

retrieve information gathered by the wireless network and interact with the

actual sensors and actuators.

Page 12 of 91

1.1 Related Work

There are several real-world experimentation platforms that have been developed

over the last decade. Some representative examples are:

 The Oulou testbed is deployed in the city of Oulou of Northern Finland. It

comprises a Wireless Local Area Network (WLAN) and a Wireless Sensor

Network (WSN). The former is a public access network consisting of access

points that use IEEE 802.11a/b to provide wireless broadband Internet

access. The latter is a wireless sensor network that uses the IEEE 802.15.4

standard and implements the 6LoWPAN protocol stack in the 868MHz

frequency band [48].

 The IoT-LAB testbed consists of devices deployed in six different locations

in France. It comprises mobile and fixed wireless sensor devices that use

the physical layer of the IEEE 802.15.4 standard and operate in the

frequencies of 2,4GHZ or 800MHZ [47].

 The W-iLab.t testbed is deployed in city of Zwijnaarde in Belgium. It

consists of mobile and fixed devices that communicate wirelessly using the

IEEE 802.11a/b/g/n standards in the frequencies of 2.4GHz and 5GHz [49].

While all these testbeds have been developed for particular applications, the

testbed created within the context of this thesis aims at being heterogeneous and

flexible, so that it could be used for any final application in mind.

1.2 Thesis Overview

The rest of the thesis is organized in the following 5 chapters:

Chapter 2 includes general information about the IoT, a three-layer model suitable

for understanding the concepts of this work and a detailed description of the IoT

components. Additionally, a review of some relevant existing commercial IoT

platforms is presented and a complete End-to-End architecture is proposed and

analyzed.

Chapter 3 describes the implementation of the testbed deployed within this thesis.

Moreover another approach to the IoT is discussed including Network Address

Translation (NAT) configuration. It is implemented and conclusions are presented.

Page 13 of 91

Chapter 4 demonstrates two Android applications designed to complete the

testbed, Smart Parking and GeoFencing. The former works as a modern way to

give a solution to the parking problem in big cities. The latter is a state-of-the-art

application for remote automation in urban environments.

Chapter 5 describes the connection of the testbed to the electric power

distribution system. It covers the current power grid, its need for improvement and

how connecting it to the testbed, leads to the emerging smart grid.

Finally, Chapter 6 concludes the thesis by providing overall conclusions and

stating future lines for further research in the area.

Page 14 of 91

Chapter 2

Research on the Internet of Things

This chapter presents an overview of the Internet of Things and describes its

components based on a three-layer model. Some remarkable commercial tools

are also mentioned and explained. Among them, we highlight the relevance of

OpenRemote, an open source automation platform, and some IoT cloud platforms,

virtual clouds that store information from thousands of devices. Finally, after

introducing and explaining all the components, they are all combined to create an

architecture to emulate an IoT environment.

2.1 Three-Layer IoT Model

Even though the concept of the Internet of Things has been under research for

over a decade now, still many aspects are not clearly defined. For example, today

there is no standardized and specific architecture for the IoT. Despite this lack of

common agreement, there is a well-known three-layer architecture that is

generally accepted which consists of the Perception Layer, the Network Layer and

the Application Layer [24].

Figure 1: Three-layer IoT model [24]

2.1.1 The Perception Layer

The main task of the Perception Layer is to perceive physical properties such as

temperature, location, speed, etc., by various sensing devices and convert this

information into digital signals which can be easily transmitted through digital

Page 15 of 91

communication networks and stored. The objects of this layer can have sensing

abilities and/or actuating abilities. An actuator is a device which can receive

programmed commands and perform tasks at specific times [24].

2.1.2 The Network Layer

The Network Layer is responsible for transmitting data received from the

Perception Layer to a data base, server, or processing center. The main

technologies used to realize this layer include cellular technologies 2G/3G/LTE,

Wi-Fi, Bluetooth, or Zigbee, among others. Despite the wide variety of

technologies for the radio access, IPv6 at the transport layer enables the

interconnection of all of them besides the possibility to address the expected

billions of things that will be connected in the near future [24].

The Internet of Things will be an immense network, which not only connects

billions of things, but also encompasses heterogeneous networks.

2.1.3 The Application Layer

The Application Layer stores, processes, and analyses the information received

from the Network Layer. These facilitate end-user applications such as building

automation, location based services, identity authentication, safety etc. This layer

provides applications for all kind of technological challenges. These applications

promote the Internet of Things, which is why this layer plays an important role in

the spread of the IoT [24].

2.2 Internet of Things Components

All the components required to build an IoT testbed are categorized below based

on the three-layer model.

The Perception layer consists of:

 Sensors, sense physical properties and convert them into digital signals.

 Actuators, receive commands to perform actions at specific moments.

 End-devices, are small boards with an integrated microcontroller used to

provide processing and communication abilities to sensors and actuators.

The Network layer comprises:

 Communication protocols used for end-devices.

Page 16 of 91

 M2M servers, used to translate end-device information in routable form.

 Gateways to route traffic from end-devices to the Internet.

 Operating Systems for the end-devices.

 Message Queues are libraries implemented in servers and applications to

provide a messaging system for publishing updates.

 Application layer protocols to connect applications to the End-Devices.

The Application layer contains:

 IoT cloud platforms are online virtual clouds that store information from

end-devices and provide an interface with visualization of data (charts,

graphs) for End-users.

 Software Applications for smart phones, tablets, Desktops to provide

graphical user interfaces (GUI) for monitoring, processing and controlling

end-device values.

Figure 2: IoT components

Optionally, IoT cloud platforms work as nodes for applications to connect to and

extract data, which is a function that belongs in the network layer. Nonetheless

their main objective is to store and visualize data for End-users which is why they

belong in the Application layer. Similarly, M2M servers might also offer an

Page 17 of 91

application interface. However, this is not their purpose, thus they belong in the

network layer.

2.2.1 End-Devices

Recent advances in micro-electro-mechanical systems technology, wireless

communications, and digital electronics have enabled the development of low-

cost, low-power, multi-functional end-devices which are small in size and

communicate untethered in short distances [17]. These end-devices are typically

equipped with sensors and/or actuators, microcontrollers (μC), and a radio

transceiver which are explained as follows:

1. Sensors measure with high accuracy environmental conditions

2. Actuators execute an action depending on the power supply they are

provided with.

3. Microcontrollers are very small computers that accommodate a processor

unit and programmable input/output pins.

4. Radio Transceivers in order to transmit and receive data wirelessly. There

are many alternatives for the RF transceiver and related communication

protocols, and some of the most relevant alternatives are summarized in

the next section.

Figure 3: IoT end-device

2.2.2 Communication Protocols for the IoT

The end-devices can be stand-alone and independent able to connect to the

Internet on their own or smaller low-power microcontroller boards with constrained

communication capabilities. Small boards are preferred for being low-cost devices

Page 18 of 91

able to work constantly with minimal power consumption. However they rely on a

gateway to route their data to the Internet. The following protocols are used to

connect constrained-communication end-devices to the gateway and are

explained in detail in the next sections.

Wired connectivity:

 M-bus

 Modbus

Wireless connectivity:

 Zigbee

 6LoWPAN

 Wi-Fi

 SWAP

Wireless end-device networks do not need high data-rates for transmissions since

most devices do not transmit values continuously and spend most time in sleep

mode for power consumption reasons. In addition, considering that sensors must

be deployed in broad areas, range is very crucial. Taking everything into account,

low frequencies and specifically sub-GHz transmissions are more suitable for

wireless end-device networks due to the fact that they need less power and

achieve longer ranges than higher frequencies. Low data rates of up to 600Kbit/s

is the main disadvantage of sub-GHz frequencies but is considered enough for

sensor networks.

2.2.2.1 Zigbee

The ZigBee alliance defines a specification used to create wireless low-range and

low-power area networks in the 868/915MHz and 2.4GHz frequency bands. It is

based on the IEEE 802.15.4 Standard, which defines the PHY and MAC layers.

ZigBee devices can transmit data over long distances by exploiting multi-hop

transmissions. The standard defines a maximum data rate of 250Kbit/s in the

2.4GHz frequency, which is suited for periodic or intermittent data or a single

signal transmission from a sensor or input device. It is used in applications that

require low data rate and long battery life [63]. Zigbee includes the Physical Layer

and the Media Access Control (MAC) Layer defined by the IEEE 802.15.4

Page 19 of 91

standard and it defines its own set of rules for the Network Layer and the

Application Layer. It was created to target wireless automation and remote control

applications. Some of its features are:

 Collision avoidance.

 Timeslots managing.

 Integrated transmission security.

Figure 4: Zigbee representation on the OSI model

Zigbee building automation features include wireless range up to 70m indoors and

400m outdoors with full control of transmitted output power, enough to cover entire

campuses. The networks are secured by the use of AES 128 encryption, keys,

and device authentication [62].

The Zigbee Standards are the following [61]:

 Building Automation

 Remote Control

 Smart Energy

 Energy Profile

 Health Care

 Home Automation

 Input Device

 Light Link

 Retail Services

Page 20 of 91

 Telecom Services

To get the Zigbee certification a device has to follow one of these standards and

meet all the requirements.

ZigBee devices are of three types [63]:

1. ZigBee Coordinator (ZC): The most capable device, it forms the root of the

network tree and might bridge to other networks. There is exactly one

ZigBee Coordinator in each network since it is the device that started the

network originally.

2. ZigBee Router (ZR): As well as running an application function, a Router

can act as an intermediate router, passing on data from other devices.

3. ZigBee End Device (ZED): Contains just enough functionality to talk to the

parent node (either the Coordinator or a Router). It cannot relay data from

other devices. This relationship allows the node to be asleep a significant

amount of the time thereby giving long battery life. A ZED requires the least

amount of memory, and therefore can be less expensive to manufacture

than a ZR or ZC.

2.2.2.2 6LoWPAN

6LoWPAN is another communication protocol that includes the Physical and the

MAC layer defined by IEEE 802.15.4 standard and operate in 868/915MHz and

2.4GHz frequency bands, same as Zigbee. It stands for IPv6 over Low Power

Wireless Personal Area Networks which is the name of a concluded working group

in the Internet area of the Internet Engineering Task Force (IETF). 6loWPAN adds

an adaptation layer that works over IEEE 802.15.4 to allow IPv6 communication

[2]. It has defined encapsulation and header compression mechanisms that allow

IPv6 packets to be sent and received over IEEE 802.15.4 based networks. The

base specification developed by the 6LoWPAN IETF group is called RFC 6282

[64].

Page 21 of 91

Figure 5: 6LowPAN representation on the OSI model

The 6LoWPAN concept originated from the idea that the Internet protocol should

be applied even to the smallest devices [27] and that low power devices with

limited processing capabilities should be able to participate in the Internet of

Things [58]. The target of IP networking for low power radio communication is the

applications that need wireless internet connectivity at lower data rates. Examples

include automation and entertainment applications in home, office and factory

environments. IPv6 is also in use on the smart grid, enabling smart meters and

other devices to build networks before sending the data back to the billing system

using the IPv6 backbone [64].

2.2.2.3 Wi-Fi

Wi-Fi is a local area wireless technology that operates in the 2.4GHz and 5GHz

frequency bands. It is based on the IEEE 802.11 standards that define the

Physical and MAC layers. Typical Wi-Fi devices using 802.11g have maximum

data rate of 54Mbit/s and devices using 802.11n have data rate of up to 600Mbit/s.

Many devices use Wi-Fi (e.g. personal computers, smart phones, tablets, digital

cameras) to connect to a network such as the Internet via an access point.

However Wi-Fi is not ideal for sensor networks due to the high frequency band

that it uses.

2.2.2.4 SWAP

SWAP or Simple Wireless Abstract Protocol is a lightweight application layer

protocol designed for constrained wireless M2M networks. Its characteristic is that

Page 22 of 91

it is data type agnostic which simplifies a lot the implementation. SWAP is created

by panStamp SLU which also created an open source M2M server called Lagarto

that provides a user interface to monitor and control SWAP end-devices. The

SWAP along with Lagarto are of grave importance to this thesis and will be

discussed extensively in the next Chapter.

2.2.2.5 M-bus

The M-Bus or Meter-Bus is a European standard for remote reading of heat

meters and it is also usable for all other types of consumption meters as well as for

connecting various sensors and actuators. After its standardization it gained great

importance for the energy industry because it can be used for low-cost real time

metering.

Remote reading of meters can take place by collecting all the meter values for a

complete housing unit, using just a single two wire cable which connects all the

consumptions meters to a building controller. It is a protocol for wired connections

which is very cost effective since it only uses one cable in which all meters are

individually addressable. M-Bus includes Physical layer and Data Link layer. It

could be used for the Internet of things in networks that require no wireless

communication [22].

Figure 6: M-Bus representation on the OSI model

Page 23 of 91

2.2.2.6 Modbus

The Modbus Protocol is a messaging structure developed by Modicon in 1979 for

wired networks. It is used to establish master-slave/client-server communication

between devices. Modbus is used in multiple master-slave applications to monitor

and program devices and to connect them to various sensors.

A Modbus TCP/IP specification was developed in 1999. It can be implemented to

any device that supports TCP/IP sockets. Modbus TCP/IP has become ubiquitous

because of being low-cost and requiring minimum hardware to support it. It is used

to exchange information between devices, monitor and program them. Modbus

TCP/IP is an Internet protocol which means that a Modbus TCP/IP device can be

addressed over the Internet from anywhere. Modbus TCP/IP includes the

Physical, Data Link, Network, Transport and the Application layers [23].

Figure 7: Modbus representation on the OSI model

Modbus is another communication protocol that could help in connecting wired

networks to the Internet of Things.

2.2.3 Internet of Things Operating Systems

This section describes two operating systems specifically designed for the IoT:

Contiki and TinyOS. Both of them are development tools that include many

libraries and provide an IDE for writing operating systems for microcontrollers to

be used by the end-devices. Contiki uses the C programming language and

TinyOS uses nesC which is a variation of C.

Page 24 of 91

2.2.3.1 Contiki

Contiki is a development platform for uploading operating systems to

microcontrollers. It comprises Instant Contiki and the Cooja simulator. Instant

Contiki is an open source Ubuntu-based OS that runs over a virtual machine and

is used to write Operation Systems in the C programming language and upload

them to the microcontrollers. Cooja is an application of Instant Contiki that uploads

the OS to emulated end-devices for simulations. Contiki is designed for memory-

constrained systems with particular focus on low-power wireless Internet of

Things devices. It was created by Adam Dunkels in 2002 and has been further

developed by a world-wide team of developers from Atmel, Cisco, Redwire, Oxford

University and many others [11]. Contiki is designed to run on hardware devices

that are severely constrained in terms of memory, processing power and

communication bandwidth. A typical Contiki system only needs about

10 kilobytes of RAM and 30 kilobytes of ROM [12].

Contiki provides three network protocol stacks [10]:

1. uIP TCP/IP stack provides IPv4 networking

2. uIPv6 stack provides IPv6 networking

3. Rime stack is an alternative network stack that is used when the overhead

of the IPv4 or IPv6 stacks is prohibitive.

The IPv6 stack was contributed by Cisco [7] and includes the 6LoWPAN header

compression and adaptation layer for IEEE 802.15.4 links.

Many Contiki systems are severely power-constrained. Battery operated wireless

sensors may need to provide years of unattended operation and with little means

to recharge or replace its batteries. Contiki’s default mechanism for attaining low

power operation of the radio is called ContikiMAC [1]. ContikiMAC nodes can be

running in low-power mode and still be able to receive and relay radio messages.

2.2.3.2 TinyOS

TinyOS is an open source development environment for embedded programming.

It uses nesC which is a dialect of C to create abstract operating systems that can

be used in many different supported microcontrollers [55]. It is designed for

Page 25 of 91

wireless low-power resource-constrained end-devices, such as microcontrollers

with a few kB of RAM and a few tens of kB of code space.

TinyOS has extensive networking support mostly because it’s used by many low-

power wireless research groups, who have then released their code for general

use. In particular, TinyOS supports [54]:

 A complete 6LoWPAN/RPL IPv6 stack.

 Multi-hop communications.

 Network-wide sub-millisecond time synchronization through the

Flooding Time Synchronization Protocol (FTSP).

 Data collection to a designated root or gateway through the Collection

Tree Protocol (CTP).

 Reliable data dissemination to every node in a network through the

Trickle algorithm.

 Installing new OS over the wireless network using Deluge.

2.2.4 Gateway for the M2M Area Network

A gateway is device that collects the measurements from all the end-devices and

sends commands to the actuators. The gateway is responsible for connecting the

M2M area network to other computer networks. Typically, this is the case of the

Internet through an Ethernet, Wi-Fi or cellular connection.

End-devices are commonly small devices with constrained communication

capabilities unable to produce UDP packets. This means that the gateway must

host a server to translate the messages to routable packets. The server is

monitoring the network constantly. It uploads end-device information to the virtual

cloud and is responsible for receiving commands from the Internet and for

translating them to the actuators. This server is called M2M server and is a key

component to the system because it coordinates the end-devices network’s

interconnectivity.

Page 26 of 91

Figure 8: Internet connected end-device network

2.2.5 Message Queues

Message queues are libraries that can be implemented in the server’s source code

to provide a messaging system for end-device data. They are used when M2M

servers need to communicate with each other and exchange information. Message

queues release the servers from having to deal with delivery status, bottlenecks,

compatibility among protocols, latency, retransmissions. They can provide a

messaging system for servers on the same computer, on different computers

inside the LAN or in distant computers through the Internet. There are many

commercial message queues available such as:

 MQTT

 ZeroMQ

 RabbitMQ

 IronMQ

 ActiveMQ

Among them we highlight MQTT and ZeroMQ. ZeroMQ is not a message queue

itself, but a library to build message queues programmatically, which makes it

more flexible than other message queues. MQTT, which is also used by Facebook

Messenger, is suited for end-devices because it uses bandwidth and batteries

sparingly.

Page 27 of 91

2.2.5.1 ZeroMQ

ZeroMQ also called ØMQ or ZMQ is an asynchronous messaging library aimed to

be used in distributed applications [60]. It comprises a series of multiple queues

that communicate with each other over TCP/IP. The queues can be on two

different machines in a network, on two different processes in one machine, on

two different threads in one process or any combination of the above. ZeroMQ is

based on a publish/subscribe architecture. There are publishers that publish

information and the subscribers that receive them. A subscriber can also be

publisher to other subscribers and each publisher can be enrolled to receive

information from other publishers [59].

Figure 9: Publish-Subscribe concept

This architecture can be implemented to the IoT in order to connect M2M servers

with each other. A main server can be subscriber to multiple M2M servers that

monitor different end-device networks. Thus, it receives real-time updates and can

monitor all the networks providing an overall picture of the end-devices. In addition

the main server can be publisher, in order to send commands to the end-device

actuators.

ZeroMQ is licensed under the LGPL. This license gives the explicit right to link

ZeroMQ with closed-source applications, as well as open source applications.

2.2.5.2 MQTT

MQTT or Message Queue Telemetry Transport was invented by Dr. Andy

Stanford-Clark of IBM, and Arlen Nipper of Arcom in 1999. It is a lightweight

Page 28 of 91

publish/subscribe messaging protocol, designed for constrained devices. The

design principles are to minimize network bandwidth and device resource

requirements whilst also attempting to ensure reliability and some degree of

assurance of delivery. These principles also make the protocol ideal for the IoT

and for mobile applications where bandwidth and battery power are at a premium

[26].

The MQTT protocol is based on the principle of publishing messages and

subscribing to topics. Clients subscribe to topics that they are interested in, but

they also publish messages to topics. Many clients may subscribe to the same

topics and do with the information as they please. MQTT acts as a common

interface for everything to connect to over TCP/IP. This means that the clients can

add new sensor data to a topic and other clients can store this information to a

database [25].

All messages may be set to be retained. This means that the message will be kept

even after sending it to all current subscribers. If a new subscription is made that

matches the topic of the retained message, then the message will be sent to the

client. If a topic is only updated infrequently, then without a retained message, a

newly subscribed client may have to wait a long time to receive an update. With a

retained message, the client will receive an instant update [25].

There are three qualities of service for message delivery [18]:

1. At most once where messages are delivered according to the best efforts

of the underlying TCP/IP network. Message loss or duplication can occur.

This level could be used, for example, with ambient sensor data where it

does not matter if an individual reading is lost as the next one will be

published soon after.

2. At least once where messages are assured to arrive but duplicates may

occur.

3. Exactly once where message are assured to arrive exactly once. This level

could be used, for example, with billing systems where duplicate or lost

messages could lead to incorrect charges being applied.

Page 29 of 91

Encryption across the network can be handled with SSL, independently of the

MQTT protocol itself [26].

2.2.6 Application Layer Protocols for the IoT

The gateway is responsible for maintaining direct bidirectional communication with

all the end-devices in the M2M area network and to provide them with Internet

connectivity. The application layer protocols are implemented in the gateway to

provide client–server based Internet communication, where the gateway is the

client an IoT cloud platform is the server. They are also implemented in the

applications that need to connect to the cloud platform to extract information. In

this case, an application is the client and the cloud is the server. The cloud must

also support the specific application layer protocol in order to communicate with

the clients.

When the client wants to access the server, it creates a request and sends it to the

port 80 of the server, which is by default the port for client-server communication in

TCP. The server then sends a response to the client using the source port of the

request which is called ephemeral port. Ephemeral ports are temporary ports

dynamically created, and they are only used for responses. All the client ports are

by default firewall protected for security reasons.

Regarding the gateway, it can send all the end-device information to the Internet

using requests, but if it is firewall protected which is by default the case, it cannot

accept requests for commands. The following protocols address the way end-

devices connected to a typical firewall protected gateway, are monitored and

controlled through the Internet.

 REST services use HTTP commands as a client-server update system.

 WebSocket use an HTTP handshake to establish sessions for client-server

full duplex communication.

 CoAP is a light-weight application layer for constrained-communication

devices that runs over UDP.

2.2.6.1 REST Web Services

REST web services use HTTP methods explicitly in a client-server architecture

where the client requests and the server responds. The basic REST design

Page 30 of 91

principle establishes a one-to-one mapping between create, read, update, and

delete (CRUD) operations and HTTP methods. According to this mapping there

are four basic commands [50]:

1. POST: To create a resource on the server.

2. GET: To retrieve a resource.

3. PUT: To change the state of a resource or to update it.

4. DELETE: To remove or delete a resource.

REST web services allow formatting the data that the server and client exchange

in the request/response payload. To give client applications the ability to request a

specific content type that is best suited for them, the services make use of the

built-in HTTP Accept header, where the value of the header indicates the type of

data that it contains. Some common format types used by REST services are

JSON and XML which allows the services to be used by a variety of clients written

in different languages. Using the HTTP Accept header is a mechanism known

as content negotiation, which lets clients choose which data format is right for

them and minimizes data coupling between the service and the applications that

use it [19].

REST was first introduced in 2000 by Roy Fielding at the University of California,

Irvine, in his academic dissertation, "Architectural Styles and the Design of

Network based Software Architectures", where he analyzed a set of software

architecture principles that use the Web as a platform for distributed computing

[14]. Measured by the number of Web services that use it, REST has emerged in

the last few years as the predominant Web service design mode [19].

The REST commands are widely used to exchange information with virtual clouds.

The M2M server used by the gateway to translate incoming and outgoing traffic

can be configured to send frequent HTTP POST requests to the cloud in order to

store the sensor measurements to an Internet platform. Then, applications use

HTTP GET requests and retrieve the values from the online platform in order to

process, save or display them to the end-user. Most virtual clouds use the JSON

format for exchanging information through the HTTP requests.

Page 31 of 91

2.2.6.1.1 HTTP Polling

HTTP Polling uses the HTTP methods defined by the REST services to allow the

server to send information to the client in a typical firewall protected system.

Normally the server would make use of the HTTP POST method to send data to

the client but that is not possible since the client is protected with a firewall that

only allows responses. All the HTTP requests to the client are ignored from the

firewall and never reach their destination. That is why the polling mechanism uses

the response to help the data pass the firewall. Instead of making an HTTP POST

request from the server to the client, the polling mechanism makes an HTTP GET

request from the client to the server. Then the server encapsulates the information

that need to be sent to the client, inside the HTTP GET response that can pass the

firewall security.

The M2M server, hosted in the gateway, can send the sensor data to the Internet

by making HTTP POST requests. But when it comes to receiving commands from

the Internet, the gateway acts as the client and its incoming traffic gets filtered by

the firewall. By using the polling mechanism the gateway makes frequent HTTP

GET requests that check if there are pending updates on the server. Depending

on the frequency of the GET requests there can be delays from the time that the

update is ready until the time that the gateway will send a GET request to check

for updates.

Figure 10: Polling mechanism

2.2.6.1.2 HTTP Long Polling

Long Polling is a variation of the traditional polling. It is addressing the same

problem as the regular polling and its principals are exactly the same but the

HTTP GET request itself, is different.

Page 32 of 91

The gateway needs to get a command from the Internet and update the sensor

network. For the same reasons as in polling, the gateway initializes an HTTP GET

request to the online server. The difference in long polling is that the request stays

pending over time and there is no response unless there is an update for the end-

device network (e.g. a command for an actuator), in which case the HTTP

response is sent back carrying the update to the gateway. If a request is initialized

but there are no updates, it expires and then another request has to take its place.

Long Polling is a mechanism that provides real-time communication between the

client and the server and therefore, real-time updates to the end-device network.

Figure 11: Long-polling

2.2.6.2 WebSocket

WebSocket is a new protocol standardized in 2011 to facilitate various

communication channels over a single TCP connection. It relies on sessions to

provide full duplex communication. To establish a WebSocket session, the client

sends a WebSocket handshake request over HTTP, for which the server returns a

WebSocket handshake response. After that, messages are initialized and sent

from each side at any time as long as the session remains open. The handshake

is over HTTP so that servers can handle HTTP connections as well as WebSocket

sessions on the same port. However, what follows after the handshake, do not

conform to the HTTP protocol [57].

Page 33 of 91

Figure 12: WebSocket session

Implementing WebSocket on the gateway and also on the server-side to an online

IoT cloud is the fastest way to monitor and control a sensor network from

anywhere in the world. It can be used both for sending end-device data to the

cloud and for receiving commands. WebSocket is designed to target demanding

real-time applications like online gaming, but unfortunately it is not yet very popular

to IoT and M2M applications.

2.2.6.3 CoAP

The Constrained Application Protocol or CoAP is an application layer protocol that

is intended for use in resource-constrained internet devices, such as Wireless

Sensor Network nodes unable to implement HTTP libraries, thus unable to use

REST or WebSocket. It uses the GET, POST, PUT and DELETE primitives to

provide resource-oriented interactions. CoAP runs over UDP to keep the overall

stack implementation lightweight, in which case it defines a procedure to

guarantee reliability of transmission, which is very often a requirement of M2M

applications [6]. It is a protocol specifically designed for devices with constrained

communications and low computational power that need to connect to the IoT [9].

CoAP is one of the two application protocols currently supported by the ETSI M2M

together with the wide spread HTTP.

Contrary to REST and WebSocket, CoAP can be used by independent devices

with low computation and communication capabilities that do not rely on the

gateway to translate their messages. They can implement CoAP which acts as a

UDP library and they can use it to produce routable UDP packets.

Page 34 of 91

2.2.7 IoT Cloud Platforms

A key element in the IoT is the concept of the cloud platform. IoT Cloud Platforms

are online virtual clouds that can receive information from any Internet connected

device. IoT clouds can be used for monitoring the conditions of a device at any

moment. They offer storage for the device measurements and easy access to the

values with useful charts and graphs. There are already various commercial virtual

clouds in the market including ThingSpeak, OpenSense, Axeda, ThingWorx,

Xively, among others. Some of them are listed and outlined below.

 ThingSpeak is the only virtual cloud which is open source and its source

code is available for download.

 OpenSense, which is still a beta version, is a very promising cloud with an

intuitive user interface.

 Axeda that in addition to web services, it allows messages queue

integration.

2.2.7.1 ThingSpeak.com

ThingSpeak is an open-source Internet of Things online application that processes

HTTP requests for storing, retrieving and processing information from end-

devices. The ThingSpeak interface is Channel-based. Each ThingSpeak Channel

supports data entries of up to 8 data fields, plus three standard fields, latitude,

longitude, and elevation. Channels support JSON, XML, and CSV formats. In

addition to storing and retrieving numeric and alphanumeric data, ThingSpeak

allows numeric data processing such as time scaling, averaging, median,

summing, and rounding [52].

Page 35 of 91

Figure 13: ThingSpeak channel [52]

ThingSpeak’s source code is available on GitHub [53], which is an online

repository for open source projects, and includes the complete ThingSpeak server

written in the Ruby programming language. The only difference is that the online

cloud has an update limitation. After each update you have to wait at least 15

seconds before sending the next one, otherwise it is ignored. The rule is not

integrated in the available for download source code.

ThingSpeak Features:

 Geo-location data and display of end-device on maps.

 Data processing like averaging, median, summing, and rounding.

 Data visualizations with charts and graphs

 Plugins that allow custom encapsulation of HTML, JavaScript and CSS

scripts.

 Social Network integration with Twitter.

Page 36 of 91

2.2.7.2 Open.Sen.se

Open.Sen.se is an online IoT platform that receives and processes data through

HTTP requests, and stores its context so that it can be retrieved at any time. The

Open.Sen.se interface is based on a three-option menu which includes

Senseboard, Applications and Channels. The Senseboard tab is the main way to

visualize the received data. It is a customizable board where graphs, meters and

switches can be added for monitoring the end-devices and their surroundings. The

Applications tab includes various processes that can be added to the Senseboard

for displaying data, send notifications or add computing functions (average, sum,

counter etc.). Finally, the Channels tab is where new devices, real or virtual, can

be created and configured [31].

Open.Sen.se is used for testing new devices and applications in order to create a

globally interconnected and immersive world. It is at the time of writing of this

thesis new, and the online virtual cloud is still a beta version. For this reason, it is

not open for registration. People eager to start using the services have to fill out an

invitation request form.

OpenSense Features:

 Real-time data collection

 Data processing counters, sum, average

 Data visualizations with graphs

 Virtual switches that represent end-device actuators.

 Email notifications

 Social Network integration with Twitter and Facebook.

Page 37 of 91

Figure 14: OpenSense public Senseboard [31]

2.3.3 Axeda.com

Axeda provides a cloud-based service and software for managing connected

products and machines and implementing Machine-to-Machine and Internet of

Things applications. The Axeda Machine Cloud can be used to turn machine data

into valuable information, to build and run M2M and IoT applications and to

optimize business processes by integrating machine data.

The Axeda Platform includes [5]:

 IoT Application Services allow developers to extend and customize the

core platform via the embedded scripting engine that uses the Groovy

programming language and via the REST web services.

 IoT Integration Framework accelerates integration with the Axeda

Platform with a standard-based message queue technology called

ActiveMQ.

 IoT Data Management processes and stores incoming M2M and IoT data,

manages device types, data items, locations, and files and includes built-in

security for managing users, user groups, and device groups.

Page 38 of 91

2.3 The OpenRemote Platform

OpenRemote is a platform for residential and commercial building automation. It is

not an online cloud-based service like ThingSpeak and Axeda, but an open source

M2M server that runs on the gateway and connects to the end-device network. In

addition it includes a mobile application that needs to be inside the gateway’s LAN

in order to monitor and control the network. The user interface does not offer

storing and processing of the data, it is purely an application for end-users to

monitor and control the end-devices in real time. The application is available for

iOS and Android devices, and for devices with modern web browsers. The user

interface design and configuration can be handled with OpenRemote online design

tools.

OpenRemote consists of the following three main components [29]:

1. OpenRemote Controller is a server that connects to the sensor network

and manages runtime integration between your devices.

2. OpenRemote Designer is an online tool that helps the end-user design the

application’s layout and deploys on the Controller all the information it

needs to connect to the sensor network.

3. OpenRemote Control Panel is the layout of the application, created from

the Designer and allow the user to monitor the end-devices and control

them in parallel.

Page 39 of 91

Figure 15: OpenRemote Designer [29]

The software is distributed under AGPL. The source code is currently hosted on

Source Forge [30] which is an online repository for open source projects.

2.3.1 OpenRemote Controller

The Controller relays the commands from the panels to the target protocols and

acts as a translator between devices and the OpenRemote application. It is a

server that runs non-stop and connects to a mobile application through which

users can achieve real-time automation. It handles the overall runtime

performance after initial design has been created on the Designer.

The Controller receives commands from iPhone/Android/Web panels and routes

the commands to the appropriate devices. It provides the control panels with user

interface definition files from the OpenRemote online Designer. When multiple wall

panels, tablets and phones are used at the same time, OpenRemote Controller

can be used to maintain device status to keep all user control devices in sync with

current state of devices.

2.3.2 OpenRemote Designer

The OpenRemote Designer is an online application to rapidly and easily create

touch-driven control panels. It is device-independent and can support Android

Page 40 of 91

phones and tablets, Apple iPhone, iPod Touch and iPad and also create designs

for stand-alone web browsers.

OpenRemote Designer can be used remotely from any web browser without

additional install. The OpenRemote Controller can automatically sync with designs

created and stored online. Users can make small tweaks and changes to the user

interface layouts as the preferences and needs evolve over time. Multiple profile

interfaces can be created, where the degree of control and technical information

exposed in the UI can vary per user.

2.3.3 OpenRemote Control Panels

Panels are a client of the OpenRemote Controller. This client is a native

iPhone/iPod Touch application, Android application or a web application. The user

interface and layout can be edited from the OpenRemote Designer.

So the panel renders user interfaces defined in OpenRemote Designer. They can

display various user interface elements such as buttons, labels, images and

sliders and render status updates from devices.

2.4 Suggested Architecture for the Testbed

A testbed for the IoT has to be an open system able to host many different

technologies. It also has to be flexible so that all the hosted technologies can be

modified to work together in order to provide a functional development platform.

Many emerging IoT technologies are analyzed in this thesis. An IoT testbed should

be able to implement and test most of these technologies in order to examine and

evaluate multiple IoT concepts. All the implementations have to be accomplished

in such way, that other stacks can be easily implemented on top, without further

effort.

Page 41 of 91

Figure 16: Suggested testbed architecture

Figure 17 demonstrates a complete End-to-End IoT architecture. End-devices

connected to sensors and actuators are connected to gateways through wired or

wireless means. The gateways host M2M servers that run non-stop and translate

data to/from the end-devices and connect the sensor networks to the online virtual

clouds. Independent recourse-constrained devices can produce routable packets

using CoAP and connect to the clouds using 2G/3G/LTE modules without the

need of an extra gateway. The IoT clouds collect data from various devices and

display them in a homogeneous way for end-users. Software applications running

on smart phones, tablets, laptops can also connect to the IoT clouds, extract

information and add their own computational power to process and combine the

data and control the end-devices.

Page 42 of 91

Chapter 3

An IoT Testbed

This chapter describes the practical implementation of the IoT testbed deployed in

this thesis. To build the testbed we used the following devices and technologies:

1. The Perception layer includes the following hardware devices:

 PanStamps are small wireless boards with an integrated microcontroller

that can connect to sensors and actuators.

 Base boards are small boards with a battery case and integrated

sensors and actuators.

2. The Network layer includes:

 Raspberry Pi is a small computer. A hardware device that is the

gateway for the end-device networks and is also used to host the M2M

servers.

 Lagarto SWAP is an M2M server. A software process that monitors and

controls end-devices.

 OpenRemote Controller is another M2M server that monitors and

controls end-devices but also connects to the OpenRemote out-of-the-

box Android application.

 Lagarto MAX is a server for the overall system. A software process that

uses a messaging queue to connect to other M2M servers and present

diverse end-device data in a homogeneous way.

3. The Application layer includes the following software components:

 OpenRemote application is a software application for iOS and Android

devices that provides a monitor/control interface.

 ThingSpeak is an online IoT cloud that is connected to the gateway for

being the only open source cloud.

 OpenSense is another online virtual cloud that is connected to the

gateway due to its simple and intuitive interface.

Each of these components is described in detail in the next sections.

Page 43 of 91

3.1 The PanStamp Project

The panStamp project is designed for automation using small low-power wireless

motes transmitting in the sub-GHz frequency band and achieving ranges of more

than 200 meters. It includes the following components which are explained in

detail in the next sections:

 PanStamps are PCB boards with integrated microcontrollers and wireless

communication capabilities at 868/915MHz frequency band.

 SWAP which is an application layer protocol for the wireless devices.

 Lagarto an M2M server for monitoring and controlling.

 Base boards are PCB boards with a battery case and integrated sensors

and actuators. They are designed to connect to end-devices in order to

provide them with power supply and uncomplicated connection to sensors.

The PanStamp project is aimed at creating ICT solutions for measuring and

controlling things wirelessly. The central element of the project is the PanStamp,

which is a small wireless board designed to fit in low-power applications.

PanStamps are suitable for any kind of automation including energy metering,

weather monitoring, home automation and robot control [33].

The project is kept open-source and all parts of the code, the protocol stack and

the hardware designs are released and available for download from the online

repository [36].

3.1.1 PanStamps

PanStamps are small wireless boards designed for monitoring and controlling

things wirelessly which contains:

1. An Atmega328p microprocessor, which makes them reprogrammable and

configurable.

2. An integrated CC1101 IC RF transceiver from Texas Instruments which

provides communication ranges of more than 200 meters in open spaces

with transmissions at sub-GHz frequency bands [37].

Page 44 of 91

Figure 17: PanStamp modules [37]

Product Specifications [41]:

 Dimensions: 0.7 x 1.2 in (17.7 x 30.5 mm)

 MCU: Atmega328p

 Radio chip: CC1101 (Texas Instruments)

 Bus Speed: 8MHz

 Flash Memory: 32KB

 RAM: 2KB

 EEPROM: 1KB

 Voltage range: from 2.5VDC to 3.6VDC

 Rx current: 24 mA max

 Tx current: 36 mA max

 Sleep current: 1 uA

 Maximum Tx power: +12 dBm

 RF bands: 868/905/915/918 MHz ISM bands

 Modulation: GFSK

 Data rate: 38 Kbit/s

 Communication length: 200m in open spaces

PanStamps use the CRC (Cyclic Redundancy Check) mechanism to detect errors

in messages and use CCA (Clear Channel Assessment) in order to switch from

Receive mode to Transmit mode to avoid collisions. Both CRC and CCA are

Page 45 of 91

integrated in the TI CC1101 RF transceiver. The panStamp itself, does not support

collision detection. If two panStamps begin transmitting at the same, there will be a

collision. However, they do have a retransmission mechanism if CCA detects the

carrier busy, in which case the panStamp will try again three times delayed by the

number of the panStamp’s ID multiplied by 2 in milliseconds. This guarantees that

if two panStamps sense the carrier simultaneously and both detect it busy, they

will not try again at the same time.

PanStamps are programmed through the Arduino IDE. The Arduino IDE is an

open source environment for programming microcontroller boards based on

processing, another open source programming language built to teach computer

programming fundamentals [43]. The Arduino IDE programming language is

merely a set of C and C++ functions that are called from the code. The Software

scripts written using the Arduino IDE are called sketches. Sketches are written in

the text editor and are saved with the file extension .ino [4]. Before uploading the

sketch form the IDE to the panStamp, the correct board has to be configured.

Tools > Board > Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328 is the

correct selection for programming panStamps. The IDE also offers a serial monitor

for direct bidirectional serial communication with the board.

3.1.2 Base Boards

Base Boards are PCB boards that can accommodate panStamps and easily

connect them to sensors, actuators and power supply. Base boards take the

power from a single AA battery and can host multiple sensors, including

temperature, humidity and pressure. Using the proper programming techniques,

this board can run for months from a single battery, thus being suitable for building

automation and environmental monitoring applications [32].

Page 46 of 91

Figure 18: PanStamp base board [32]

Base boards generally remain simple since most of the electronics are contained

in panStamps. The core of the board is a step-up voltage regulator (MAX1724)

which transforms 0.8 - 1.5 volts supplied by the AA battery into 3.3V, a voltage

accepted by most sensors nowadays [32]. They are perfect for prototyping since

most pins are available so that users can solder external sensors or mount 3.5 mm

terminals for further comfort. Base boards can be purchased as simple battery

boards or with integrated sensors.

3.1.3 PanStick

PanStick is a USB mother board for panStamps. It is used to provide a USB

connection to the panStamp in order to plug it in a computer and use the Arduino

IDE to program it. It also acts as a serial gateway to the wireless network by

placing a panStamp on the panStick, and then to the computer. The panStick,

being attached to a functional panStamp, can also be connected to sensors and

actuators and send data directly to the USB port [34].

Page 47 of 91

Figure 19: PanStick [34]

The panStick includes an on-board voltage regulator which takes the power

directly from the USB bus. Thanks to this regulator, panStick is able to power

sensors up to 250 mA at 3.3 VDC [34]. The USB board also includes a reset

button that allows instant restart without having to unplug the board.

3.1.4 Lagarto Servers

Lagarto is an open source software server written in the Python programming

language. It is designed to be used as an M2M server that runs on the gateway to

translate end-point messages to routable form and automate physical tasks by

controlling actuators. Lagarto servers provides an HTTP GET/POST interface

used to control values from clients or any other application with HTTP client

capabilities (Web browser, javascript, Flash). They use a common ZeroMQ

Publishing socket over TCP to notify events to clients so that they do not have to

continuously request updates. This dual communication mechanism (ZeroMQ +

HTTP) results in a functional solution for automation [39]. There are two types of

Lagarto servers, both explained in detail in the next sections:

1. Lagarto SWAP is a software M2M server designed to monitor and control

end-device networks.

2. Lagarto MAX is a software server designed to communicate with multiple

M2M servers over TCP using the ZeroMQ message queue.

Page 48 of 91

Lagarto processes provide a web interface for configuration and basic monitoring

purposes. Every process binds to a different port number, allowing the existence

of multiple servers on the same computer. The HTTP port number is set manually

from an XML file [39].

Figure 20: Lagarto architecture [39]

Lagarto is created for automation in buildings and industrial plants. It provides

communication tools and computing infrastructure to build complex networking

applications, capable to integrate resources from very different technologies and

present them in a homogeneous way.

3.1.4.1 Simple Wireless Abstract Protocol (SWAP)

SWAP or Simple Wireless Abstract Protocol is the protocol used by the Lagarto

servers. It is an application layer lightweight protocol for the wireless

communication of panStamps. SWAP is designed to be used on Texas

Instruments CC11XX-based radios and it relies on their packet structure which is

based on abstract registers and was inspired by Modbus [42].

SWAP provides mechanisms for sending, requesting and controlling abstract data

registers. Freeing the protocol from data types simplifies a lot the implementation.

Instead, end-applications are accessing the definition folders. The definition

folders are central repositories containing the registers’ specifications in form

Page 49 of 91

of XML files. Each register used in SWAP devices is described in detail in an XML

file on the Lagarto SWAP’s directory and not in the OS of the end-device. This way

SWAP end-devices remain lightweight and only maintain a small amount of

mandatory registers containing basic information like communication channel,

device address and network id [42].

The Packet structure can be used under two different addressing schemes: single-

byte addresses and 2-byte addresses. The function byte will tell the application

which schema is being used in each frame [42].

Figure 21: SWAP packet structure [42]

Network ID

SWAP uses CC1101's Synchronization Word to identify the wireless network.

Defining different network ID's, multiple wireless networks can co-exist without

interaction between them. Length of the Network ID: 2 bytes.

Function Codes

There are only three function codes:

1. Status packet report actual register values.

2. Query packet request information from remote devices.

3. Command packet are used to control register values on any remote

device.

All SWAP packets share the same structure except query packets that don't

contain a data field. This makes parsing wireless packets simpler.

Page 50 of 91

In order to guarantee interoperability between devices, SWAP uses the following

techniques:

 The reception of a query packet must be followed by the transmission of a

status message. Thus, querying a register must be answered by a status

packet containing the register value being queried.

 After receiving a command packet, a status message has to be sent with

the register being modified.

 Developers may decide whether transmit periodic status message or not

and the transmission interval in each case.

The SWAP packet structure is analyzed below.

Device address

SWAP device addresses are 1-byte or 2-byte length, depending on the addressing

schema being used. Broadcast address is 0 so wireless devices must take an

addresses between 1 and 255 (0xFF) for the simple addressing schema or

between 1 and 65535 (0xFFFF) for the extended schema.

Each SWAP packet contains three different device addresses:

1. Destination address is the address of the device targeted by the SWAP

packet.

2. Source address is the address of the device that sends the packet.

3. Register address is the address of the device that actually owns the

register being queried, controlled or reported.

Register ID

Each register is uniquely identified within a device by this 1-byte digit. Combined

with the register address, any register is uniquely identified within a wireless

network. Length of the register ID: 1 byte.

Wireless hop

This 4-bit field counts the amount of times that a wireless packet is repeated.

When a packet is originally generated, the hop counter is 0.

Page 51 of 91

Security option

This 4-bit value specifies the type of security defense used to protect data fields

and avoid external attacks.

 security = 0 -> No data encryption, security nonce disabled

 security = 1 -> No data encryption, security nonce enabled

 security = 2 -> Smart encryption and security nonce enabled

Smart encryption is implemented from firmware and, as such, it has been

designed to be efficient and effective. It runs a simple XOR-based encryption

using a 12-byte password and the nonce.

Security nonce

When enabled, security nonce provides a way of combating against play-back

attacks. Every wireless device maintains its own single nonce counter. Whenever

a device sends a status packet, the nonce is incremented by one. Status packets

that do not contain the correct nonce have to be discarded by any other device

listening the media. Later, any device wanting to send a command has to include

the current nonce of the targeted device.

Query packets do not have to include the correct nonce. Thus, nonce = 0 in all

query messages.

Cyclic Redundancy Check

This is a simple 16-bit CRC field, automatically calculated and appended by the

CC11XX IC, based on the contents of the cc11XX data payload. It is an error

detecting mechanism.

3.1.4.2 Lagarto SWAP

Lagarto SWAP is the M2M server that communicates directly to the panStamps.

This process is written in Python and relies on pySWAP, a library than contains

the implementation of the SWAP protocol for Python applications. At the time of

writing of this thesis, there are no libraries to support other programming

languages [40].

Page 52 of 91

Lagarto SWAP runs on the gateway and requires a panStamp to be connected to

the serial port and act as a modem for the network traffic. The server is bound to

listen to the serial port for SWAP traffic and is able to send a command to the

serial port that will be transferred to the panStamp for wireless transmission. This

way all the SWAP messages transmitted from the panStamp network are received

from the panStamp which is connected to the gateway, sent to the serial port and

captured by the Lagarto SWAP server.

The SWAP protocol defines that the first transmission of any SWAP device

includes the Product ID. This is how Lagarto SWAP auto-detects new devices.

When a device is auto detected from Lagarto for the first time, the server uses the

product ID to find the device in the definition folders and uses the device’s XML file

to add its registers in the monitor interface.

Figure 22: Lagarto SWAP monitor interface

The server is configured from a web interface. It provides a simple interface for

viewing and controlling SWAP values and for setting up the network with options

like serial port connection speed, Broadcast TCP/IP channel and HTTP server

port. The default HTTP port for the interface is 8001 and can be accessed from the

computer running the server or any other computer inside the LAN. The URL for

the default port is: http:\\ip_address:8001.

Page 53 of 91

3.1.4.3 Lagarto MAX

Lagarto MAX is a software process that runs on the gateway and communicates

with one or more M2M servers running on the same network using the ZeroMQ

message queue. It is a basic component to the Lagarto architecture because it's

able to collect end-device values belonging to different networks and present them

to the user in a homogeneous way. Moreover, being user-programmable, Lagarto

MAX can send to the end-devices automated commands based on time or sensor

values [38].

The Lagarto MAX server has a web interface for monitoring and controlling any

Lagarto endpoint on the same network and it offers an event manager which can

be programmed from the web interface to interact with the end-devices. The event

manager can also be programmed to push end-device values to the supported

virtual clouds (ThingSpeak, OpenSense, Xively, Twitter, GroveStreams). The

default HTTP port for Lagarto MAX is 8002 so the URL for accessing the web

interface is: http:\\ip_address:8002.

There are three sections in the web interface regarding programing events:

1. Triggers are initial conditions required to start an action. Multiple triggers

can be added on a single event but only one of them has to be fulfilled in

order to run the subsequent actions. There are two different types: network

endpoint conditions and time conditions.

2. Additional conditions don't trigger the event by themselves but all of them

must be fulfilled. There are two different types: network endpoint conditions

and time conditions.

3. Actions can be of two types: endpoint commands and pushing network

values to a virtual cloud platform.

Page 54 of 91

Figure 23: Lagarto MAX event interface [38]

More complicated events are also possible by altering and adding more code to

the file where the events are programmed (webscripts.py), to the file that handles

the HTTP requests (clouding.py) and to the file that hosts the network

configuration (api.py). All these files are inside the Lagarto MAX directory and can

also be found in the available online release of the panStamp project [36]. The

webscripts.py file contains all the programmed events and is initially empty.

3.2 Raspberry Pi

The Raspberry Pi, as it will be discussed later, makes an ideal gateway for end-

devices. It is a low-cost, credit card-sized computer that plugs into a regular

monitor and uses a standard keyboard and mouse. It’s capable of doing

everything a normal computer does. It is created by the Raspberry Pi Foundation

which is registered as educational charity and is based in the UK [45].

Page 55 of 91

Figure 24: Raspberry Pi board (model B) [46]

There are currently two models available. The main differences are that Model A

has 256MB RAM, one USB port and no Ethernet port. The Model B has 512MB

RAM, 2 USB ports and an Ethernet port.

Product Specifications for Raspberry Pi (Model B) [46]:

 CPU: 700 MHz ARM1176JZF-S core

 GPU: Broadcom VideoCore IV @ 250 MHz

 Memory (SDRAM): 512 MB (shared with GPU)

 USB 2.0 ports: 2

 Video outputs: RCA ,HDMI

 Audio outputs: 3.5 mm jack

 Onboard network: 10/100 Mbit/s Ethernet

 Power source: 5 V via MicroUSB or GPIO header

 Size: 85.60 mm × 56 mm (3.370 in × 2.205 in)

 Weight: 45 g (1.6 oz)

Page 56 of 91

Figure 25: Raspberry Pi (model B) design [45]

The Raspberry Pi community has released an operating system manager for easy

installation of an OS, called NOOBS. NOOBS (New Out Of the Box Software) is

an install manager that lets the user select out of a list with several operating

systems and handles all the installation process. The recommended OS is called

Raspbian and it’s the most commonly used. Raspbian is a Debian-based OS

optimized for the Raspberry Pi hardware. [46].

The Raspberry Pi itself has no integrated hard drives for storage, it uses a regular

SD card (8GB or more recommended). To get started with the Raspberry Pi the

user has to load the NOOBS image or the image of a specific operating system to

the SD card, plug the card to the Raspberry Pi and power it on [28].

The Raspberry Pi comes with a General Purpose Input Output (GPIO). The GPIO

can be used for UART (Universal Asynchronous Receiver Transmitter) or SPI

(Serial Peripheral Interface) communication and can provide an interface to

connect to various modules that allow interacting with the physical world such as a

GPS sensor, a camera or a wireless transceiver.

Page 57 of 91

3.2.1 Raspberry Pi PanStamp Shield

The panStamp shield is a module that plugs into the Raspberry Pi’s GPIO and

connects it to the panStamp sensor network. The shield has an on-board

panStamp that receives CC1101 messages and transfers them to the Raspberry

Pi.

Figure 26: PanStamp shield for the Raspberry Pi [35]

It also includes a real-time Integrated Circuit (IC) with battery backup so that the

Raspberry Pi does not depend on Internet connection to get the current time, even

after an outage.

Features: [35]

 A panStamp managing all the low-power wireless communications on the

868/915MHz ISM band.

 SMA connector for external antenna

 DS1338 IC for the Real Time Clock (RTC) function with battery

 Size: 44 x 34 mm

Page 58 of 91

Figure 27: PanStamp shield attached to the Raspberry Pi [35]

The Raspbian OS has the GPIO pre-configured to be used as a serial terminal. In

order to use the GPIO with the shield, it has to be configured to stop working as a

serial console. There are many online tutorials to do that, one is mentioned in the

references [56].

3.2.2 The Raspberry Pi as a Gateway

Small boards with integrated microcontrollers like panStamps are low-power and

low-cost, suitable to be deployed to a broad area. However they are not able to

produce packets that can be routed to the Internet. Thus a regular gateway that

only routes incoming and outgoing traffic is not appropriate. Constrained resource

end-point networks require a gateway to receive sensor data, translate them to

routable packets and then route them to the Internet. This means that the OS

running on the gateway, has to allow the implementation of servers that include

network libraries and run constantly in order to translate messages to routable

packets in real time.

The Raspberry Pi is a very low-power computer with many capabilities that create

ideal conditions to make it the gateway for end-device networks. Raspbian the OS

running on the Raspberry Pi is Debian-based and supports a plethora of

programming languages and libraries to implement network protocols [44]. In

addition, the Raspberry Pi has an Ethernet interface and can also connect to Wi-Fi

and cellular networks by using extra modules. For this reason, it can upload

information to the Internet with various ways such as 2G/3G/LTE/Wi-Fi/Ethernet. It

Page 59 of 91

is extremely low power and only draws few watts of electricity. It has a huge

community supporting it and there are many forums that help new developers

accomplish their tasks. Another important reason that makes the Raspberry Pi a

great gateway is that there are many modules that have been developed to fit in

Raspberry Pi projects such as Camera module, GPS module, cellular Internet

shields etc.

3.2.3 Practical Implementation

The Lagarto SWAP and the Lagarto Max servers are successfully set up on the

Raspbian OS and a panStamp shield is attached to the GPIO of the Raspberry Pi.

The panStamp shield relays SWAP messages to the Lagarto SWAP server,

enabling the Raspberry Pi to connect to the SWAP network. There are also some

panStamps attached to base boards. Each base board have an AA battery to

supply power to the panStamps and is connected to a temperature sensor, a

humidity sensor and an LED light which is an actuator. The SWAP protocol is

implemented in the panStamps which are programmed to send frequent updates

of the sensor values to the Lagarto SWAP server and are able to receive

commands at any moment for the actuators. The Lagarto Max server can create

events that based on the network values can turn on/off an LED light or upload

sensor measurements to a virtual cloud for online monitoring. The polling

mechanism is implemented on the Lagarto MAX source code in order to add

online control capabilities to the end-device network.

At this point, the end-device network is connected to a gateway, the Raspberry Pi,

that routes information to and from the Internet. The network is connected to a

server, the Lagarto, that monitors and controls the sensor values locally and can

also create automated events (e.g. if the temperature is above 20 turn on the

LED). Online monitor and control is also achieved through the online virtual clouds

that receive values through HTTP requests and send commands using the polling

mechanism. Two virtual clouds are connected to the servers ThingSpeak and

OpenSense. Both of them, along with their functionality, are reviewed in the next

section.

The OpenRemote Controller is set up on the Raspberry Pi and communicates with

Lagarto MAX through the ZeroMQ message queue. The OpenRemote Designer is

Page 60 of 91

used for designing an application layout and also to collect all the necessary

information about the panStamp network’s registers. After that, the controller

downloads an XML file with all the register details from the designer and can relay

the sensor network to the OpenRemote application. All servers communicate with

each other using the ZeroMQ message queue over TCP. The OpenRemote

android application is downloaded on a smart phone and provides the first working

application for monitor and control over the sensor network.

Figure 28: Connection among servers

The OpenRemote application has to be installed on a device inside the Raspberry

Pi’s LAN. Any computer inside the LAN can access the Lagarto servers and gain

access to the end-device network through the Raspberry Pi’s IP and the Lagarto’s

port number (e.g. http:\\ip_address:8001), but OpenRemote is the easiest way to

have a working application for smart phones.

Page 61 of 91

Figure 29: Implemented end-device network with Internet connectivity

3.3 Tested Cloud Platforms

After setting up the end-device network and successfully connecting it to the

gateway, the sensors are ready to communicate with the IoT platforms. The IoT

platforms provide an interface for the users to monitor/control the network, store

the sensor data and visualize them using built-in graphs and charts. They also

work as nodes for tablet and smart phones applications to connect to and gain full

control over the end-device network through the Internet. Two cloud platforms are

connected to the sensor network and are reviewed in the next sections:

1. ThingSpeak because it is the only open source IoT platform available.

2. OpenSense because of its simplified and intuitive interface.

3.3.1 ThingSpeak

ThingSpeak is the first virtual cloud, selected to communicate with the gateway

and thus, with the end-devices. The ThingSpeak architecture is based on

channels. Each channel represents an end-device and supports up to 8 data

fields. It also has the option to import/export stored data and create multiple

authentication keys for accessing the data with different permissions.

A panStamp is programmed to send measurements from the temperature sensor

and the humidity sensor to the gateway which is configured to update the

Page 62 of 91

ThingSpeak channel using HTTP POST requests. All the HTTP requests have to

include in their header the authentication key obtained from the ThingSpeak

channel for security reasons. To lower the power consumption of the panStamp, it

is programmed to execute a loop of transmitting values and hibernate for twenty

minutes.

The channel receives frequent updates and displays dynamic graphs with the

sensor measurements. The sensor is placed inside our office and the graph

demonstrates the temperature and humidity changes during a two week period.

Figure 30: Temperature/humidity monitoring from ThingSpeak channel

3.3.2 OpenSense

The OpenSense cloud is also connected to the gateway. Another panStamp is

programmed to sense temperature and humidity and transmit the values to the

cloud, where users can monitor the measurements using the user interface

through the Internet. All HTTP requests have to include the authentication key in

their header for security reasons.

The panStamp is also programmed to receive commands regarding the LED light

that represents a room light. The light is controlled using the polling mechanism,

Page 63 of 91

through which, a command is sent from the online cloud to the light. To control the

light from the online user interface, a virtual switch provided from the OpenSense

cloud is used. The switch only controls a light but using a different actuator, it

could be a window, a garage door or the heating system. Using this method it is

now possible to achieve complete automation of buildings over the Internet, using

different kinds of actuators.

Figure 31: OpenSense monitor/control interface

3.4 Security Aspect

A complete Internet of Things environment is created including an end-device

sensor network, a gateway and connection to online virtual clouds. The system is

ready to be used for testing purposes but there is one concern. Is it safe to use it

in the real world, or there is the risk to jeopardize the user’s privacy.

The suggested architecture consists of different components. While implementing

the architecture, a lot of attention is paid in connecting the different parts and

technologies without raising security concerns. Each connection is established

considering third party intruding attempts.

The sensor networks and the gateway are safe behind a firewall that only allows

responses to pass. All the HTTP requests for altering the values on the cloud have

to include an authentication key in their header otherwise they are being ignored.

Tablet and smart phone applications use the cloud as a node and do not have

direct access to the gateway. They communicate with the gateway using HTTP

Page 64 of 91

requests that are targeting the virtual clouds and they have to obey the rule of the

authentication key.

Taking everything into consideration, it is based on true facts, to say that the

system is very well protected.

3.5 The public IP approach

Composing an architecture for an IoT testbed is not straightforward. Alternatives

are discussed and some of them are even deployed. Among them, there is a non

cloud-centric approach which is also implemented. In this case, the applications

target directly the M2M servers that are now treated as web servers. The primary

advantages of skipping the cloud platform is that by establishing direct connection

to the server, possible cloud limitations are avoided and the cloud traffic is

unnecessary which makes the communication faster. The M2M server is

responsible for monitoring end-devices and coordinating events. By accessing

directly the server's features, applications obtain full control over the end-devices.

To achieve this, Network Address Translation (NAT) configuration is needed in the

router that provides the Internet IP. The Internet architecture is such that when a

request packet is initialized from a station to reach an Internet IP address, it goes

through the router. The router changes the source address and the port of the

packet to the public IP address of the router and a dynamic port. It saves both the

addresses in the NAT tables so that when the response packet arrives at the

router it can forward it to the correct station. This is a technique that is used to

provide more IP v4 addresses to the Internet. This way a station’s IP address

remains hidden from the Public Internet. The downside is that it cannot be directly

addressed from the Internet. If a packet arrives at the router and its destination

address in not in the NAT tables, the packet will be rejected.

A solution to this is the Network Address Translation or port forwarding. In order to

deliver a request packets to a station inside the LAN from the Internet, the router

creates a permanent rule which says that all the traffic that is addressing the

router’s public IP and a specific port will be forwarded to the station’s local IP and

another specific port. For instance all the incoming Internet traffic that targets the

public IP http://88.102.77.215:8001 will be forwarded to the local IP

http://192.168.1.125:8005. This way, clients can initialize HTTP GET and POST

Page 65 of 91

requests that reach directly the M2M server without using a virtual cloud. The

values are stored and visualized locally and the clients can request any

information at any time. This approach is implemented and linked to applications

for testing purposes but it is not embraced due to the security concerns that it

raises.

Figure 32: The public IP approach of an IoT testbed

Opening a port to the public, means that anyone can use the port to extract

information or control the end-devices. The security issue can be resolved

sufficiently with various safety measures like user authentication in the software

side of the system and encrypted port knocking in the network side. Port knocking

is a mechanism that allows access to a port, only after trying a specific

combination of ports first. It works as a complicated password and encrypted port

knocking prevents sniffing which makes it even more difficult to intrude. In

conclusion, this structure works effectively for automation in a solitary level.

However, deploying this architecture to broad areas with thousands of appliances

will require complicated password management systems that can be prevented.

3.6 Alternative Components for the Testbed

The testbed is a collection of software processes and hardware devices configured

to coexist and communicate with each other in order to provide an End-to-End

Page 66 of 91

communication network. The software involved can be modified, adapted or even

replaced at any time in found incompetent. On the contrary, hardware devices

require funds and could constrain the entire functionality in found incapable, thus

they have to be selected carefully.

We selected the panStamps for being small, low-power and with an integrated RF

transceiver which is not common among other similar boards. The Raspberry Pi is

selected because it has the necessary interfaces (UART, USB, Ethernet), there

are many available modules to add more interfaces (3G, LTE, Wi-Fi) and most

importantly since it needs to run non-stop, because it is extremely low-power.

Each of the following lists contains four alternatives to our hardware selections.

PanStamp alternatives:

1. Arduino uno is a famous board with an 8-bit ATmega328 microcontroller

with 2KB of RAM, 16MHz clock speed and a huge community.

2. MSP-EXP430G2 has a 16-bit MSP430 microcontroller with 512 bytes of

RAM and 16MHz clock speed.

3. Nanode has an ATmega328 microcontroller, same as Arduino and

panStamp but it also has an on-board Ethernet port for Internet

connectivity.

4. STM32VLDISCOVERY has an STM32F100 microcontroller based on the

32-bit ARM Cortex M3 core running at 24MHz with 8KB of RAM.

Figure 33: Arduino Uno, MSP-EXP430G2, Nanode, STM32VLDISCOVERY (left to right)

Page 67 of 91

Raspberry Pi alternatives:

1. Intel MinnowBoard Max has a 64-bit Intel Atom E3825 dual core

processor at 1.33GHz and 2GB DDR3 RAM. It supports Debian/Linux and

Android OS.

2. BeagleBone Black has an ARM Cortex-A8 processor running at 1GHz

and 512 DDR3 RAM. It supports Debian, Ubuntu and Android OS.

3. UDOO has an ARM Cortex-A9 Dual/Quad core 1GHz CPU and 1GB of

DDR3 RAM. It also has an on-board Wi-Fi interface.

4. HummingBoard is almost identical to the Raspberry Pi but with an ARM

Cortex-A9 Quad core 1GHz processor and 2GB of DDR3 RAM.

Figure 34: BeagleBone Black, UDOO, MinnowBoard Max and HummingBoard (left to right)

Page 68 of 91

Chapter 4

Implemented Real Life Services

After implementing a complete End-to-End Machine to Machine communication

network, next step is the integration of representative applications of the Internet of

Things. This chapter describes Android, the targeted OS for the applications along

with two smart phone applications, designed to improve the quality of life in

modern urban environments.

The applications are Smart Parking and Geo Fencing. Smart Parking provides an

information system regarding the status of common parking spaces. Geo Fencing

is a process that allows remote automation based on the geographical position of

the user. Both applications are implemented targeting the Android OS so that

users can carry them in their mobile phones and use their services at any moment.

4.1 Android Programing

The design of useful and functional applications is an important part of this thesis.

Applications that accompany people at any place, and offer their services

whenever an opportunity presents itself. To this end, the created applications are

targeting the world's most famous mobile operating system, Android. GOOGLE

being the company that released Android, has established a huge community for

android developers. There are available development tools and libraries to aid in

the spread of the OS. In addition, tutorials and detailed guides have been released

to encourage amateur android developers. Android is open source and is

supported by thousands of machines including mobile devices and tablets [3].

To connect an Android application to an online IoT platform and thus, to the end-

device network, the application uses HTTP GET requests to extract sensor data

and HTTP POST requests to send commands for the actuators. This way the

mobile devices obtain full control over the sensor network and can provide user-

friendly and functional applications.

Page 69 of 91

Figure 35: Android connectivity to the end-devices

4.1.1Google Maps Android API v2

One of the reasons that Android is the targeted OS for the applications is the huge

community that supports it and the huge amount of libraries and APIs that help

Android developers. A very interesting and useful API that will be widely used in

IoT applications is the Google Maps API that provides map visualization of users,

sensors, actuators and generally all the points or areas of interest.

With the Google Maps Android API, maps based on Google Maps can be added to

applications. The API automatically handles access to Google Maps servers, data

downloading, map display, and response to map gestures. The API can also be

used to add markers, polygons, and overlays to a basic map, and to change the

user's view of a particular map area. These objects provide additional information

for map locations, and allow user interaction with the map. The API allows these

graphics to be added to a map [16]:

 Markers are icons anchored to specific positions on the map.

 Polylines are sets of line segments.

 Polygons are enclosed segments.

Page 70 of 91

 Ground Overlays are bitmap graphics anchored to specific positions on

the map.

 Tile Overlays are sets of images displayed on top of the base map tiles.

The official guide with information about the use and the implementation of the

Google Maps API can be found in the references [15].

4.2 Smart Parking Application

There are currently monstrous amounts of vehicles swarming the cities and

parking has become a rare commodity in most urban centers. Traffic congestion,

environment pollution and waste of energy recourses are a few downsides of the

phenomenon when vehicles are wandering around searching for available spots. A

lot of research is being conducted all over the world in order to implement better

parking management techniques, but the problem still persists.

To provide an IoT solution, we connect an application to the testbed. Initially,

panStamps have to be connected to sensors that can examine the parking space

and successfully decide if it is occupied by a car or not. Many kinds of sensors can

be used like magnetic sensors that detect metal, ultra-sonic wave sensors that

detect objects in the line of sight or pressure sensors to calculate weight. The

sensors we identify as the most appropriate are the magnetic sensors because

they can be hidden away or even buried under the parking space so they can be

protected from theft or weather conditions. No real sensors were involved during

the development of this application. Instead they were simulated with a digital

input on the microcontroller where digital 1 means that there is a car and digital 0

means that the space is available. The microcontroller can also be connected to a

GPS sensor in order to know its location or its exact coordinated can be integrated

in the firmware.

PanStamp are programmed to transmit to the M2M server the values of the

sensors that decide if there are cars in the parking spots and the coordinates of

their exact location. Every time a value changes, the panStamps send the new

value to the M2M server so it is kept updated. The M2M server has a configured

automated event and every time there is an update from the panStamps that

represent parking spaces, it uploads all the information to a virtual cloud. The

OpenSense platform is used for online storing of the data.

Page 71 of 91

The Android application is used mostly for translating the data obtained from the

IoT cloud into a simplified and user-friendly interface. It implements an HTTP

library so it can send HTTP GET requests to the virtual cloud and acquire

information about the coordinates and states of the parking spaces. The

application also implements the Android Google Maps API v2 which enables the

display of a map based on Google Maps. The specific API is selected because

Android users are already familiar with the Google Maps interface so using the

Smart Parking application is simple. The application processes the HTTP GET

response and creates markers on the map with different colors and explanatory

labels depending on the sensor values.

Figure 36: Android HTTP GET request

A premium membership feature is also implemented by adding an output register

on the panStamps. The register is configured as output so that it can be turned on

and off dynamically. This way the premium membership status is not integrated in

the firmware and it can be controlled from the M2M server. It is a virtual output that

corresponds to no physical pin of the microcontroller. The M2M server updates the

cloud about the state of the switch and the application translates it to premium

membership if the switch is on and normal membership if the switch is off. Other

features of the application is to show only the available spots or display the user’s

current location on the map.

Page 72 of 91

Figure 37: Smart Parking Android application

Any new Smart Parking end-device that is powered on, will be auto-detected by

the M2M server and its values will be automatically sent to the virtual cloud. After

that, the application will request the data and a new parking space will be added to

the map. This means that due to the architecture of the system, new Smart

Parking end-devices can be added without further effort.

4.3 Geo Fencing Application

Geo fencing is a technology that uses the Geographical Positioning System (GPS)

to define virtual borders around a specific region. The passing of the border can

trigger actions and events programmed by the administrator. This means that by

setting up virtual fences across the territory, points of interest can be created. This

application aims in improving the quality of life in urban environments by using

methods of automation and remote automaton based on the geographical position

of the user.

For the Geo Fencing application a panStamp is programmed to control an

actuator. The actuator used for the needs of the application is an LED light, but in

real life the actuator could be integrated in the heating system, the garage door or

the coffee maker. The M2M server communicates with the panStamp and can

send commands to the actuator at any time. The polling mechanism is used so

Page 73 of 91

that the server receives status updates regarding the state of the actuator from a

virtual switch on the OpenSense cloud. The rest is handled by the Android

application.

Initially the application’s user interface requires some fields to be filled.

 Latitude defines the latitude of the center of the fenced area.

 Longitude defines the longitude of the center of the fenced area.

 Feed ID is the ID number of the virtual switch that represents the actuator.

 Authentication key is the key that needs to be in the header of the HTTP

requests for security.

All the information is saved in a private file on the device so that they don’t get

erased when the application terminates. The user can create multiple virtual

fences with different coordinates, ID’s and authentication keys. The application

implements the Android Google Maps API so the user can visualize his position

and the location of the fences on a map. Finally, there is the option to enable the

background service.

Figure 38: GeoFencing Android application

The background service is an autonomous process that finds the current location

of the user using the Google Maps library and checks if his location is inside the

virtual fence. If it is, it uses the HTTP library to send an HTTP POST request to the

Page 74 of 91

cloud and turn on the virtual switch. The M2M server using the polling mechanism

detects the change on the switch and turns on the actuator. This way the Geo

Fencing application can perform automated tasks that require no human

intervention.

The application is implemented using a background service so that the user can

enable the service and use his device as a regular mobile phone at the same time.

The background process and the M2M server handle the rest.

The application can be used in various scenarios. Could be to turn on the heating

system when the user is approaching his home so that the house is already warm

when he arrives, or to open the outside door automatically every time the user is

outside his house. It is designed to be able to save many events with different

actuators so it can automate many processes.

Page 75 of 91

Chapter 5

Approaching the Electric Power Grid

This chapter describes the connection of the testbed to the electric power

distribution system. It is divided in three main sections:

1. The Current Power Grid reviews the operation of the electric power grid.

Generation, transmission, substations and distribution are described along

with control centers and how they manage to coordinate the entire

operation.

2. The Need for Improvement presents flaws and inabilities of the power grid

and also failures and outages that happened over the past years.

3. The IoT Perspective of a Smart Power Grid describes the concept of

smart grid, IEC 61850 which is a standard for automating the power

distribution, and how the combination of the IoT testbed and IEC 61850

leads in the emerging smart grid.

5.1 The Current Power Grid

The power grid is a real-time energy delivery system, which means that power is

generated, transported, and supplied the moment a consumer turns on a light

switch. The system starts with generation, by which electrical energy is produced

in the power plant and then transferred over long distances over high-voltage

transmission lines to the substations. Substations transform this high-voltage

electrical energy into lower-voltage energy that is transmitted over distribution

power lines that are more suitable for the distribution of electrical energy to its

destination, where it is again transformed for residential, commercial, and

industrial consumption [51].

Page 76 of 91

Figure 39: Power grid overview [51]

A full-scale actual interconnected electric power grid is much more Complex.

However the basic principles, concepts and theories are all the same.

5.1.1 Generation

Power plants produce electrical energy on a real-time basis. Electric power

systems do not store energy thus when an appliance is switched on and drawing

electrical energy from the system, the associated generating plants immediately

see this as new load and increase productivity to balance the demand on the

system. There must always be enough generation online to maintain the balance

during light and heavy load conditions [51]. Power plants produce electricity with a

voltage of few thousands volts. A volt is a measurement of electromotive force in

electricity. The electricity first goes to a transformer at the power plant that boosts

the voltage to hundreds of thousands of volts and then it is sent to the

transmission lines.

5.1.2 Transmission

The transmission system uses long thick cables for transmission lines made of

copper or aluminum because they have low resistance to transfer the electricity

over long distances. They use high-voltage transmission lines to minimize

transportation losses. The lines usually have static wires on the very top to shield

Page 77 of 91

itself from lightning. They are directly connected to the metal towers so that

lightning strikes are immediately grounded to earth [51].

Figure 40: High-voltage transmission lines [51]

5.1.3 Substations

The power lines go into substations near businesses, factories and homes.

Transformers change the very high-voltage electricity back into lower-voltage.

From these substations electricity in different power levels is delivered to

distribution or further transmission. Substations use a lot of equipment to operate,

the most important types are the following [51].

 Power Transformers are used to convert high-voltage power to low-

voltage power and vice versa. Generation plants use large step-up

transformers to raise the voltage for efficient transfer. Then step-down

transformers convert the power to sub-transmission.

 Regulators provide regulated and steady voltage all the time, otherwise

several undesirable conditions might occur. Low voltage can cause motors

to overheat and burn out. High voltages can cause light bulbs to burn out

too often or cause other appliance issues.

 Circuit breakers interrupt current flowing in the line, transformer, bus, or

other equipment when a problem occurs and the power has to be turned

Page 78 of 91

off. A breaker accomplishes this by mechanically moving electrical contacts

apart.

 Disconnect switches are used mainly to isolate equipment for

maintenance purposes. Disconnect switches usually have low current

interrupting ratings compared to circuit breakers.

 Lighting arresters are designed to limit the line-to-ground voltage in the

event of lightning or other excessive transient voltage conditions.

 Electrical bus is a conductor, or group of conductors, that serves as a

common connection between two or more circuits. It is meant to connect

equipment together.

 Capacitor banks keep the transmission system voltage stable during

disturbances. They are used to cancel out the lagging current effects from

motors and transformers.

 Control buildings are commonly found in the larger substations. They are

used to house the equipment associated with monitoring, control, and

protection of the substation.

5.1.4 Distribution

Distribution systems are responsible for delivering electrical energy from the

distribution substation to the service-entrance equipment located at residential,

commercial, and industrial consumer facilities. They use transformers to convert

the primary voltage to different consumer voltages for industrial or residential use

[51].

Page 79 of 91

Figure 41: Distribution system [51]

5.1.5 Supervisory Control and Data Acquisition

Control centers operate constantly to make sure the electric power system within

their control area is operating properly. System operators are looking for signs of

possible problems and taking immediate action to avoid major system

disturbances. Operators are tasked with the responsibility to maintain system

reliability, stability, and continuous service. They are also responsible for

coordinating field crew work activities and making sure crews are safely reported

on high-voltage lines and equipment [51].

The main tool control centers use is the Supervisory Control and Data Acquisition

(SCADA) system. This system allows control operators to monitor, control and

dispatch generation, and obtain written reports of all parameters about the power

system. The SCADA system is made up of a centrally located master computer

and several Remote Terminal Units (RTU) located throughout the system. Up until

the late 1940s, many utilities had personnel stationed at substations. In some

cases, these were residents who remained on call 24 hours a day. With the advent

of SCADA, it was no longer necessary for utilities to maintain manned operation of

Page 80 of 91

substations. SCADA gives operators the ability to remotely monitor analog

electrical quantities in real time. Also, operators are alerted to problems as they

occur through alarm and indication points [51].

5.2 The Need for Improvement

Sometime in the 1960s, the industry initiated the use of computers to monitor and

offer some control of the power system. This, coupled with a modest use of

sensors, has increased over time. It still remains less than ideal. Power system

area operators can, at best, see the condition of the power system with a 20-

second delay. Industry suppliers refer to this as “real time.” However, 20 seconds

is still not real time when one considers that the electromagnetic pulse moves at

nearly the speed of light. Actually, the electric power delivery system is almost

entirely a mechanical system, with only minimal use of electronic communication,

sensors and almost no electronic control [8].

The current power grid is not only outdated but, as history shows, it is also

unstable. The following list contains unexpected blackout incidents that happened

in the last 50 years [13].

 2012 India

 2011 Southwest United States Blackout

 2008 Brazil

 2007 Victoria, Australia

 2007 Colombia

 2006 large areas in Europe

 2006 Tokyo, Japan

 2005 Australia

 2005 Moscow, Russia

 2004 Greece

 2003 Denmark and Sweden

 2003 London, England

 2003 Northeast and Midwest United states

 2003 Italy

 1999 Southern Brazil Blackout

 1997 California

Page 81 of 91

 1997 New Zealand

 1987 Tokyo, Japan

 1978 France

 1977 New York City

 1967 Mid-Atlantic USA

 1965 Northeast United States and Southeast Canada

The general impacts of power grid failures are numerous, including the loss of life,

mainly due to accidents. Long-term large-scale outages affect many crucial

everyday services like:

 Transportation (traffic lights),

 Public services (hospitals)

 Communications (telephone lines, TV and radio stations).

Many of these services have their own backup electrical power supplies, but the

backup systems only last for short periods of time [13].

5.3 The IoT Perspective of a Smart Power Grid

The power grid can be upgraded using the components of the IoT. Sensors,

communications, computational ability and control can optimize the overall

functionality of the electric power delivery system. Even the improved power grids

that use SCADA and achieve some kind of automation, rely on human operators.

In order to optimize the process and accomplish actual real-time synchronization

between demand and response, the human factor has to be replaced by M2M

communications with negligible delays.

This section is divided in four sub-sections:

1. Smart Grid, which is an advanced electric power grid that uses modern

technology to improve the quality of service.

2. IEC 61850 and GOOSE. This sub-section describes the IEC 61850 which

is a standard for electric power substation automation that can turn the

power grid into a smart grid. It defines the GOOSE message as a

communication protocol for Intelligent Electronic Devices (IED).

Page 82 of 91

3. Phasor Measurement Units (PMU) and GOOSE generation describes

the PMU which is a device that can generate GOOSE messages and why it

is a key component of the Smart Grid.

4. Finally, Gateway for the GOOSE, includes the practical implementation of

connecting a PMU to the Raspberry Pi gateway and use the testbed to

emulate a Smart Grid environment.

5.3.1 Smart Grid

Smart grid is an advanced system that will increase the productivity resulting from

the use of electricity. The design of the smart grid addresses five main

functionalities which should be part of the power system of tomorrow [8].

1. Visualizing the Power System in Real Time. This attribute would deploy

advanced sensors more broadly, throughout the system on all critical

components. These sensors would be integrated with a real-time

communications system through an electric and communications system

architecture.

2. Increasing System Capacity. This functionality embodies a generally

straight-forward effort to build or reinforce capacity particularly in the high-

voltage system. This would include building more transmission circuits,

making improvements on data infrastructure, upgrading control centers, and

updating protection schemes and relays.

3. Relieving Bottlenecks. This functionality includes increasing power flow,

enhanced voltage support, providing and allowing the operation of the

electrical system on a dynamic basis.

4. Enabling a Self-healing System. This functionality requires wide-scale

deployment of electronic devices such as electronic circuit breakers so that

new paths can be created dynamically in the grid in the event of an error.

This, will then provide the integration of an advanced control architecture to

enable a self-healing system.

5. Enabling Enhanced Connectivity to Consumers. Integration of a

communications system that allows connectivity to the ultimate consumers.

This enhancement creates new areas of functionalities that relate directly to

electricity services (e.g. added billing information, real-time pricing, home

security, appliance monitoring).

Page 83 of 91

5.3.2 IEC 61850 and GOOSE

IEC 61850 is a standard for the design of electrical substation automation. It

defines standardized communication between IEDs located not only within electric

utility facilities, such as power plants and substations, but also outside these

facilities such as storage systems and meters. IEC 61850 has been identified by

the National Institute of Standards and Technology (NIST) as a cornerstone

technology for field device communications and general device object data

modeling [20].

IEC 61850 defines peer-to-peer communication mechanisms between IEDs using

GOOSE messages (Generic Object Oriented System Event) over Ethernet. The

use of sampled values from IEDs using GOOSE minimizes the use of copper

wiring throughout the substation leading to significant benefits in cost savings,

more compact substation designs, and advanced and more flexible automation

systems [20].

The GOOSE is one of the most beneficial pieces of the IEC 61850 standard. It is a

model to transmit sampled values in a fast way to multiple subscriber devices

using multicast. GOOSE messages are designed to utilize high-speed Ethernet

networks, achieving speeds equal to or faster than hardwired [20]. They are ideal

for the messaging system of the smart grid because they are extremely fast, they

define a data set that can contain electricity information and they can be

encapsulated inside the current Internet application layer protocols (Chapter

2.2.6).

5.3.3 Phasor Measurement Units and GOOSE generation

Phasor measurement units (PMUs) are electronic devices that produce GOOSE

messages with electricity measurements from the grid and publish them to a

subscriber using a synchrophasor-based protocol such as IEC 61850-90-5 [20].

PMU data are truly synchronized which enables the monitoring of value changes

in real time. Placing the PMUs in critical positions such as power substations can

help in obtaining information about the system conditions of the power grid.

Page 84 of 91

Figure 42: PMU device

PMUs are fundamental in the smart grid architecture because they can measure

the electricity’s frequency. Changes in the frequency can create a balancing

system for the generation-demand equation. In Europe the line frequency of the

electricity is 50Hz. The frequency is increasing when more electric power is

generated than the power that is being consumed which results in electric energy

wasting. If the frequency is dropping, it means that there is more demand than

generation which results in power failures and blackouts. A PMU produces 30-60

updates per second which provides real-time monitoring of the grid.

5.3.4 Gateway for the GOOSE

The goal is to use the Raspberry Pi, which is the testbed’s gateway, as a gateway

for GOOSE messages. A PMU that produces GOOSE messages is connected via

Ethernet to a microcontroller (mbed board is used) which receives the GOOSE

message and removes unnecessary headers. Then, it sends the lightweight

message to a Wiznet W5100 via SPI. The Wiznet is a small board with an

Ethernet port that includes UDP and TCP libraries. It creates a UDP packet and

adds the GOOSE message in the payload. After that, it provides the final GOOSE

message encapsulated in a UPD packet available through an output Ethernet port.

Page 85 of 91

Figure 43: Mbed, Wiznet (left to right)

The process takes place in hardware microcontrollers because they handle

calculations faster than software and the objective is to achieve real-time

monitoring of GOOSE messages. The overall goal is to connect this Ethernet

communication to the Raspberry Pi gateway and provide real-time monitoring,

storing, visualizing and routing of GOOSE messages and thus of the power grid.

Figure 44: Gateway for the GOOSE

UDP is the preferred protocol to transfer GOOSE messages to the Internet

because it is lightweight, fast and lacks retransmission mechanisms. To achieve

real-time monitoring, new updated messages are more crucial than retransmitted

old ones, thus retransmission mechanisms are avoided.

Page 86 of 91

Use of public internet for exchanging GOOSE messages for the power grid is

highly unlikely for security reasons. Instead The IoT approach of the smart grid

suggests the use of private networks that exchange information over the Internet.

This way the framework is safe from Internet threats, but at the same time uses

the same technologies. Consequently even if the grid never goes over public

Internet, the testbed can be used for simulations.

Page 87 of 91

Chapter 6

Conclusions – Future Work

An emerging tendency for automation lies in the recent future. All the necessary

tools to begin improving the quality of life in urban environments are currently

available. After exploring the literature but also by conducting independent

research on the Internet of things, we design a testbed that can cope with the

demanding requirements of modern societies.

The panStamp project is selected for implementing the automation part and it

proved to be very stable and surprisingly open to modifications. Gateway and host

of the M2M servers is a Raspberry Pi which is ideal for a device that needs to run

constantly due to its extremely low-power consumption. The Raspberry Pi also

hosts the OpenRemote controller which is an excellent platform for those who

want to use a mobile application for automation without writing a single line of

code. The gateway connects the sensor network to the IoT clouds that provide an

online monitor/control user interface available through the Internet and also serve

as nodes between M2M servers and end-user applications.

Two representative applications of the IoT are designed for smart phones to

complete an End-to-End Machine to Machine communication network, Smart

Parking and Geo Fencing. The former is an information system that uses sensors

to detect cars in parking spots and informs the user of their availability. The latter

is a background process capable of performing automated tasks (e.g. opening a

door) based on the geographical position of the user. Both applications, even if

different to each other, work surprisingly well, which proves the flexibility and

robustness of the testbed.

In addition the current electric power grid is described, flaws and inabilities are

presented along with a way to connect the power distribution system to the

implemented IoT testbed for further research on the Smart Grid.

Page 88 of 91

We named the testbed SMARTWORLD because it is an innovative platform that

can be used for any final application in mind and face technological and societal

challenges.

Next step would be to deploy the SMARTWORLD testbed to a physical area and

obtain a realistic picture of its services. The end-device network currently uses an

application layer protocol called SWAP which can be implemented on top of other

protocols for wired or wireless communication in order to present diverse data in a

homogeneous way. In addition to REST services, the gateway can use CoAP and

WebSocket to exchange information with the IoT platforms and the same protocols

can also be used to route GOOSE messages for further research on the emerging

smart grid. There are already available modules for connecting the Raspberry Pi to

cellular Internet and convert the fixed end-device network to a mobile network. The

cellular modules enable even LTE Internet connection which is preferred for the

real-time updates of the smart grid.

The online IoT clouds that are currently connected to the testbed are ThingSpeak

and OpenSense. The source code of ThingSpeak can be downloaded and

deployed in a private server in order to free the testbed from commercial cloud

dependency and create a fully autonomous development environment.

Page 89 of 91

References

[1] Adam Dunkels, (2011), The ContikiMAC Radio Duty Cycling Protocol, SICS Technical
Report T2011:13, ISSN 1100-3154, December 2011.

[2] Andreas Kamilaris, (2012), Enabling smart homes using web technologies, Doctroral
thesis, University of Cyprus, December 2012.

[3] Android official website, https://source.android.com/, retrieved 28 April 2014.

[4] Arduino official website, http://arduino.cc/en/Guide/Environment, retrieved 28 April
2014.

[5] Axeda official website, http://www.axeda.com/, retrieved 28 April 2014.

[6] Buonaccorsi N, (2012), Cicconetti C,Mambrini R, Podias N, Russell P, ETSI M2M
release 1 demonstration, World of Wireless Mobile and Multimedia Networks
(WoWMoM), 2012 IEEE International Symposium, 25-28 June 2012.

[7] Cisco press release, (2008), Cisco, Atmel and the Swedish Institute of Computer
Science (SICS) Collaborate to Support a Future Where Any Device Can Be
Connected to the Internet, http://newsroom.cisco.com/dlls/2008/prod_101408e.html,
retrieved 28 April 2014.

[8] Clark W. Gellings, (2009), The Smart Grid: Enabling Energy Efficiency and Demand
Response, Fairmont Press, 2009.

[9] CoAP, Wikipedia site, http://en.wikipedia.org/wiki/Constrained_Application_Protocol,
retrieved 28 April 2014.

[10] Contiki, Wikipedia website, http://en.wikipedia.org/wiki/Contiki, retrieved 28 April 2014.

[11] Contiki official website, http://www.contiki-os.org/community.html, retrieved 28 April
2014.

[12] Contiki official website, http://www.contiki-os.org/, retrieved 28 April 2014.

[13] Eli T. Iceman, (2012), Power grid operations, Dog Ear Publishing, September 2012.

[14] Fielding Roy Thomas, (2000), Architectural Styles and the Design of Network-based
Software Architectures, Doctoral dissertation, Irvine University of California.

[15] GOOGLE Maps Android API, official site, get started,
https://developers.google.com/maps/documentation/android/start#getting_the_google
_maps_android_api_v2, retrieved 28 April 2014.

[16] GOOGLE Maps Android API, official site, intro,
https://developers.google.com/maps/documentation/android/intro, retrieved 28 April
2014.

[17] Ian F. Akyildiz, (2002) W. Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.
Wireless sensor networks: a survey. Computer Networks, 38(4):393–422.

[18] IBM official website, MQ Telemetry Transport (MQTT) V3.1 Protocol Specification,
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html, retrieved
28 April 2014.

[19] IBM official website, RESTful Web services: The basics,
http://www.ibm.com/developerworks/webservices/library/ws-restful/, retrieved 28 April
2014.

[20] John D. McDonald, (2012), Electric power substations engineering, CRC Press.

Page 90 of 91

[21] Kevin Ashton, (2009), That 'Internet of Things' Thing, RFID Journal website,
http://www.rfidjournal.com/articles/view?4986, retrieved 28 April 2014.

[22] M-bus official website, http://www.m-bus.com/info/mbuse.php, retrieved 28 April 2014.

[23] Modbus official website, http://www.modbus.org/faq.php, retrieved 28 April 2014.

[24] Miao Wu, (2010), Ting-Jie, Lu Fei-Yang, Ling Jing, Sun Hui-Ying Du. Research on the
architecture of Internet of Things, Advanced Computer Theory and Engineering
(ICACTE), V5-484, August 2010.

[25] MQTT manual, http://mosquitto.org/man/mqtt-7.html, retrieved 28 April 2014.

[26] MQTT official website, http://mqtt.org/faq, retrieved 28 April 2014.

[27] Mulligan Geoff, (2007), "The 6LoWPAN architecture", EmNets '07: Proceedings of the
4th workshop on Embedded networked sensors, ACM.

[28] NOOBS, Raspberry Pi official website, http://www.raspberrypi.org/help/noobs-setup/,
retrieved 28 April 2014.

[29] OpenRemote official website, http://www.openremote.org/, retrieved 28 April 2014.

[30] OpenRemote source code, http://sourceforge.net/projects/openremote/, retrieved 28
April 2014.

[31] OpenSense official website, http://open.sen.se/, retrieved 28 April 2014.

[32] PanStamp official website, base board, http://www.panstamp.com/products/battery-
board, retrieved 28 April 2014.

[33] PanStamp official website, http://www.panstamp.com/home, retrieved 28 April 2014.

[34] PanStamp official website, panStick, http://www.panstamp.com/products/panstick-1-2,
retrieved 28 April 2014.

[35] PanStamp official website, raspberry Pi shield,
http://www.panstamp.com/products/rpishield, retrieved 28 April 2014.

[36] PanStamp source code, http://code.google.com/p/panstamp/source/checkout,
retrieved 28 April 2014.

[37] PanStamp technical details, http://code.google.com/p/panstamp/, retrieved 28 April
2014.

[38] PanStamp technical details, lagarto MAX,
https://code.google.com/p/panstamp/wiki/LagartoMAX, retrieved 28 April 2014.

[39] PanStamp technical details, lagarto servers,
http://code.google.com/p/panstamp/wiki/lagarto, retrieved 28 April 2014.

[40] PanStamp technical details, lagarto SWAP,
https://code.google.com/p/panstamp/wiki/LagartoSWAP,retrieved 28 April 2014.

[41] PanStamp technical details, specifications,
http://code.google.com/p/panstamp/wiki/panStamp, retrieved 28 April 2014.

[42] PanStamp technical details, SWAP, http://code.google.com/p/panstamp/wiki/SWAP,
retrieved 28 April 2014.

[43] Processing official website, http://www.processing.org/, retrieved 28 April 2014.

[44] Raspbian OS official website, http://www.raspbian.org/RaspbianFAQ, retrieved 28
April 2014.

[45] Raspberry Pi official website, help and FAQ http://www.raspberrypi.org/help/what-is-a-
raspberry-pi/, http://www.raspberrypi.org/help/faqs/ retrieved 28 April 2014.

Page 91 of 91

[46] Raspberry Pi, Wikipedia, http://en.wikipedia.org/wiki/Raspberry_Pi, retrieved 28 April
2014.

[47] Related work, IoT-Lab testbed, https://www.iot-lab.info/, retrieved 28 April 2014.

[48] Related work, Oulou testbed, http://www.panoulu.net/, retrieved 28 April 2014.

[49] Related work, W-iLab.t testbed, http://www.iminds.be/en/succeed-with-digital-
research/technical-testing, retrieved 28 April 2014.

[50] REST, Wikipedia website, http://en.wikipedia.org/wiki/Representational_state_transfer,
retrieved 28 April 2014.

[51] Steven W. Blume, (2007), Electric power system basics, IEEE Press.

[52] ThingSpeak official website, https://thingspeak.com/, retrieved 28 April 2014.

[53] ThingSpeak source code, https://github.com/iobridge/ThingSpeak, retrieved 28 April
2014.

[54] TinyOS official website, http://tinyos.stanford.edu/tinyos-wiki/index.php/FAQ, retrieved
28 April 2014.

[55] TinyOS official website, http://tinyos.stanford.edu/tinyos-
wiki/index.php/Platform_Hardware, retrieved 28 April 2014.

[56] UART tutorial, http://www.raspberry-projects.com/pi/pi-operating-systems/raspbian/io-
pins-raspbian/uart-pins, retrieved 28 April 2014.

[57] WebSocket, Wikipedia website, http://en.wikipedia.org/wiki/WebSocket, retrieved 28
April 2014.

[58] Zach Shelby, (2011), Carsten Bormann, "6LoWPAN: The wireless embedded Internet
- Part 1: Why 6LoWPAN?" EE Times, 23 May 2011.

[59] ZeroMQ official presentation, ZeroMQ is the answer,
http://www.youtube.com/watch?v=v6AGUeZOVSU, retrieved 28 April 2014.

[60] ZeroMQ, Wikipedia website, http://en.wikipedia.org/wiki/%C3%98MQ, retrieved 28
April 2014.

[61] Zigbee official website, http://www.zigbee.org/Standards/Overview.aspx, retrieved 28
April 2014.

[62] Zigbee official website,
http://www.zigbee.org/Standards/ZigBeeBuildingAutomation/Features.aspx, retrieved
28 April 2014.

[63] Zigbee, Wikipedia website, http://en.wikipedia.org/wiki/Zigbee, retrieved 28 April 2014.

[64] 6loWPAN, Wikipedia website, http://en.wikipedia.org/wiki/6LoWPAN, retrieved 28 April
2014.

