
Studying Routing Issues in

VANETs by Using NS-3
Bachelor Thesis on Informatics

by
Christos Profentzas

Thesis supervisor

Dr. Periklis Chatzimisios

Alexander Technological Educational Institute of

Thessaloniki

Department of Informatics

A.T.E.I. of Thessaloniki

P.O. Box 141

GR -547 00 Thessaloniki,

Macedonia, Greece

November 2012

i

Acknowledgements

This research project would not have been possible without the sup-

port of many people. The author wishes to express his gratitude to

his supervisor, Assistant Professor Periklis Chatzimisios (Alexan-

der TEI of Thessaloniki, Greece) and Assistant Professor Gennaro

Boggia (Politecnico di Bari, Italy) who was abundantly helpful and

offered invaluable assistance, support and guidance. Deepest grati-

tude are also due to the members of the supervisory committee, Assis-

tant Professor Luigi Alfredo Grieco and Ph.D Student Giuseppe

Piro without whose knowledge and assistance this study would not

have been successful. Special thanks also to all group members of

Telematics Lab at the Electrical & Electronics Engineering Depart-

ment of Politecnico di Bari, for sharing the literature, invaluable assis-

tance and laboratory facilities. The author would also like to convey

thanks to the Office of Erasmus Program and Faculty of Alexander

Technological Educational Institution of Thessaloniki for providing

the financial means.

Abstract

A Vehicular Ad-hoc Network (VANET) is a system of nodes (vehi-

cles) that are being connected with each other by wireless technolo-

gies. Usually the nodes are moving with very high speeds and, thus,

the topology is unpredictable and frequently changing. Such networks

can be stand alone and making paths along vehicles or may be con-

nected by an infrastructure internet. System characteristics such as

multi-hop paths, node mobility, large network size combined with de-

vice heterogeneity, bandwidth and unlimited battery power make the

design of routing protocols a major challenging. At the last year many

routing protocols have been proposed for VANETs. The most of them

has been implemented using Network Simulator 2 (NS-2). Network

Simulator 3 (NS-3) that is going to replace NS-2 has not employed

so far for implementing any routing protocol protocols for VANETs.

The available routing protocols are Ad-Hoc On Demand Distance

Vector Routing (AODV), Optimized Link State Routing (OLSR),

Destination-Sequenced Distance-Vector (DSDV) and Dynamic Source

Routing (DSR) that have been proposed for Mobile Ad-hoc Networks

(MANETs). In this thesis, we implement and study the performance

of a Position-Based Routing (PBR) protocol for VANETs by employ-

ing NS-3 simulator and we finally compare its performance against

AODV and OLSR routing protocols.

Contents

Contents iii

List of Figures vii

Listings ix

Introduction x

1 Introduction to VANETs 1

1.1 VANETs in General . 1

1.2 Types of communication in VANETs 2

1.2.1 V2V . 3

1.2.2 V2I . 4

1.2.3 Hybrid architecture . 4

1.3 Standards for VANETs . 5

1.3.1 Physical layer . 7

1.3.2 MAC layer . 9

1.3.2.1 Problems . 9

1.3.2.2 MAC protocols 11

1.3.3 LLC . 13

1.3.4 Network and Transport layer 14

1.3.4.1 IPv6 . 15

1.3.4.2 WSMP . 16

1.3.5 Applications . 16

1.4 Routing Protocols . 18

1.4.1 Topology-based Ad-hoc Routing Protocols 18

1.4.1.1 AODV . 19

1.4.1.2 OLSR . 19

1.4.1.3 DSDV . 19

1.4.1.4 DSR . 20

iii

CONTENTS

1.4.1.5 TORA . 20

1.4.1.6 FSR . 20

1.4.1.7 ZRP . 20

1.4.2 Broadcast Routing Protocols 21

1.4.2.1 SRB . 21

1.4.2.2 DVCAST . 21

1.4.2.3 PBSM . 22

1.4.2.4 EAEP . 22

1.4.3 Cluster-based Routing Protocols 22

1.4.3.1 CBLR . 23

1.4.3.2 CBDRP . 23

1.4.3.3 EDCBRP . 23

1.4.4 Position-based Routing Protocols 23

1.4.4.1 GPSR . 25

1.4.4.2 AMAR . 25

1.4.4.3 GYTAR . 25

1.4.4.4 DREAM . 25

1.4.4.5 LABAR . 26

1.4.4.6 ROVER . 26

1.4.5 Infrastructure-based Routing Protocols 26

1.4.5.1 RAR . 27

1.4.6 Final Comparison . 27

2 NS-3 Simulator 30

2.1 About NS-3 . 30

2.2 Release Process . 31

2.3 Architecture of NS-3 . 33

2.4 The difference between NS-2 and NS-3 35

2.5 Installation . 36

2.6 Set-up NS-3 . 38

2.7 Writing Scripts . 39

2.8 Running Scripts . 40

2.9 Documentation . 41

iv

CONTENTS

2.10 Tools . 41

2.11 Mailing-list and Community . 42

3 Simulation Tools 43

3.1 Simulation of Urban Mobility (SUMO) 43

3.1.1 About SUMO . 43

3.1.2 Simulation in SUMO . 44

3.1.2.1 Highway Topology for VANET Simulations . . . 44

3.1.2.2 Create Scenario in SUMO 45

3.2 MOVE . 56

3.2.1 About MOVE . 56

3.2.2 Create Scenario for NS3 57

4 Routing Protocols in NS3 58

4.1 VANET Simulations in NS-3 . 58

4.2 AODV Routing Protocol . 59

4.2.1 AODV Routing . 59

4.2.2 AODV Routing Overview 59

4.2.3 AODV Helper . 61

4.3 OLSR Routing Protocol . 64

4.3.1 OLSR Routing . 64

4.3.2 OLSR Routing Overview 64

4.3.3 OLSR Helper . 65

4.4 DSDV . 67

4.4.1 DSDV Routing . 67

4.4.2 DSDV Routing Overview 67

4.4.3 DSDV Helper . 69

4.5 DSR . 70

4.5.1 DSR Routing . 70

4.5.2 DSR Routing Overview . 70

4.5.3 DSR Helper . 72

4.6 E-GPSR . 73

4.6.1 Theoretical Description of Protocol 73

v

CONTENTS

4.6.2 Implementation . 76

4.6.3 Configuration . 80

5 Performance Evaluation 82

5.1 Transmission Range . 82

5.1.1 MAC and PHY Configuration 82

5.1.2 Simulation Details . 83

5.1.3 Simulation Results . 83

5.1.4 NS-3 Code . 85

5.2 Static-grid Simulation Scenario 88

5.2.1 Simulation Details . 88

5.2.2 Simulation Results . 89

5.2.3 NS-3 Code . 90

5.3 Dynamic Mobility Simulation Scenario 92

5.3.1 Simulation Details . 92

5.3.2 Simulation Results . 93

5.3.3 NS-3 Code . 94

5.4 Realistic with SUMO Simulation Scenario 96

5.4.1 Simulation Details . 96

5.4.2 Simulation Results . 97

5.4.3 NS-3 Code . 98

6 Conclusion & Future Work 100

Appendix A 102

Appendix B 105

Appendix C 113

Glossary 116

References 118

vi

List of Figures

1.1 Types of Communication in VANETs 2

1.2 Channels in 75 MHz Frequency Band 5

1.3 WAVE Protocol Stack . 6

1.4 PHY Layer in IEEE 802.11 . 7

1.5 MAC Layer . 9

1.6 Transmission Collision Problem 10

1.7 Hidden Node Problem . 10

1.8 Exposed Node Problem . 10

1.9 RTS - CTS . 11

1.10 CSMA Mechanism . 12

1.11 DCF Mechanism . 13

2.1 NS-3 Release Process . 31

2.2 NS-3 Architecture . 34

3.1 High-way Topology . 45

3.2 SUMO XML-Files . 46

3.3 SUMO-GUI . 51

3.4 SUMO Simulation Process . 54

3.5 SUMO-GUI Running Simulation 56

4.1 AODV Hierarchy Diagram . 59

4.2 AODV Helper Diagram . 61

4.3 OLSR Hierarchy Diagram . 65

4.4 OLSR Helper Diagram . 67

4.5 DSDV Hierarchy Diagram . 68

4.6 DSDV Helper Collaboration Diagram 70

4.7 PLR with Different Weights for Neighbours 75

4.8 Topology in Simulation about Different Weights 76

4.9 Position-Based UML Diagram . 78

vii

LIST OF FIGURES

4.10 Routing Path . 80

5.1 PLR with Different Modulation Schemes 84

5.2 PLR with Different wifi Manager Algorithms 85

5.3 Grid Topology . 89

5.4 PLR with 802.11p and Different Routing Protocols 90

5.5 Random Mobility Topology with Density 3 93

5.6 PLR into Random Topology . 94

5.7 PLR into SUMO Topologies . 97

1 MOVE-GUI Fig. 1 . 105

2 MOVE-GUI Fig. 2 . 110

3 MOVE-GUI Fig. 3 . 111

4 MOVE-GUI Fig. 4 . 111

5 MOVE-GUI Fig. 5 . 112

6 MOVE-GUI Fig. 6 . 112

viii

Listings

3.1 Nodes (my-scenario.nod.xml) . 46

3.2 Link Type File (my-scenario.typ.xml) 47

3.3 Link File of the Network (my-scenario.edg.xml) 48

3.4 Specification of Traffic Movements (my-scenario.con.xml) 49

3.5 Generating the Network File (my-scenario.netc.cfg) 50

3.6 Traffic Demand and Route Data (my-scenario.rou.xml) 52

3.7 Terminal-Command to Start SUMO (my-scenario.sumo.cfg) . . . 54

3.8 Traffic Simulation of the Network (my-scenario.sumo.cfg) 54

3.9 Terminal-Bash-Command to Start SUMO (my-scenario.sumo.cfg) 55

3.10 Terminal-Command to Start MOVE 57

4.1 NS3 AODV Install . 62

4.2 NS3 OLSR Install in Node Container 65

4.3 NS3 DSDV Install . 69

4.4 NS3 DSR Install . 73

4.5 Install E-GPSR into NS-3 . 80

5.1 Set-up Wifi - NS-3 Code . 85

5.2 NS-3 Install Wifi . 86

5.3 Set-up a Grid Topology - NS-3 Code 90

5.4 Set-up UDP Client-Server - NS3 Code 91

5.5 Set-up Mobility Random Topology - NS-3 Code 94

5.6 Set-up Ns2Mobility Helper - NS-3 Code 98

1 Shell Script to Create XML-Files for SUMO 102

2 Start MOVE . 105

3 Delete Code form tcl-File . 106

ix

Introduction

During the recent years Vehicular Ad-hoc Networks (VANETs) attract a signif-

icant amount of interest in the research community. VANETs can establish con-

nections between Vehicle To Vehicle (V2V) and Vehicle to Infrastructure (V2I),

so a great number of applications could be applied. These applications include

safety and entertainment applications that require high availability of the com-

munication system. For example in the case of an accident a big amount of

messages is being transmitted into a large scale area. Furthermore the topology

is quickly changing during the transmission and vehicles are moving with high

speed. In order to make the communication of vehicles possible, a stable routing

protocol is needed to ensures that the messages is being transmitted efficiently

and correctly. So the design of routing protocols is an emergency research area in

VANET that have to deal with this particulars problems of frequently topology

changing and quickly movements of nodes.

Among the ad-hoc routing protocols, several Topology-Based Routing Proto-

cols (TBRPs) have been proposed, such as Ad-Hoc On Demand Distance Vector

(AODV) and Optimized Link State Routing (OLSR). These protocols have make

great success into Mobility Ad-hoc NETworks (MANETs) but in the VANETs

shows poor performance. Position-Based Routing Protocols (PBRPs) eliminate

some of the limitation of TBRPs by using the information of physical position of

nodes. By now, many PBRP algorithms have been proposed. A well promising

area of algorithms is the extensions of Greedy Perimeter Stateless Routing(GPSR)

[32].

GPSR finds the next hop using the position between neighbour and destination

which have been taken by Global Position System (GPS) and local services, the

most closest node to destination is the next hop. Because a possibility to failure

to find a path, GPSR needs to extent his capabilities in order to cope with this

problem, in this thesis represented an extension of GPRS algorithm that finds the

x

path considering the number of neighbours of every node. The implementation

is into Network Simulator 3 (NS-3) and being compared with OLSR and AODV

that already being implemented in NS-3.

Following the introduction, the rest of the thesis is organised as follow: In

chapter one is being introducing VANET technology focusing into routing pro-

tocols. Chapter two presents the NS3 in details. Chapter three presents other

simulation tools that have being used. Chapter four describes the implementation

of AODV, OLSR, Destination-Sequenced Distance-Vector (DSDV) and Dynamic

Source Routing (DSR) into NS-3 ending with Extended-GPSR (E-GPSR) imple-

mentation. Chapter five is showing the performance results of several scenarios

into NS-3. Chapter six has the conclusion and the future work of theses. In the

end Appendixes have been placed that have particular information of tool being

used.

xi

Chapter 1

Introduction to VANETs

1.1 VANETs in General

VANETs are considered as a special type of MANETs, in which each node is a

vehicle (i.e. car,bus,truck) [5]. This kind of networks have face up new challenges.

They are characterized by very high node mobility and topology changing that

dependent by means of wireless technologies. These features make VANETs very

prone to transmission errors, topology changes and intermittent connectivity.

This is an effect of high moving speed of nodes and highly dynamic operating

environments. So the main goals for VANETs are to achieve high packet delivery

rates and low packet latency.

At the last years, car manufacturers have gave to vehicles the ability to gener-

ate and analyse large amounts of data, although this data associated only with

a single vehicle. With the VANET technologies vehicles have the new ability to

connect each over as well as to network infrastructures that companies in the

last year have equipped into the highways (also a hybrid combination of them is

possible). Roadside infrastructure can also be used as a gateway to the Internet.

Thus data and context information can be collected, stored and processed some-

where (cloud computing). Communication can be either done directly between

vehicles as one-hop communication or vehicles can retransmit messages thereby

enabling multi-hop communication. Furthermore packets can be transited with

unicast or multi-cast way [13].

Despite of the difficult challenges VANETs represent an emerging wireless tech-

nology, allowing efficient communication among vehicles and fixed devices posi-

tioned along the street with a very promising area of safety, traffic control and

1

user applications. Ongoing research is exploring novel protocol stacks and net-

work architectures to efficiently afford these challenging issues [40].

The area of ad-hoc networks consists for many years and has a large variety of

technologies (e.g. MANETs). Although VANET has some distinguishing feature

which make it more challenging from other technologies being summarized as

following.

• High dynamic topology: Since the high speeds of vehicles and the large area

that its cover the topology is very frequently changing.

• Frequently disconnected network: The often topology changes has the result

that a node is become frequently out of range of the networks. This problem

is also caused by node density changing.

• Unlimited battery power and storage: Every node is a vehicle so the power

of every device is being provided by fuels of the car.

• On board sensors: Nodes consists of sophisticated sensors which provide

very useful information such as GPS which gives location informations.

1.2 Types of communication in VANETs

Figure 1.1: Types of Communication in VANETs

2

There are three possible types of communication that could be established

within a VANET: Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V) and

a hybrid combination of them [5].

1.2.1 V2V

V2V is an ad-hoc network among vehicles (car, bus, track etc) which allow ve-

hicles send data to each over. Using V2V communication, a vehicle can detect the

position and movement of other vehicles up to a quarter of a mile away. Vehicles

being equipped with a simple antenna, a computer chip and GPS technology;

they will know the position of other vehicles and will communicating directly

with them. In this way vehicles could share informations about blond spots, car

accidents and road condition. Thus vehicles can anticipate and react to danger-

ously driving situations informing drivers. If the driver does not respond to the

alerts, the vehicle could act itself and stop to a safe point avoiding a collision.

The V2V systems is equipped with long range scanning sensor for adaptive

cruise control, forward vision sensors for object detection, mid-range blind spot

detection sensors and long-range lane change assist sensors. The vehicle alerts the

driver for vehicles in blind spots with a steady amber light in the side mirror. If the

turn signal is activated, a flashing amber light and gentle seat vibration on the side

notifies the driver of a potentially dangerous situation. The vibration is enough to

get our attention but not a sudden distraction. In addition, V2V technology can

warn the driver when vehicles ahead, regardless of lane, are stopped or travelling

much slower or any vehicle ahead brakes hard, allowing the driver to brake or

change lanes as needed.

In general V2V is a research for applications linked to road safety but also to

include entertainment applications. The technology draws on several disciplines,

including transport engineering, electrical engineering, automotive engineering

and computer science.

3

1.2.2 V2I

V2I is an wireless network (wifi ,wimax or cellular) that offers a communication

between nodes (vehicles) and roadside bases (access points). So for this kind of

communication needs a integrated communication system under the roads called

Vehicle Infrastructure Integration (VII).

VII is an initiative fostering research and applications for a series of technolo-

gies directly linking road vehicles to their physical surroundings. This technology

draws on several disciplines, including transport engineering, electrical engineer-

ing, automotive engineering and computer science.

VII specifically covers road transport although similar technologies are in place

or under development for other modes of transport. Planes, for example, use

ground-based beacons for automated guidance, allowing the autopilot to fly the

plane without human intervention. In highway engineering, improving the safety

of a roadway can enhance overall efficiency. VII targets improvements in both

safety and efficiency.

Finally VII is that branch of engineering, which deals with the study and

implementation of a series of techniques to achieve communication among vehicles

and infrastructure bases in order to improve road safety.

1.2.3 Hybrid architecture

Hybrid architecture consists of both infrastructure networks and ad-hoc net-

works. That means that vehicles has the ability to make a connection and ex-

change data and informations with a roadside base (access point) or vehicle which

also might be connect with other vehicles or bases. In this way VANET could

take the benefits from both V2V and V2I.

4

1.3 Standards for VANETs

The U.S. Federal Communication Commission has allocated 75 MHz spectrum

at 5.9 GHz exclusively for V2V and V2I communications in North America. Pro-

cess of frequency allocation in Europe is considerably more complex, since all

European countries and their authorities are involved. In August 2008, after

spectrum requirements have been analysed and frequency regulation and rede-

ployment have been worked out, the Commission of European Communities has

carried out the decision on the harmonized use of radio spectrum in the 5875-

5905 MHz frequency band for safety related applications of Intelligent Transport

Systems (ITS) [15].

According to nominal carrier frequency allocation, defined by European Telecom-

munications Standards Institute (ETSI) in its Harmonized Standard EN 302 571

[11], the whole 75 MHz frequency band is divided in seven channels, each of which

is 10 MHz wide (Figure 1.2).

Figure 1.2: Channels in 75 MHz Frequency Band

The IEEE 1609 Family [1] of Standards for Wireless Access in Vehicular En-

vironments (WAVE): 802.11p [3] defines a communication architecture and a

standardized set of interfaces that collectively enable secure V2V and V2I wire-

less communications. The objective of communication architecture is to provide

communication facilities for a wide range of applications. The architecture is

5

usually based on the layered Open Systems Interconnection (OSI) model, where

each level provides certain functions (figure 1.3).

Figure 1.3: WAVE Protocol Stack

WAVE communication being operated into a bandwidth of 10 MHz center at

5.8 GHz, allowing physical transmission rates from 3 to 27 Mbps. The WAVE

architecture has introduced two different channels, the Control CHannel (CCH)

and the Service CHannel (SCH), the first dedicated to safety and traffic control

messages and second to user applications. WAVE specifications allow physical

transmission rates from 3 to 27 Mbps and impose to use the spectrum 5.850-8.925

GHz, divided in seven orthogonal channels of 10 MHz each. Six of them, which

is SCHs, can be used for traffic control and user applications, whereas a dedi-

cated CCH must be reserved exclusively for exchanging management and control

messages. Upper layers support functions required by applications such as data

transfer, resource management, system configuration and notification. In partic-

6

ular the services and interfaces of the WAVE Resource Manager application are

specified in standard IEEE 1609.1 [1]. It defines numerous message formats (i.e.,

command, status and request) and the appropriate responses to those messages,

as well as data storage formats that must be used by applications to commu-

nicate between architecture components. Networking services, defined in IEEE

1609.3 standard [1], consist of data and management components. Data plane

components include Physiacl layer, Medium Access Layer (MAC), Logical Link

Control (LLC), User Datagram Protocol (UDP) and Transmission Control Pro-

tocol (TCP), as well as WAVE Short Messages Protocol (WSMP). Management

services cover application registration, as well as monitoring of channel usage and

received channel power indicator.

1.3.1 Physical layer

Figure 1.4: PHY Layer in IEEE 802.11

Physical layer (PHY) is being defined in standard IEEE 802.11 [2] consists of

Physical Medium Dependent (PMD) sub-layer and Physical Layer Convergence

Protocol (PLCP) sub-layer. The PMD sub-layer specifies signal build up param-

eters, such as modulation and channel coding and convert signal into analogue

7

Table 1.1: Differences between IEEE 802.11a and IEEE 802.11p
Parameters IEEE

802.11A
IEEE
802.11p

Changes

Bit rate(Mb/s) 6, 9, 12,
18, 24, 36,
48, 54

3, 4.5, 6, 9,
12, 18, 24,
27

Half

Modulation mode BPSK,
QPSK,
16QAM,
64QAM

BPSK,
QPSK,
16QAM,
64QAM

No change

Code rate 1/2,2/3,3/4 1/2,2/3,3/4 No change
Number of sub-carries 52 52 No change
Symbol of sub-carries 4s 8S Double
Guard duration 0.8s 1.6S Double
FFT period 3.2s 6.4S Double
Preamble duration 16s 32S Double
Subcarrier spacing 0.3125 0.15625 Half

form with regard to specific PHY type. PLCP deals with differences among var-

ious PHYs and ensures that the MAC layers receive packets of common format,

independently of particular PMD sub-layer.

For transmission an OFDM technique with 64 sub-carriers being used. To de-

sign easy-to-implement transmission system, 64 carriers are defined but only the

inner 52 carriers are utilized. Out of 52 carriers 48 contains the actual data and 4

sub-carriers, called pilot sub-carriers, transmit a fixed pattern, used to disregard

frequency and phase offset at the receiver side. Each of 48 data sub-carriers can be

modulated with BPSK, QPSK, 16QAM or 64QAM. In combination with different

coding rates, this leads to a nominal data rate of 6 to 54 Mb/s if full clocked mode

with 20 MHz bandwidth is used. IEEE 802.11p [2] uses the half clocked mode

with 10 MHz bandwidth, in order to make signal more robust against fading,

resulting in corresponding data rate reduction. Some other differences between

IEEE 802.11a and IEEE 802.11p due to reduced sampling rate are emphasized

in table 1.1.

8

1.3.2 MAC layer

Figure 1.5: MAC Layer

MAC layer has two main channels, one is SCH, can be used for traffic control

and user applications and the other is CCH must be reserved exclusively for

exchanging management and control messages. The MAC layer, based on the

Enhanced Distributed Channel Access (EDCA), supports services differentiation

among four traffic categories (i.e. voice, video, best-effort and background) by

defining for each of them a dedicated queue and specific Contention Windows

(CW) and Arbitration Inter-Frame Spaces (AIFS) parameters.

1.3.2.1 Problems

In VANET MAC layer faces up the follow major problems: transmission colli-

sion, hidden terminal problem and exposed terminal problem [22] .

9

Transmission collision Because of a shared communication medium, when

two nodes (A,B) try to transmit at the same time to a third terminal (C) a

collision it’s appears (figure 1.6).

Figure 1.6: Transmission Collision Problem

Hidden node In this problem nodes could be hidden from each other. For

example there are a no connection with A and B in which could be done the

communicate but a different third node could a establish the connection from

each other. MAC layer has to make this connection possible (figure 1.7).

Figure 1.7: Hidden Node Problem

Exposed node Here a node (S2) is prevented from sending packets to other

nodes (R2) due to a neighbouring transmitter (figure 1.8).

Figure 1.8: Exposed Node Problem

10

1.3.2.2 MAC protocols

To solve transmission collisions, hidden node and exposed node problem IEEE

802.11 has proposed several protocols such as Request To Send/Clear To Send

(RTS-CTS), Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

and Distributed Coordination Function (DCF) [22].

RTS-CTS In this protocol when source node wants to send data initiates the

process by sending a RTS frame. The destination node replies with a CTS frame.

Any other node receiving the RTS or CTS frame should refrain from sending

data for a given time (solving the hidden node problem). The amount of time

the node should wait before trying to get access to the medium is included in

both the RTS and the CTS frame.

This protocol was designed under the assumption that all nodes have the same

transmission range. If the nodes are not synchronised (or if the packet sizes and

data rates are different) the problem may occur that the sender will not hear the

CTS or the ACKnowledgement (ACK) during the transmission of data of the

second sender. This kind of protocols is preferable into V2I communications [21].

Figure 1.9: RTS - CTS

11

CSMA/CD In this protocol when a node wants to send data check if there

is an ongoing transmission before begging the sending, in case that there is it

waits for a random time till it finds free the medium and start transmit data. If

a node detects a collision stops the transmission, increase the waiting time and

send control packets to inform also the other nodes about it.

IEEE 802.11 uses a CSMA with a per packet MAC acknowledgement, in or-

der to improve robustness of the transmission and also could detect collisions

indirectly. Furthermore IEEE 802.11 has an optional handshake scheme between

performance source and destination which is useful with hidden node problem.

This kind of protocols is preferable into V2V communications.

Figure 1.10: CSMA Mechanism

DCF This protocol employs a CSMA/CA with binary exponential back-off al-

gorithm.

The DCF uses carrier sensing along with a four way handshake to maximize

the throughput while preventing packet collisions. A packet collision is defined

as any case where a node is receiving more than one packet at a time, resulting

in neither packet being correctly received.

12

The basic functionality of 802.11 is the follow description: Assume that a node

has data that it needs to transmit, first it will wait a random back-off time. This

is a random number of time slots which is within a contention window. If at

any time the node senses that another node is using the channel, it will pause

its timer until the other node has finished transmitting. When the back-off time

has expired, the node will listen the channel to determine if there is another

node transmitting. If the channel is clear, it will then wait for a short time

and listen the channel again. If the channel is still free, it will transmit RTS

to the destination. The destination will respond with a CTS if it is available

to receive data (i.e. if it is not receiving data from another node). When the

source node receives the CTS, it will transmit its data. Along with both the RTS

and CTS, a Network Allocation Vector (NAV) is transmitted, which is a virtual

carrier sensing mechanism. After correct reception of the data, the destination

will transmit an ACK back to the sender. At this point, if the sender has more

data to transmit, it will again begin its back-off and repeat the process. This

process is demonstrated in Figure 1.11.

Figure 1.11: DCF Mechanism

1.3.3 LLC

The IEEE Std 802.2 [14] for LLC defines a programming interface between

that part of the communications software that controls the network interface

13

card (MAC and PHY) and the overlying protocol stack (IPv6, WSMP). The con-

nection between the network interface card and the rest of the communications

system is through a structure called a Service Access Point(SAP). The SAP differ-

entiates between communications protocols; there’s a SAP for NetBIOS, another

for SNA, another for NetWare, and so on.

There are two types of LLC. A programmer can select LLC Type II, where

the frames have sequence numbers as they pass through the SAP and the 802.2

LLC layer, so the receiver provides an acknowledgement for received frames.

This creates a reliable data transfer mechanism at the Data Link Layer (DLL).

LLC Type I simply provides the differentiation function, with no sequence and

acknowledgement process.

WAVE Networking Service shall support the connectionless unacknowledged

Type I operation of the LLC [1] as specified in IEEE Std 802.2, the Subnet-

work Access Protocol (SAP) specified in IEEE Std 802, and the standard for

transmission of IP datagrams over IEEE 802 networks specified in RFC 1042

[30]. Different Ethernet Type (EtherType) values identify the different network

layer protocols used in WAVE. EtherType is also described in IEEE Std 1609.4

[1]. IPv6 type packets received from the lower layers with an Ethernet Type

value of 0x86DD are delivered to the IPv6 protocol. WSM packets received from

the lower layers with an Ethernet Type of 0x88DC are delivered to the WSM

protocol. IPv6 packets for transmission shall have Ethernet Type set to 0x86DD.

WSM packets for transmission shall have Ethernet Type set to 0x88DC.

1.3.4 Network and Transport layer

WAVE is providing communications services to application providing support

for two protocol stacks, the Wave Short Message Protocol (WSMP) and IPv6

(figure 1.3). While WSMP is developed within the IEEE 1609 family of standards

[1], considerations for operation of IPv6 for WAVE are less developed. The WAVE

architecture specification [3] makes reference to the specification of IPv6 [10] and

makes minimal observations regarding the use of IPv6 addresses, but no further

14

specific recommendations as to IPv6 operation for WAVE are provided.

1.3.4.1 IPv6

IPv6, as defined in [10] principally concerns the data frame layout (header

format, header extensibility, rules governing header construction and processing

etc.), IPv6 also implies operation of a set of basic protocols at the network layer.

The IPv6 protocol stack provides additional protocols at other layers, such as

the transport layer and the application layer. Most of these protocols make

certain assumptions about properties of an underlying link model for their proper

operation and assume certain relationships between assigned IP addresses and

communications ability across the underlying data link layer.

At the transport layer, the IPv6 protocol stack proposes two types of protocols:

TCP that is a reliable, rate-adapting mechanism enabling end-to-end transport

of application data across several IP hops and requiring bi-directional communi-

cation between the peers for acknowledgements etc. The second IPv6 transport

protocol is UDP, much simpler protocol providing no rate-adapting or reliability

mechanism and so no signalling from the destination to the sender in a traffic

flow. It is worth noting that TCP is often very inefficient in wireless ad-hoc en-

vironments, especially when faced with mobility: TCP was designed to interpret

packet loss as traffic congestion and to diminish sending rates in this case, whereas

in wireless networks, packet loss may have causes that are other than traffic con-

gestion, such as interfaces moving out of reach, collisions or interference. Also, if

a TCP connection is established between two air-interfaces, subsequently moving

out of range before the connection is terminated, connection-state remains for

timing out (and possibly causing extraneous transmissions), not cleared up by

the usual end-of-connection signalling.

In general TCP is usually not employed in VANETs, which leaves UDP as the

only viable alternative within the standard IPv6 stack. Applications requiring

rate-adapting or end to end transport reliability services may not be satisfied

with what the standard IPv6 protocol stack has to offer.

15

1.3.4.2 WSMP

WSMP is used to increase message transmission and services on WAVE system.

WAVE short messages can be sent both on control channels and service channels.

It allows physical layer parameters like transmitter power to be controlled by

application. WAVE short messages can be delivered to multiple destinations.

Applications take responsibility for message signing [1] and providing the channel

information for transmission.

On receipt of Wave Short Message (WSM) request, WSMP shall verify the

length of WSM Data is less than the value of the WAVE Management Entity

(WME) and Management Information Base (MIB) parameter WsmMaxLength.

The WSM request may be received from a local application or from a remote

application via the forwarding function’s UDP port, as specified in the WME-

MIB. Upon verification of WsmMaxLength, WSMP shall pass it to the LLC layer

for air interface transmission by means of DL-UNITDATA request. Otherwise,

WSM Data is not passed. On receipt of DL-UNITDATA indication from LLC,

WSMP shall pass it to the destination application, as determined by the PSID,

in the form of a WSM indication. The destination application may reside on the

WAVE device, or on a separate device, in which case the application registration

will have indicated how to perform delivery via the UDP/IP stack, using the

address and port number from the User Service Info.

1.3.5 Applications

All services available into a VANET can be classified into three different groups:

safety, traffic control and user applications [40]. Safety messages should be ex-

changed among vehicles for avoiding road accidents and nodes pile-up. The traffic

control has been thought for improving the travel quality by preventing traffic

jam and congestions. Finally, user applications have been introduced in order to

provide entertainment services (i.e. music and video sharing, chat, games and

Internet connectivity) to passengers in vehicle.

16

Safety and traffic control This kind of application in tied related because

they can be combined to achieve road safety driving and prevent a lot of car

accidents. There two types of applications that could be useful: car accidents

prevision and road congestion.

• Car accidents prevision: The time reaction of a driver in compare the speed

of vehicle is very low. So a car accident could be happen in a few seconds

if the drivers has not strongly reflexes. Safety applications could provide

warnings and informations about the road situation and other facts that

could be useful to driver in order to avoid a car crash.

• Road congestion: Safety and traffic control applications could provide to

drivers with the best routes to reach their destination, considering the traffic

jams and car accidents. This would decrease congestion on the road and

maintain a smooth flow of traffic, thus increasing the capacity of the roads

and preventing traffic jams. It will decrease also, at one point the possibility

to have car accident, because drivers would be less frustrated and will be

advised to keep the traffic rules.

User Applications These applications could make the travelling more inter-

esting and entertainment, given to passengers a pleasant trip. There are two basic

types: Internet connection and Peer-to-Peer (P2P).

• Internet connection: Web is a part of people day-life nowadays, so more

and more people need to have constant connect to internet social networks,

e-mail and all this useful services. VANET is challenging with this issue

that also will make new opportunity for already or new-one services by the

web.

• P2P: This is an another interesting idea that will allow passengers to share

news, music, videos and any kind of informations among vehicles. Further-

more it will be used for online chatting and gaming.

17

1.4 Routing Protocols

Because of the high mobility of nodes into a VANET system to design a routing

protocol able to compute and maintain efficiently routing paths among vehicles,

represents nowadays a challenging research issue. So far several routing protocols

have been developed, some of them have been obtained, adapted and improved

from algorithms that proposed in the past for MANETs. This protocols despite

the fact that has been demonstrated how they can reach good performance for

MANETs, they are not able to guarantee the same level of efficiency into a

VANET scenarios yet. Hence, new ideas and more sophisticated strategies have

been developed. A lot of these novel approaches compute routes starting from

the information about node position where other protocols divide the nodes into

cluster (small groups) [16].

Here is being summarized and compared the most well known VANET routing

algorithms, which can be classified in five different categories: Topology-based,

Broadcast, Cluster-based, Position-based and Infrastructure-based [18]. In order

to give a general view of the existing routing protocols is provided a descrip-

tion of the most spread routing algorithms and a comparison among considered

strategies.

1.4.1 Topology-based Ad-hoc Routing Protocols

In this category are also some algorithms that have been proposed in the past

for MANETs and have adjusted in order to be used in VANETs. It could be

found two categories in this kind of protocols: proactive and reactive, proactive

means that then a node wants to send a packet tries to find a route using the

topology, proactive is a technique in which nodes maintain a routing table ex-

changing periodically information about topology. Most known topology-based

routing protocols are: AODV, OLSR, DSDV, DSR, Temporally Ordered Routing

Algorithm (TORA), Fisheye State Routing (FSR), Zone Routing Protocol (ZRP)

[31].

18

1.4.1.1 AODV

AODV is a reactive routing protocol ,so a route is created when a node wants to

send a packet. Every node sends periodically hello messages to find its neighbours.

When a node has to send a packet to destination which is not neighbour send a

Route Request (RREQ) to neighbours to find a path, AODV makes sure these

routes do not contain loops and tries to find the shortest route possible. AODV

is also able to handle changes in routes and can create new routes if there is an

error [28]. For AODV it can be found a lot of extensions, example of an extension

of AODV is Multi-hop AODV-2T [34].

1.4.1.2 OLSR

OLSR is a table driven and proactive protocol [6], this means that a routing

table is maintained and is being exchanging topology information with other

nodes of the network regularly. The nodes which are selected as a Multi-Point

Relay (MPR) by some neighbour nodes announce this information periodically

in their control messages. Thereby a node announces to the network that it has

reachability to the nodes which have selected it as MPR. In route calculation,

the MPRs are used to form the route from a given node to any destination in the

network. The protocol uses the MPRs to facilitate efficient flooding of control

messages in the network.

1.4.1.3 DSDV

DSDV is a table-driven routing scheme for ad-hoc mobile networks based on the

Bellman-Ford algorithm and it was developed by C. Perkins and P.Bhagwat [29].

The main contribution of the algorithm was to solve the routing loop problem.

Each entry in the routing table contains a sequence number, the sequence numbers

are generally even if a link is present; else, an odd number is used. The number is

generated by the destination and the emitter needs to send out the next update

with this number. Routing information is distributed between nodes by sending

full dumps infrequently and smaller incremental updates more frequently.

19

1.4.1.4 DSR

DSR is similar to AODV with some differences [9]. First in Route Discovery

phase every node transmit the whole path unlike AODV that sends only the next-

hop. Second the discovered route is being maintained for period of time. Another

things is that a source node sends a RREQ packet by flooding the network unlike

with AODV that send periodically hello messages to know its neighbours. Also

every node is responsible for confirming that the next-hop receives the packet. If

a packet can not be received by a node, it is retransmitted up to some maximum

number of times until a confirmation received from the next-hop.

1.4.1.5 TORA

Like DSR, TORA has route discovery and route maintenance phase, but in

addition has also route erase phase [20]. In DSR when a source sends RREQ,

every node constructs a graph with links that the path has been taken place,

in this way every node makes a routing table. When a node detects a network

partition, it generates a clear packet that resets the routing state and removes

invalid routes from the network.

1.4.1.6 FSR

FSR is a proactive routing protocol that means packets are constantly broad-

casting and flooded among nodes to maintain the path. In FSR nodes maintain

a Topology Table (TT), based on the latest informations that already have by

the exchanging messages, for making the paths[17].

1.4.1.7 ZRP

ZRP is a hybrid routing protocol. In this routing protocol in every node has

been set a zone around that defines its neighbourhood, all nodes that is in the

some transmission range make a zone. For routes inside of the zone the route is

discovering reactively, for routes outside of zone the node transmit a route request

to the others zones [36].

20

1.4.2 Broadcast Routing Protocols

As described in [39], broadcast routing protocols are often used for sharing

traffic, weather, emergency, road condition among vehicles and delivering adver-

tisements and announcements.

In general, the role of a routing protocol is to find a path for connecting two

nodes over a multi-hop route. However, routing algorithms based on the broad-

cast approach have a different aim. When a broadcast routing protocol is used

into a vehicular network, in fact a node that wants to send a packet, does not

start any routing algorithm (e.g. to find an entry into a routing table to send a

control message for establishing the path) but sends it to all neighbours that will

re-broadcast packets to their neighbours. The only main objective of a broadcast

routing algorithm is to avoid waste bandwidth by sending packets to disinter-

ested node (e.g. node that have already sent/received same packets). Accord-

ingly broadcast routing protocols differ among them for the strategy adopted for

avoiding waste of bandwidth.

Most known broadcast routing protocols are: Secure Ring Broadcasting (SRB),

Distributed Vehicular broadCAST (DVCAST), Parameterless Broadcast in Static

to highly Mobile (PBSM), Edge-Aware Epidemic Protocol (EAEP) [39].

1.4.2.1 SRB

This routing protocol divides the nodes into three different classes according

the received power. First are Inner Nodes (IN) which are close to the sending

node. Second are Outer Nodes (ON) which are far away from the sending node.

The last are Secure Ring Nodes (SRN) which are at preferred distance form the

sending node. Only nodes that belong to secure ring can broadcast packets more

than one times.

1.4.2.2 DVCAST

DV-CAST protocol is based on the local information that every nodes posses by

send periodically hello messages. Each vehicle continuously checks its connections

21

with over nodes to broadcast the arrival packets according the connectivity.

1.4.2.3 PBSM

This routing protocol does not exchange information about the position of

nodes because of GPS usage. Every node divides the neighbours into two groups

,nodes that Received (R) and nodes that did Not Receive (NR) the packet. So it

retransmit packets only to the NR nodes.

1.4.2.4 EAEP

This routing protocol does not divide the nodes into cluster or zones so no extra

hello messages are needed. Furthermore nodes does not transmit informations

about geographical potions. Every node calculate within this routing protocol a

time probability to broadcast messages, so the flooding problem is being avoided.

1.4.3 Cluster-based Routing Protocols

In VANETs the topology is very frequently changed and covers big areas. In

this way making routing scalability is a difficult challenge. You can succeed that

by dividing the network in different regions named clusters which coordinate and

communicate each over in order to achieve connection between nodes. In details,

a cluster-based routing protocol creates a virtual infrastructure network which

is consist by clusters. Furthermore each cluster is being organized in order to

have a cluster-head which is responsible for communication among node into

the cluster and a cluster-gateway which is the node that is responsible for the

communication with other clusters. Every over node is being clustering as cluster-

member. Also the geographical informations of nodes is needed, where a GPS

system or a infrastructure local services can be used[16].

Most known clustered-based routing protocols are: Cluster Based Location

Protocol (CBLR), Cluster Based Directional Routing Protocol (CBDRP), Eu-

clidean Distance Cluster Based Routing Protocol (EDCBRP) [16][38].

22

1.4.3.1 CBLR

In the initialization state each node broadcast a hello message and coordinates

with other nodes to define the cluster-heads. Every cluster-head maintains table

about location and address of cluster-members and cluster-gateways. Additional

has a table with neighbouring clusters. The packets with destination in the

same cluster are being send to the closest neighbour with destination, otherwise

communicates with cluster-head which ask from cluster-gateways to coordinate

with other cluster in order to find the location of destination. The location

information is updated every time when a packet has to be forwarded [16].

1.4.3.2 CBDRP

In this protocol, the nodes are being clustered according move direction [35],

the nodes with the same direction made a cluster and after one of them become

cluster-head. When a node wants to send a packet is forwarded to header, which

forwards the packet to the header of destination cluster.

1.4.3.3 EDCBRP

In this technique of clustering, the nodes are being divided with calculation

of euclidean distance between nodes. A threshold is defined and every node

below that is classified to the same cluster. Every node uses a GPS system to

get the information about the position of every node and maintains the network

topological structure using also the information of hello-beacon message that is

being transmitted periodically from all nodes. When a node wants to send a

packet checks its topology table and forward the packet to the next-hop. If there

is no record about the destination, the node uses a reactive technique broadcasting

route-request to nodes of the cluster.

1.4.4 Position-based Routing Protocols

VANET technology has to cope with a big challenges such as the high speed

of nodes and the quickly changing of topology. For this reason the Topology-

based ad-hoc routing protocols are not very efficiency and robustness, so other

23

ways of making paths and forward the packets have to be found. In the last

years a very promising approach with very good results is Position-based routing

protocols. This kind of routing protocols makes routing decisions according to

the geographical position of nodes. This information is being taken by GPS

technology and local services (V2I) [19]. A specific category of position-based

routing protocol is Geocast routing, in which the nodes are being divided into

predefine geographical regions. It can be found three strategies to forward packet:

greedy forwarding, restricted directional flooding and hierarchical.

• Greedy forwarding: in this strategy protocols do not create a path from

source to the destination, they find the next-hop considering some param-

eters about position of other nodes (i.e the closest neighbour to the desti-

nation).

• Restricted directional flooding: in this approach routing protocols forward

the packet to several nodes (broadcasting) to increase the possibility to have

a correct path to the destination, every node when received a packet has

some criteria to whether or not retransmit the packet.

• Hierarchical: this kind of routing protocols create a hierarchy according to

the position of the vehicle to escalate large number of nodes.

Position-based routing protocols exploit geographical location information of

nodes belonging to the network (i.e. obtained from street maps, traffic models

and navigational systems) for creating paths [12]. Since in a vehicular scenario

node movements are usually restricted in just few directions because of road

constraints, performance reached by these strategies outperform all other routing

algorithms developed for VANETs. Hence, position-based routing algorithms

represent nowadays the most promising routing paradigm for VANETs.

Most known position-based routing protocols are: Greedy Perimeter Stateless

Protocol (GPSR), Adaptive Movement Routing (AMAR), GreedY Traffic Aware

Routing (GYTAR), Distance Routing Effect Algorithm for Mobility (DREAM),

Location Area Based Ad-hoc Routing (LABAR), RObust VEhicular Routing

(ROVER) [32] [40] [19].

24

1.4.4.1 GPSR

This routing protocol in order to find the neighbours is sending periodically

hello messages. GPSR finds the next-hop using the position between neighbour

and destination which has been taken by GPS and local services, the most closest

node to destination is the next-hop [32]. Because a possibility to failure to find a

path, GPSR has been extended with perimeter routing strategy recovery which

transfers the connectivity graph into a planar graph by eliminating redundant

edges in order to get out of local maximum.

1.4.4.2 AMAR

This is another routing protocol that uses greedy forward to select the next-

hop. AMAR for selecting the next-hop uses additional informations which are

being taken from GPS or navigation system such as the direction, position and

the speed of each vehicle. Furthermore AMAR uses this typeWi = αP+βD+γS

[32] , where α, β and γ are weighs for Position (P), Direction (D) and Speed (S),

to choose the next-hop.

1.4.4.3 GYTAR

This protocol uses greedy forward too. But it has improved to use addition

informations. It contains two modules: junction selection and improved greedy

forwarding data. The junction selection checks the traffic density of nodes in each

junction and compares it in order to find the junction with highest values, when

forwards the packet to this junction. In improved greedy forwarding method each

node maintains a table with informations about position, velocity and direction

of each nodes, this data are obtained from GPS or local services and updated

periodically. So GYTAR evaluates this information (data for nodes from GPS

and high-density junction) to select the next-hop[32].

1.4.4.4 DREAM

DREAM is a restricted directional flooding protocol that means the packet

is being forwarded to several next-hop nodes in order to reach the destination.

25

DREAM limits the number of broadcasts, forwarding the packets to specific re-

gions. Every node uses local services to take the position of each node in the

network. With this informations it measures the region that is possible the

destination belongs to and broadcast the packet to this region, called expected

region[19].

1.4.4.5 LABAR

LABAR is an example of hierarchical position-based routing protocol. LABAR

creates location areas using specific nodes (G-nodes) using V2I communication.

So a virtual back-bone network is needed, where G-nodes are able to communicate

with those local services to collect data about other nodes (S-nodes). To forward

a packet LABAR creates zone formation using virtual backbone formation and

directional routing. In the beginning LABAR defines the zones of G-nodes, in

order to every G-node corresponds several S-nodes. Then G-nodes communicate

with local services to obtain information about S-nodes. At the end G-nodes

are able to make direction routing and choose among zones where nodes are

appropriate to make the connection between source and destination[19].

1.4.4.6 ROVER

This is an example of Geocast routing protocol. ROVER has some predefined

geographical regions called Zone of Relevance (ZOR). ZORs are rectangles on

digital map of vehicles. With ROVER nodes can broadcast packets to a specific

ZOR where packets are being broadcasting to all nodes which belong to specific

ZORE. So every packet has [A, M, Z] where A is application, M is message and

Z is Zone. Furthermore every node communicates with local services to define in

which zone belongs, so it can distinguish if the packets refers to its zone. When

a node wants to forward a packet makes a Zone of Forward (ZOF) and sends the

packet.

1.4.5 Infrastructure-based Routing Protocols

This kind of protocols relay on fixed infrastructure bases to help about routing

issues. Most well-known infrastructure-based routing protocol is Roadside-Aided

26

Routing (RAR).

1.4.5.1 RAR

RAR is a group of techniques that provided by road-side bases in order to help

routing. Here geographical areas are divided into sectors by using Road Side

Units (RSUs), thus the transmitted data pass by vehicles and RSUs, in order

to reach the destination from the source. This protocol is preferable into urban

roads because required road side infrastructure bases[27].

1.4.6 Final Comparison

This section presents a comparison table among all mentioned routing proto-

cols. In the first column we put the name of every protocol. The category refers

to one of the five different categories (Topology-based, Broadcast, Cluster-based,

Position-based and Infrastructure-based). Position info is about the needing of

position information of vehicles to create the routing path. Routing table refers

to the option of routing protocol to keeps already found routing paths. Type

takes three values: reactive, proactive, hybrid (a mix of reactive and proactive)

and other, those values indicate the way in which routing protocol create the

path between source and destination. Input parameters are values that some

routing protocols need to create routing paths which is Hello message (nodes

send periodic messages to discover their neighbours) and position information

(the physical position of other nodes). Finally, table 1.2 has the simulation tool

in which routing protocols have been implemented.

Table 1.2: Comparison among Routing Algoritms

Protocol

Name

C
a
te
g
o
ry

P
o
si
ti
o
n
in
fo

R
o
u
ti
n
g
ta
b
le

T
y
p
e

In
p
u
t
p
a
ra

m
e
te
r

S
im

u
la
ti
o
n
T
o
o
l

27

AODV Topology-

Based

No No Reactive Hello mes-

sage

NS2, NS3,

OPNET

OLSR Topology-

Based

No Yes Proactive Topology

informa-

tion

NS2, NS3,

OPNET

DSDV Topology-

Based

No No Reactive Hello mes-

sage

NS2, NS3

DSR Topology-

Based

No No Reactive Hello mes-

sage

NS2, NS3

TORA Topology-

Based

No Yes Reactive Hello mes-

sage

NS2, OP-

NET

FSR Topology-

Based

No Yes Proactive Topology

informa-

tion

NS2

ZRP Topology-

Based

No Yes Hybrid Hello mes-

sage,Topology

informa-

tion

NS2

SRB Broadcast No No Reactive Not

needed

WibDat,

Jist/SWANS

DV-CAST Broadcast No No Proactive Topology

informa-

tion

WibDat,

Jist/SWANS

PBSM Broadcast No No Reactive Position

informa-

tions

WibDat,

Jist/SWANS

EAEP Broadcast No No Reactive Not

needed

WibDat,

Jist/SWANS

CBDRP Cluster-

Based

Yes Yes Proactive Position

informa-

tions

NS2

28

EDCBRP Cluster-

Based

Yes Yes Proactive Position

informa-

tions,

Hello

message

NS2

CBLR Cluster-

Based

Yes Yes Hybrid Position

informa-

tions

NS2

GPSR Positions-

Based

Yes No Other Hello mes-

sage, Posi-

tion infor-

mations

NS2

AMAR Positions-

Based

Yes No Other Position

informa-

tions

NS2

GyTAR Positions-

Based

Yes No Other Position

informa-

tions

NS2

DREAM Positions-

Based

Yes No Other Position

informa-

tions

NS2

29

Chapter 2

NS-3 Simulator

2.1 About NS-3

NS-3 is a discrete-event network simulator, targeted primarily for research and

educational use. NS-3 is free software, licensed under the GNU GPLv2 license

and is publicly available for research, development and use. The goal of the NS-3

project is to develop a preferred, open simulation environment for networking

research: it should be aligned with the simulation needs of modern networking

research and should encourage community contribution, peer review and valida-

tion of the software [25]. NS-3 is available for Linux, Mac OS and MS Windows

using cygwin [7].

The NS-3 project is committed to building a solid simulation core that is well

documented, easy to use and debug that caters to the needs of the entire simu-

lation work-flow, from simulation configuration to trace collection and analysis.

Furthermore, the NS-3 software infrastructure encourages the development of

simulation models which are sufficiently realistic to allow NS-3 to be used as a

real-time network emulator, interconnected with the real world and which allows

many existing real-world protocol implementations to be reused within NS-3.

The NS-3 simulation core supports research on both IP and non-IP based net-

works. However, the large majority of its users focuses on wireless/IP simulations

which involve models for Wi-Fi, WiMAX or LTE for layers 1 and 2 and and a

variety of static or dynamic routing protocols such as OLSR and AODV for IP-

based applications. NS-3 also supports a real-time scheduler that facilitates a

number of ”simulation-in-the-loop” use cases for interacting with real systems.

For instance, users can emit and receive NS-3-generated packets on real network

30

devices, and NS-3 can serve as an interconnection framework to add link effects

between virtual machines. Another emphasis of the simulator is on the reuse of

real application and kernel code. Frameworks for running unmodified applica-

tions or the entire Linux kernel networking stack within NS-3 are presently being

tested and evaluated.

Because creating a network simulator that supports a sufficient number of high-

quality validated, and maintained models requires a lot of work, NS-3 attempts

to spread this workload over a large community of users and developers. Every

three months, it ships a new stable version of NS-3 with new models developed,

documented, validated, and maintained by enthusiastic researchers. It encourages

the open validation of these models by third parties on its mailing-lists to ensure

that the models it ships and stay of the highest quality possible.

2.2 Release Process

Figure 2.1: NS-3 Release Process

31

NS-3 releases are based on date-driven schedules: rather than target a set of

features for a specific version number, it aims instead for a release date and ship

whatever is ready by that date. If a new feature misses that date, it is not a big

hassle because the next release is never too far away. This interval is typically

3-4 months.

The objective of this deterministic and predictable release rhythm is to allow

external contributors to synchronize their own development schedule on the NS-

3 release schedule and to be able to plan their contributions accordingly. This

relieves the NS-3 maintainers from the burden of having to make strong unpopular

decisions about the merging of new features and allows them to focus instead on

maintaining the NS-3 models to achieve the highest-quality possible releases.

A NS-3 Release Manager (RM) manages each release. Following the ns-3.X

release, a new RM is selected for the ns-3.X+1 release. The old ns-3.X RM is

typically responsible for any maintenance ns-3.X.Y releases. The RM is allowed

to veto and remove any new feature addition if it begins to cause problems and

looks like it threatens the stability of the release at any time in the release process.

Each release is roughly structured as follows: large major intrusive changes that

are the most destabilizing to the code-base are always merged first early on during

the cycle. As the release deadline be approached, the number and the size of the

changes should decrease until only high priority bugs are fixed during the hard

freeze period.

During the open phase, people wanting to merge a new feature should contact

with RM and arrange to have their features merged into the main development

tree. RM expects from everyone to follow the code submission guidelines. One

of the NS-3 maintainers will take a quick look at the proposed addition and

determine if a code review is required. According to the book of instructions a

code review requiring positive acknowledgement by maintainers and is indicated

if:

• The proposed feature does not work with all models or on all platforms

32

• The feature changes pre-existing APIs

• The feature crosses maintainer boundaries

NS-3 commission will probably run a feature submission by at least one main-

tainer according to the general area of applicability of the feature. For example,

if an entirely new device driver model be submitted, this submission will be run

by the maintainers of the current devices. The maintainers will not have any re-

sponsibility to positively acknowledgement the submission, but it will take some

time to allow a reasonable review.

During the feature-freeze (also called maintenance) phase, no new features may

be added, but the maintainers may check in fixes to bugs; and people with new

features that have been accepted and previously merged may fix bugs in existing

features.It will be a properly behaviour to not penetrate in more new features or

it may have the whole feature set removed at the release manager’s discretion.

It can be asked if want to add small, self-contained features, but there are no

guarantees that it will be applied.

During the hard code freeze, the primary goal is stability: only P1 bug-fixes

will be allowed to be checked in. The goal is to reduce the number of P1 bugs to

zero before the release.

2.3 Architecture of NS-3

NS-3 is a C++ library which provides a set of network simulation models im-

plemented as C++ objects and wrapped through python. Users normally interact

with this library by writing a C++ or a python application which instantiates a

set of simulation models to set up the simulation scenario of interest, enters the

simulation main-loop and exits when the simulation is completed.

The NS-3 library is wrapped to python using the pybindgen library which

delegates the parsing of the NS-3 C++ headers to gccxml and pygccxml to gen-

33

Figure 2.2: NS-3 Architecture

erate automatically the corresponding C++ binding glue. These automatically-

generated C++ files are finally compiled into the NS-3 python module to allow

users to interact with the C++ NS-3 models and core through python scripts.

In comparison with other discrete-event network simulators, NS-3 is distin-

guished by the high level design goals. Many simulators use a domain-specific

modelling language to describe models and program flow. NS-3 uses C++ or

Python, allowing users to take advantage of the full support of each language.

Simulation events in NS-3 are simply function calls that are scheduled to exe-

cute at a prescribed simulation time. Any function can be made into an event and

scheduled, by use of a callback function. This is in contrast to specialized handler

functions that centralize the processing of events in each simulation object. Call-

backs are also heavily used in the simulator to reduce compile-time dependencies

between simulation objects.

NS-3 features a powerful low-level API that allows power users the flexibility

to configure things in different ways. Layered on top of this is a set of helper layer

APIs that provide easier-to-use functions with reasonable default behaviour. NS-

3 users can mix and match between the simpler APIs at the helper layer and the

full APIs underneath.

34

The simulation design is oriented towards use cases that allow the simulator

to interact with the real world. NS-3 packet objects are stored internally as

packet byte buffers (similar to packets in real operating systems) ready to be

serialized and sent on a real network interface. Several different simulation-in-

the-loop and virtual machine integration frameworks have been developed, and

NS-3 experiments have been carried out on wireless test-beds.

NS-3 nodes are patterned after the Linux networking architecture, and key

interfaces and objects (sockets, net devices) are aligned with those in a Linux

computer. This better facilitates code reuse and improves realism of the models,

and makes the simulator control flow easier to compare with real systems.

The NS-3 simulator features an integrated attribute-based system to manage

default and per-instance values for simulation parameters. All of the config-

urable default values for parameters are managed by this system, integrated with

command-line argument processing, Doxygen documentation, and an XML-based

and optional GTK-based configuration subsystem.

The project does not maintain an Integrated Development Environment (IDE)

to configure, debug, execute, and visualize simulations in a single application

window, such as found in other simulators. Instead, the typical work-flow is to

work at the command line and integrate configuration and visualization tools as

needed.

2.4 The difference between NS-2 and NS-3

NS-2 is a popular discrete-event network simulator developed under several

previous research grants and activities. It remains in active use and will continue

to be maintained. NS-2 was built in C++ and provides a simulation interface

through OTcl, an object-oriented dialect of Tcl [26]. The user describes a network

topology by writing OTcl scripts, and then the main NS-2 program simulates that

topology with specified parameters. It runs on Linux, Mac OS and MS Windows

35

using Cygwin [7]. It is licensed for use under version 2 of the GNU General

Public.

NS-3 is a complete new software development effort focused on improving upon

the core architecture, software integration, models, and educational components

of NS-2. The project commenced in July 2006 and the first release was made

on June 30, 2008. NS-2 is often criticized because modelling is a very complex

and time-consuming task, since it has no GUI and one needs to learn scripting

language, queuing theory and modelling techniques. NS-3 is often criticized for

its lack of support for some protocols which were supported in NS-2.

As previously mentioned to write a script into NS-2 you have to use a specific

language called Tcl. NS-2 scripts will not run within NS-3 ,as well NS-2 uses OTcl

as its scripting environment and NS-3 uses C++ programs or python scripts to

define simulations.

Some NS-2 models that are mostly written in C++ have already been ported

to NS-3: OLSR and Error Model were originally written for NS-2. OTcl-based

models have not been and will not be ported since this would be equivalent to a

complete rewrite.

It is expected that NS-3 it will eventually replace NS-2 in most universities

that are currently using NS-2.

2.5 Installation

NS-3 is primarily developed on GNU/Linux platforms and the minimal require-

ments to run basic simulations are a gcc installation of gcc-3.4/g++-3.4 or greater

and python 2.4 or greater. NS-3 is supported on the following primary platforms:

1. Linux x86 gcc versions 4.1 through 4.6 and, 3.4.6.

2. Linux x86-64 gcc versions 4.6 through 4.1 and 3.4.6

3. MacOS X ppc and x86 (gcc 4.0.x and 4.2.x)

36

4. Cygwin gcc 3.4.4 (debug only), gcc 4.3.2 (debug and optimized).

By supported, means that the project tries to support most or all of the build

options on these platforms unless there is a good reason to exclude the option;

and at least the debug build will compile. If you intend to do serious work using

NS-3, and are forced by circumstances to use a Windows platform, consider vir-

tualization of a popular Linux platform. This may be more time-consuming than

installing a minimal Cygwin, for example, but you end up with a fully functional

Linux system and NS-3 distribution. Some quick performance comparisons be-

tween Cygwin and VirtualBoxed Fedora 11 indicate that examples can actually

run faster under VirtualBox.

NS-3 may also run on currently unsupported platforms. For example, an alter-

native Windows platform is MinGW. There are maintainers who attempt to keep

a subset of NS-3 running on MinGW, but it is not ”officially” supported. This

means that bugs filed against MinGW will be addressed as time permits. Addi-

tionally, the Eclipse IDE is used by some developers, but the project does not

actively support this environment. Additional maintainers are invited to make

more platforms, compilers and environments supported.

There are a few options that are not enabled by default and are not available

on all platforms. At the end of the configuration process (explained below), the

status of these options are shown as detected by waf script:

−−−− Summary o f op t i ona l NS−3 f e a t u r e s :

Threading Pr im i t i v e s : enabled

Real Time Simulator : enabled

Emulated Net Device : enabled

Tap Bridge : enabled

GtkConfigStore : enabled

XmlIo : enabled

SQl i t e s t a t s data output : enabled

Network Simulat ion Cradle : enabled

Python Bindings : enabled

37

Python API Scanning Support : not enabled

(Miss ing ’ pygccxml ’ Python module)

MPI Support : not enabled

(opt ion −−enable−mpi not s e l e c t e d)

Use sudo to s e t su id b i t : not enabled

(opt ion −−enable−sudo not s e l e c t e d)

Build examples and samples : enabled

S t a t i c bu i ld : not enabled

(opt ion −−enable−s t a t i c not s e l e c t e d)

GNU S c i e n t i f i c L ibrary (GSL) : enabled

Generally if the platform is missing some requirement for an option it is

marked as ”not enabled.” Note that ”disabled by user request” will be shown

when the user explicitly disables a feature (such as ”–disable-python”); and if a

feature defaults to disabled this will also be noted (e.g., option –enable-sudo not

selected).

The core of NS-3 requires a gcc/g++ installation of 3.4 or greater, and python

2.4 or greater. As mentioned above, different options require additional support.

Thee is a list of packages (for Debian/Ubuntu systems) that are needed to support

different NS-3 options. Note that other distributions (e.g., Fedora, FreeBSD) may

have different package names or capitalization (e.g. ImageMagik). Installation

should be similar for Red Hat/Fedora based systems, with ”yum” replacing ”apt-

get”, but some differences exist, see the appendix for more informations.

2.6 Set-up NS-3

NS-3 makes unpackaged source releases only at this time. Downloading the lat-

est stable release should be straightforward, from the main project page. Archived

older releases are also linked there [25]. Once users have downloaded NS-3 (a de-

velopment or stable version), they will want to then invoke build.py to start a

coordinated build. In the ns-allinone-xxx folder execute the script:

. / bu i ld . py

38

If all goes well, user can change directory (cd) into ns-3-dev and run the NS-3

tests:

cd ns−3−dev

. / waf check

Cygwin works reasonably-well by default: just make sure you grab the cygwin

installer from:

http ://www. cygwin . com/ setup . exe

cygwin includes support for mercurial, gcc, and, python so, nothing else should

be needed.

2.7 Writing Scripts

While experienced users of NS-3 often write new simulation scripts from scratch,

most users merely copy/paste an existing script which incorporates the simula-

tion models they need and modify it until it matches what they want. Consult

the extensive example scripts that ship with every module.

Once you have identified which simulation script you would like to start from,

building a modified version of this script is a matter of dropping it in the scratch

directory and running waf again:

cp examples /csma/csma−broadcast . cc s c ra t ch /csma−modi f i ed . cc

. / waf

Running a new script which was dropped in the scratch directory is similar to

running other examples.

If your simulation script becomes complex and if you split it in more than one

C++ source file, you need to create a new sub-directory in the scratch direc-

tory:

39

mkdir s c ra t ch /modi f i ed

cp x . cc s c ra t ch /modi f i ed

cp y . cc s c ra t ch /modi f i ed

. / waf

This will build a new program named after the name of your sub-directory

(modified here) and you can run it just like any other example:

. / waf −−run modi f i ed

2.8 Running Scripts

Once the build is done and all tests pass and someone generally wants to run

a couple of examples as per the tutorial, the easiest way to do this is to run:

. / waf −−run progname

or (a program inside to scratch)

. / waf −−run s c ra t ch /progname

To find out the list of available programs, you can do:

. / waf −−run non−ex i s t en t−program−name .

The method to run a python script is fairly similar to that of a C++ script

except that you need to specify a complete path to the script file. For example:

. / waf −−run examples / w i r e l e s s /mixed−w i r e l e s s . py

Another way to run NS-3 programs that does not require using the ./waf run

command is to use the NS-3 shell which takes care of setting up all the environ-

ment variables necessary to do so:

. / waf s h e l l

40

And, then:

. / bu i ld /debug/examples /csma−broadcast

If you do not use the NS-3 shell, and if you want to run your simulation under

a special tool (valgrind or gdb), you need to use a command template:

. / waf −−run progname −−command −template=”gdb %s”

or

. / waf −−run progname −−command −template=” va l g r i nd %s”

2.9 Documentation

The NS-3 documentation is available in several forms. Documentation is main-

tained for the current release, older releases and the current development tree.

• New users will want to consult the NS-3 tutorial, available in html or pdf

format. It is being maintained a reference manual on the NS-3 core, and a

separate model library documentation set.

• All of NS-3 APIs are documented using Doxygen. Doxygen is typically used

for API documentation and organizes such documentation across different

modules. This project uses Doxygen for building the definitive maintained

API documentation. Additional NS-3 project documentation can be found

at the project web site http://www.nsnam.org/ns-3-13/documentation/.

• It has a number of other archived documents such as older tutorials or talks

presented about NS-3.

• The NS-3 coding style documentation is maintained on NS-3 site.

2.10 Tools

To download, manage the source code history, track the bugs, build and review

patches, could be used many tools that were not developed for NS-3. If someone

41

are already familiar with them, the following list should give a good idea of what

can be found.

• NS-3 bugzilla. [http://www.nsnam.org/developers/tools/bugzilla/]

• NS-3 mercurial. [http://www.nsnam.org/developers/tools/mercurial/]

• NS-3 build: waf. [http://www.nsnam.org/developers/tools/waf/]

• Code reviews: rietveld. [http://www.nsnam.org/developers/tools/rietveld/]

• NS-3 mailing-lists. [http://www.nsnam.org/developers/tools/mailing-lists/]

• Buildbot. [http://www.nsnam.org/developers/tools/buildbot/]

• IRC. [http://www.nsnam.org/developers/tools/irc/]

• Wiki [http://www.nsnam.org/wiki/]

2.11 Mailing-list and Community

NS-3 has a mailing-list for community who want to focused on running and

analysing the output of a simulation based on built-in models, as well as to

modify or extend an existing model. Furthermore if a person needs to implement

a new model or if is simply lost and does not know where to start, could ask a

question on NS-3 user mailing-list.

This mailing list is hosted on google groups: anyone can join and browse the

archives in the follow site http://groups.google.com/group/ns-3-users.

42

Chapter 3

Simulation Tools

3.1 Simulation of Urban Mobility (SUMO)

3.1.1 About SUMO

SUMO is an open source, highly portable, microscopic road traffic simula-

tion package designed to handle large road networks. It is mainly developed by

employees of the Institute of Transportation Systems at the German Aerospace

Center. SUMO is licensed under the GPL [37]. The most significant features are

being listed above.

• SUMO includes all applications needed to prepare and perform a traffic

simulation (network and routes import, DUA, simulation).

• Simulations has:

– space-continuous and time-discrete vehicle movement,

– different vehicle types,

– multi-lane streets with lane changing,

– different right-of-way rules, traffic lights,

– a fast openGL graphical user interface,

– manages networks with several 10.000 edges (streets),

– fast execution speed (up to 100.000 vehicle updates/s on a 1GHz ma-

chine),

– interoperability with other application at run-time,

– network-wide, edge-based, vehicle-based, and detector-based outputs,

– supports person-based inter-modal trips.

43

• Network import is possible from other tools:

– imports VISUM, Vissim, Shapefiles, OSM, RoboCup, MATsim, open-

DRIVE, and XML-Descriptions,

– missing values are determined via heuristics.

• Routing facilities:

– microscopic routes - each vehicle has an own one,

– different Dynamic User Assignment algorithms.

• High portability:

– only standard c++ and portable libraries are used,

– packages for MS Windows and main Linux distributions exist.

• High interoperability through usage of XML-data only.

• Open source(GPL).

• Its available for below operations systems:

– MS Windows

– Linux

– Mac OS

3.1.2 Simulation in SUMO

3.1.2.1 Highway Topology for VANET Simulations

To run a VANET simulation scenario is a high-compatible challenge because of

the very high speeds that the nodes reach and the rapidly changing of topology,

so it is very important to have a realistic approach of nodes and theirs topology,

in order to have coherence facts into simulation scenarios. In this way SUMO is

being used in order to export a realistic highway topology of moving cars, which

is used for a cohesion examination of VANETs routing protocols.

44

It has been planned a topology with three types of Vehicles

• Car with length equal to 5 meters (m) and max speed equal to 100 km/h.

• Bus with length equal to 11 m and max speed equal to 80 km/h.

• Truck with length equal to 18 m and max speed equal to 60 km/h.

The vehicles is moving around a rectangular which has width 2000 m and height

600 m. The traffic topology is shown to the figure 3.1.

Figure 3.1: High-way Topology

3.1.2.2 Create Scenario in SUMO

In SUMO to create a scenario you need to create specific XML files and put

into XML code that sumo is able to recognize and built. XML code doesn’t need

to pass from XML parser but needs to be well-formed. In general, we have to give

information into three files, which will be read in SUMO as input data. Two of the

files contain the network information, which will be converted into node and link

information in SUMO and is usually named with extension nod.xml and edg.xml

respectively. The file containing the traffic demand and route information will

be named with extension rou.xml. In addition, two more files with extensions

45

con.xml and typ.xml will be included. Specification of allowed traffic movements

and lane connections at intersections as well as link types are required. A general

overview of the required input files is indicated in Figure 3.2.

Figure 3.2: SUMO XML-Files

In SUMO a street network consists of nodes (junctions) and edges (streets con-

necting the junctions). All nodes have at location (x and y coordinate, describing

distance to the origin in meters) and an id for future reference. The definitions

of the attributes in the node file are listed below:

(a) id is the ID name of the node, defined by users with numbers,

word strings or both.

(b) x is the x-coordinate location of the defined node (in meters),

(c) y is the y-coordinate location of the defined node (in meters),

(d) type is the signal control type of the defined node. It is an

optional attribute and defined with priority and traffic-light

for unsignalized and signalized intersections respectively.

The node file of the network is shown in Listing 3.1.

Listing 3.1: Nodes (my-scenario.nod.xml)

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<nodes xmlns :x s i=

” ht tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xsi:noNamespaceSchemaLocation=

46

” h t tp : //sumo . s f . net /xsd/ n o d e s f i l e . xsd”>

<nodes>

<node id=”1” x=”−2000.0” y=” 0 .0 ” />

<node id=”4” x=”+2000.0” y=” 0 .0 ” />

<node id=”5” x=”+2000.0” y=” 600 .0 ” />

<node id=”8” x=”−2000.0” y=” 600 .0 ” />

<node id=”9” x=”−2100.0” y=” 0 .0 ” />

<node id=”10” x=”+2100.0” y=” 600 .0 ” />

</nodes>

Roads are represented as links in SUMO like in other traffic simulation software.

To define link characteristics the identification (id) of each link has to be first

defined either with numbers, word strings or both. The information about the

upstream node, the downstream node and the link type is then stored in a file

with extension edg.xml. The information about each link type can either be

defined in an additional file with extension typ.xml or edg.xml right after the

downstream node. Listing 3.2 shows the link type file used for the network and

four attributes are defined:

(a) id: defined by users with numbers, word strings or both,

(b) priority: driving priority based on traffic regulations

and is defined with numbers. The higher the number, the higher

the priority for the respective road. The priority information

will override information from the node file, if both of them

exist,

(c) numLanes: number of lanes on the respective road,

(d) speed: maximum allowed link speed.

Type a are the 4 roads in the rectangular topology with 2 lanes respectively.

Type c is non used, so no priority is been set up, finally the maximum speed is

100 km/h.

Listing 3.2: Link Type File (my-scenario.typ.xml)

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

47

<types>

<type id=”a” numlanes=”2” speed=” 100.000 ”/>

</ types>

With the use of the link type file the link file is generated and shown in Listing

3.3. The defined attributes include:

(a) id: link ID, defined by users with numbers, word strings

or both,

(b) from: ID of the upstream node of the respective link,

(c) to: ID of the downstream node of the respective link,

(d) type: ID of the link type, defined in the link type file,

(e) allow/disallow: ID of the vehicle group which is defined in

the SUMO and might not be identical with the vehicle types

defined by users.

Listing 3.3: Link File of the Network (my-scenario.edg.xml)

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<edges xmlns :x s i=

” ht tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xsi:noNamespaceSchemaLocation=

” ht tp : //sumo . s f . net /xsd/ e d g e s f i l e . xsd”>

<edges>

<edge fromnode=”1” id=” l r ” tonode=”4” type=”a” />

<edge fromnode=”4” id=”up” tonode=”5” type=”a” />

<edge fromnode=”5” id=” r l ” tonode=”8” type=”a” />

<edge fromnode=”8” id=”down” tonode=”1” type=”a” />

<edge fromnode=”9” id=” s t a r t 1 ” tonode=”1” type=”a” />

<edge fromnode=”10” id=” s t a r t 2 ” tonode=”5” type=”a” />

</ edges>

The default in SUMO based on the given geometric design all possible and log-

ical traffic movements, including u-turns, are allowed, if there is no corresponding

48

specification. The default setting is that the rightmost lane of each link is aligned

to the rightmost lane of the respective downstream link. To specify traffic move-

ments and lane connections an additional file with extension con.xml is required.

Listing 3.4 shows the corresponding settings for network. The meaning of each

attribute is as following:

(a) from: ID of the link which the traffic movements will

be specified,

(b) to: ID of the link which is the downstream link of the

above defined link,

(c) fromLane/toLane: lane number of the defined link in (a)

and the lane number of the link in (b), which are connected.

Listing 3.4: Specification of Traffic Movements (my-scenario.con.xml)

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<connec t i ons xmlns :x s i=

” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”

xsi:noNamespaceSchemaLocation=

” ht tp : //sumo . s f . net /xsd/ c o n n e c t i o n s f i l e . xsd”>

<connec t i ons>

<connect ion from=” l r ” to=”up” lane=”0 : 0 ”/>

<connect ion from=” l r ” to=”up” lane=”1 : 1 ”/>

<connect ion from=”up” to=” r l ” lane=”0 : 0 ”/>

<connect ion from=”up” to=” r l ” lane=”1 : 1 ”/>

<connect ion from=” r l ” to=”down” lane=”0 : 0 ”/>

<connect ion from=” r l ” to=”down” lane=”1 : 1 ”/>

<connect ion from=”down” to=” l r ” lane=”0 : 0 ”/>

<connect ion from=”down” to=” l r ” lane=”1 : 1 ”/>

<connect ion from=” s t a r t 1 ” to=” l r ” lane=”0 : 0 ”/>

<connect ion from=” s t a r t 1 ” to=” l r ” lane=”1 : 1 ”/>

<connect ion from=” s t a r t 2 ” to=” r l ” lane=”0 : 0 ”/>

<connect ion from=” s t a r t 2 ” to=” r l ” lane=”1 : 1 ”/>

</ connec t i ons>

49

Network file in SUMO is named with extension net.xml. With the above defined

files, my-scenario.nod.xml, my-scenario.edg.xml, my-scenario.con.xml and my-

scenario.typ.xml, the network file my-scenario.net.xml will be generated by apply

the module NETCONVERT. For efficient execution, a configuration file that

includes the names of the input files, the name of the output network file and other

required actions should be created. If the files and the module NETCONVERT

are not being located in the same directory, the respective path for each file

should be specified. The configuration file for the example network is shown

in Listing 2.5 and named my-scenario.netc.cfg. If u-turn movements are not

allowed, the command <no-turnarounds value=”true”/> should be added to the

configuration file. As stated previously, the prohibition of u-turn movements can

only be conducted globally.

Listing 3.5: Generating the Network File (my-scenario.netc.cfg)

<c on f i gu r a t i on xmlns :x s i=

” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”

xsi:noNamespaceSchemaLocation=

” ht tp : //sumo . s f . net /xsd/ netconve r tCon f i gura t i on . xsd”>

<input>

<xml−node− f i l e s va lue=”my−s c ena r i o . nod . xml”/>

<xml−edge− f i l e s va lue=”my−s c ena r i o . edg . xml”/>

<xml−connect ion− f i l e s va lue=”my−s c ena r i o . con . xml”/>

<xml−type− f i l e s va lue=”my−s c ena r i o . typ . xml”/>

</ input>

<output>

<output− f i l e va lue=”my−s c ena r i o . net . xml”/>

</output>

</ c on f i gu r a t i on>

The network file my-scenario.net.xml will be generated by executing the fol-

lowing command in the command line.

netconvert −c my−s c ena r i o . netc . c f g

50

The generated network file can be viewed with the use of SUMO-GUI (see above)

for checking , if the network is built accurately , as shown in figure 3.3.

Figure 3.3: SUMO-GUI

Traffic demand and route data is defined together with vehicle type data in a

file with the extension name rou.xml. Traffic demand data are defined with eight

attributes:

(a) depart: departure time of a certain vehicle,

(b) id: ID of a certain vehicle and defined by

users with numbers, word strings or both,

(c) route: the route used by the defined vehicle,

(d) type: ID of the defined vehicle type.

Listing 3.7 shows that there 3 vehicle types (Car, Bus and Truck) with at-

tributes that have been like the plan as previously mentioned on Highway topol-

ogy. The related attributes include:

(a) id: ID of the vehicle type, defined by users

51

with numbers, word strings or both,

(b) accel: maximum acceleration of the respective

vehicle type (in m/s2),

(c) decal: maximum deceleration of the respective

vehicle type (in m/s2),

(d) sigma: driver’s imperfection in driving

(between 0 and 1),

(e) length: vehicle length (in meters),

(f) maxSpeed: maximum vehicular velocity (in m/s),

(g) color: color of the vehicle type. It is defined

with 3 numbers (between 0 and 1) for red, green and

blue respectively. Values are separated by , and is

in quotes with no space between the values. For example,

1,0,0 represents the red color, 0,1,0 represents green

color and 0,0,1 represents blue color.

The sequence of the attributes can be changed. The attribute sigma is assigned

as 0.0 for all vehicle types.

Following the vehicle type information traffic route data need to be defined as

well. The input attributes include:

(a) id: ID of a certain route and defined by users

with numbers, word strings or both,

(b) edges: The sequence of the names of the links,

composing the defined route.

Listing 3.6: Traffic Demand and Route Data (my-scenario.rou.xml)

<route s>

<vtype a c c e l=” 1 .0 ” de c e l=” 3 .0 ” id=”Car”

l ength=” 5 .0 ” maxspeed=” 100 .0 ” sigma=” 0 .0 ” />

<vtype a c c e l=” 1 .0 ” de c e l=” 3 .0 ” id=”Bus”

length=” 11 .0 ” maxspeed=” 80 .0 ” sigma=” 0 .0 ” />

<vtype a c c e l=” 1 .0 ” de c e l=” 3 .0 ” id=”Truck”

52

l ength=” 18 .0 ” maxspeed=” 60 .0 ” sigma=” 0 .0 ” />

<route id=” route1 ” edges=” s t a r t 1 l r up r l

down l r up . . . down ”/>

<route id=” route2 ” edges=” s t a r t 2 r l down l r

up r l down . . . up ”/>

<v eh i c l e depart=”1” id=”veh1” route=” route1 ”

type=”Truck”/>

<v eh i c l e depart=”5” id=”veh3” route=” route1 ”

type=”Car”/>

<v eh i c l e depart=”9” id=”veh5” route=” route1 ”

type=”Bus”/>

<v eh i c l e depart=”11” id=”veh6” route=” route2 ”

type=”Truck”/>

<v eh i c l e depart=”13” id=”veh7” route=” route1 ”

type=”Truck”/>

<v eh i c l e depart=”15” id=”veh8” route=” route2 ”

type=”Bus”/>

<v eh i c l e depart=”17” id=”veh9” route=” route1 ”

type=”Bus”/>

.

.

.

</ route s>

The three dots in the XML document means that there many such entries. For

the purposes of testing VANETs routing protocols it has been produced four

different topologies with 50, 100, 150 and 200 vehicles. Because of the multitude

lines an automatically way of create the XML documents is needed, in Appendix

A is showing an example of shell script for UNIX terminal for this purpose.

53

Traffic simulation in SUMO can be conducted in two ways as described below.

The overview of the simulation process is given in Figure 3.4.

Figure 3.4: SUMO Simulation Process

An efficient traffic simulation execution can be achieved with the use of com-

mand line, especially when dealing with large and sophisticated traffic networks.

To simplify the execution process it is recommended that all the required execu-

tion actions, e.g. the path and the name of the input files, the output types, the

output directory and the simulation time period is specified in a configuration file.

For my-scenario the respective configuration file is shown in listing 3.9 and the

traffic simulation can then be carried out with the use of the following command

(listing 3.8).

Listing 3.7: Terminal-Command to Start SUMO (my-scenario.sumo.cfg)

sumo −c my−s c ena r i o . sumo . c f g

Listing 3.8: Traffic Simulation of the Network (my-scenario.sumo.cfg)

<?xml version=” 1 .0 ” encoding=” i so −8859−1”?>

<c on f i gu r a t i on xmlns :x s i=

” ht tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

54

xsi:noNamespaceSchemaLocation=

” ht tp : //sumo . s f . net /xsd/ sumoConfiguration . xsd”>

<c on f i gu r a t i on>

<input>

<net− f i l e va lue=”my−s c ena r i o . net . xml”/>

<route− f i l e s va lue=”my−s c ena r i o . rou . xml”/>

</ input>

<time>

<begin value=”0”/>

<end value=”20000”/>

</ time>

<time−to−t e l e p o r t va lue=”−1”/>

</ c on f i gu r a t i on>

The application SUMO-GUI is the other way to execute the traffic simulation

with SUMO. During the execution each vehicular movement and the traffic pro-

gression can be observed and the possible bottlenecks can be visually identified.

A configuration file for all execution actions, like my-scenario.sumo.cfg , is re-

quired in SUMO-GUI. Running the command of listing 3.10, SUMO-GUI will be

activated and a work window will be automatically open. The investigated net-

work can be activated by opening the corresponding configuration file under the

File-Menu of the menu bar. Traffic simulation can then be performed by pressing

the green triangle button in the main tool bar. The simulation can be stopped

any time when the user presses the red squared button. A stopped simulation

can be further performed by pressing green triangle, if the simulation time is not

up. An illustration example is given in Figure 3.5.

Listing 3.9: Terminal-Bash-Command to Start SUMO (my-scenario.sumo.cfg)

sumo−gui −c my−s c ena r i o . sumo . c f g

55

Figure 3.5: SUMO-GUI Running Simulation

3.2 MOVE

3.2.1 About MOVE

Move (MObility model generator for VEhicular networks) is a tool to facili-

tate users to rapidly generate realistic mobility models for VANET simulations.

MOVE is built on top of an open source micro-traffic simulator SUMO. The

output of MOVE is a mobility trace file that contains information of realistic

vehicle movements which can be immediately used by popular simulation tool

NS-2. In addition, MOVE provides a set of GUIs that allows the user to quickly

generate realistic simulation scenarios without the hassle of writing simulation

scripts as well as learning about the internal details of the simulator. MOVE

has being written into Java, so it can be run in every operation system, with the

requirement that a JVM (Java Virtual Machine) has been already installed [23].

56

3.2.2 Create Scenario for NS3

Because NS-3 it doesn’t have the ability to create vehicular-nodes is being

made a traffic scenario with moving cars using SUMO, after this scenario is being

imported to MOVE which export NS-2 trace files, in the end it being connected

NS-2 tcl files to NS-3 with ns2-mobility-helper class, which make this connection.

To open the MOVE you have to put the fellow command

Listing 3.10: Terminal-Command to Start MOVE

java −j a r MOVE. j a r

For more details about how to use MOVE see Appendix B.

57

Chapter 4

Routing Protocols in NS3

4.1 VANET Simulations in NS-3

At this moment, it is not yet possible to simulate a complete WAVE device

in NS-3, however MAC and PHY extension provided by the IEEE 802.11p are

already available. Regarding users mobility, NS-3 supports simple mobility mod-

els (i.e. constant position, constant acceleration and constant velocity) as well as

more complex models such as random walk, random direction and random way-

points. No mobility models specific for vehicular scenarios are included into the

simulator. However, it is possible to generate a mobility trace by using external

tools (SUMO, MOVE) and use it during the simulation.

Furthermore MANET routing protocols such as AODV, OLSR, DSDV and

DSR are also supported. In this section present the AODV, OLSR, DSDV, DSR

and Extended-GPSR (E-GPSR). Starting from these promises, it seems that with

the current version of NS-3 it is possible working with VANETs by exploiting

the wifi model with IEEE 802.11p extensions, traces defining the mobility of cars

belonging to such network and choosing one of the four available MANET routing

protocols.

The comparison of a VANET routing protocol with the available routing pro-

tocols is not very righteous, the reason is that AODV, OLSR, DSDV and DSR

routing protocols have been taken for MANETs, so might not have good perfor-

mance using a VANET simulation. According of that it can be understood the

needing of implement new routing algorithms for NS-3,which are able to perform

VANET simulations.

58

4.2 AODV Routing Protocol

4.2.1 AODV Routing

NS-2 has an already implemented and available model for AODV. This model

implements the base specification of RFC-3561 [28]. The model was written by

Elena Buchatskaia and Pavel Boyko of ITTP RAS, and is based on the NS-

2 AODV model developed by the CMU/MONARCH group and optimized and

tuned by Samir Das and Mahesh Marina, University of Cincinnati and also on

the AODV-UU implementation by Erik Nordstrm of Uppsala University.

4.2.2 AODV Routing Overview

The source code for the AODV model it can be found in the directory ”sr-

c/aodv” and the class hierarchy is showing into the figure 4.1.

Figure 4.1: AODV Hierarchy Diagram

59

Class ns3::aodv::RoutingProtocol implements all functionality of service packet

exchange and inherits from ns3::Ipv4RoutingProtocol. The base class defines two

virtual functions for packet routing and forwarding. The first one, ns3::aodv::

RouteOutput, is used for locally originated packets and the second one, ns3::aodv::

RouteInput, is used for forwarding and/or delivering received packets.

Protocol operation depends on many adjustable parameters. Parameters for

this functionality are attributes of ns3::aodv::RoutingProtocol. Parameter de-

fault values are drawn from the RFC and allow the enabling/disabling protocol

features, such as broadcasting HELLO messages, broadcasting data packets and

so on.

AODV discovers routes on demand. Therefore, the AODV model buffers all

packets while a route request packet (RREQ) is disseminated. A packet queue is

implemented in aodv-rqueue.cc. A smart pointer to the packet, ns3::Ipv4Routing

Protocol::ErrorCallback, ns3::Ipv4RoutingProtocol::UnicastForwardCallback, and

the IP header are stored in this queue. The packet queue implements garbage

collection of old packets and a queue size limit.

The routing table implementation supports garbage collection of old entries

and state machine, defined in the standard. It is implemented as a STL map

container. The key is a destination IP address.

Some elements of protocol operation are not described in the RFC. These

elements generally concern cooperation of different OSI model layers. If the node

receives an RREQ is a neighbour, the cause may be a unidirectional link. This

AODV implementation can detect the presence of unidirectional links and avoid

them if necessary. Protocol operation strongly depends on broken link detection

mechanism.

The model implements two such heuristics. First, this implementation support

HELLO messages. However HELLO messages are not a good way to perform

60

neighbour sensing in a wireless environment (at least not over 802.11). There-

fore, one may experience bad performance when running over wireless. There are

several reasons for this: 1) HELLO messages are broadcasted. In 802.11, broad-

casting is often done at a lower bit rate than unicasting, thus HELLO messages

can travel further than unicast data, 2) HELLO messages are small, thus less

prone to bit errors than data transmissions and 3) Broadcast transmissions are

not guaranteed to be bidirectional, unlike unicast transmissions. Second, we use

layer 2 feedback when possible. Link are considered to be broken if frame trans-

mission results in a transmission failure for all retries. This mechanism is meant

for active links and works faster than the first method. The layer 2 feedback

implementation relies on the TxErrHeader trace source, currently supported in

AdhocWifiMac only.

The model is for IPv4 only. The following optional protocol optimizations

are not implemented: 1)Expanding ring search. 2)Local link repair. 3) RREP,

RREQ and HELLO message extensions. These techniques require direct access

to IP header, which contradicts the assertion from the AODV RFC that AODV

works over UDP. This model uses UDP for simplicity, hindering the ability to

implement certain protocol optimizations. The model doesn’t use low layer raw

sockets because they are not portable.

4.2.3 AODV Helper

Figure 4.2: AODV Helper Diagram

61

A helper class for AODV has been written (figure 4.2). After an IPv4 topology

has been created and unique IP addresses assigned to each node, the simulation

script writer can call the functions to enable AODV (listing 4.1).

Listing 4.1: NS3 AODV Install

//Enable aodv

AodvHelper aodv ;

//you can con f i gu r e AODV a t t r i b u t e s

// here us ing aodv . Set (name , va lue)

In te rne tStackHe lpe r i n t e r n e t ;

i n t e r n e t . SetRoutingHelper (aodv) ;

i n t e r n e t . I n s t a l l (c) ;

//where c i s a node conta iner

In addition, the behaviour of AODV can be modified by changing certain at-

tributes with the follow functions:

• void SetMaxQueueTime(Time t)

– MaxQueueTime: maximum time packets can be queued (in seconds),

– set with class: TimeValue,

– underlying type: Time,

– initial value: +30000000000.0ns,

– flags: construct write read.

• void SetMaxQueueLen(uint32-t len)

– MaxQueueLen: maximum number of packets that we allow a routing

protocol to buffer,

– set with class: ns3::UintegerValue,

– underlying type: uint32-t 0:4294967295,

62

– initial value: 64,

– flags: construct write read.

• void SetDesinationOnlyFlag(bool f)

– DestinationOnly: indicates only the destination may respond to this

RREQ,

– set with class: BooleanValue,

– underlying type: bool,

– initial value: false,

– flags: construct write read.

• void SetGratuitousReplyFlag(bool f)

– GratuitousReply: indicates whether a gratuitous RREP should be uni-

cast to the node originated route discovery,

– set with class: BooleanValue,

– underlying type: bool,

– initial value: true,

– flags: construct write read.

• void SetHelloEnable(bool f)

– EnableHello: indicates whether a hello messages enable,

– set with class: BooleanValue,

– underlying type: bool,

– initial value: true,

– flags: construct write read.

• void SetBroadcastEnable(bool f)

– EnableBroadcast: indicates whether a broadcast data packets forward-

ing enable,

63

– set with class: BooleanValue,

– underlying type: bool,

– initial value: true,

– flags: construct write read.

4.3 OLSR Routing Protocol

4.3.1 OLSR Routing

NS-3 has an already implemented and available model for OLSR. This model

implements the base specification of RFC-3626 [6]. OLSR has been developed at

the University of Murcia (Spain) by Francisco J. Ros for NS-2, and was ported

to NS-3 by Gustavo Carneiro at INESC Porto (Portugal).

4.3.2 OLSR Routing Overview

The source code for the OLSR model it can be found in the directory src/olsr

and the class hierarchy is shown in figure 4.3.

The model is for IPv4 only. Mostly compliant with OLSR as documented in [6]

about the use of multiple interfaces that was not supported by the NS-2 version,

but is supported in NS-3; OLSR does not respond to the routing event notifi-

cations corresponding to dynamic interface up and down (ns3::RoutingProtocol::

NotifyInterfaceUp and ns3::RoutingProtocol::NotifyInterfaceDown) or address in-

sertion/removal ns3::RoutingProtocol::NotifyAddAddress and ns3:: RoutingPro-

tocol::NotifyRemoveAddress). Unlike the NS-2 version, does not yet support

MAC layer feedback as described in [6]; Host Network Association (HNA) is sup-

ported in this implementation of OLSR. Refer to examples/olsr-hna.cc to see how

the API is used.

64

Figure 4.3: OLSR Hierarchy Diagram

4.3.3 OLSR Helper

A helper class for OLSR has been written. After an IPv4 topology has been cre-

ated and unique IP addresses assigned to each node, the simulation script writer

can call one of three overloaded functions with different scope to enable OLSR:

ns3::OlsrHelper::Install (NodeContainer container), ns3::OlsrHelper::Install(node)

or ns3::OlsrHelper::InstallAll (void)

Listing 4.2: NS3 OLSR Install in Node Container

// Enable o l s r

OlsrHelper o l s r ;

Ipv4Stat i cRout ingHe lper s ta t i cRout ing ;

Ipv4ListRout ingHelper l i s t ;

l i s t .Add(s ta t i cRout ing , 0) ;

l i s t .Add(o l s r , 1 0) ;

In te rne tStackHe lpe r i n t e r n e t ;

i n t e r n e t . SetRoutingHelper (l i s t) ;

i n t e r n e t . I n s t a l l (c) ;

65

//where c i s a node conta iner

In addition, the behavior of OLSR can be modified by changing certain at-

tributes. The method ns3::OlsrHelper::Set () can be used to set OLSR attributes.

These include HelloInterval, TcInterval, MidInterval, Willingness. Other param-

eters are defined as macros in olsr-routing-protocol.cc. Attributes defined for this

type:

• HelloInterval: HELLO messages emission interval

– set with class: TimeValue,

– underlying type: Time,

– initial value: +2000000000.0ns,

– flags: construct write read.

• TcInterval: TC messages emission interval

– set with class: TimeValue,

– underlying type: Time,

– initial value: +5000000000.0ns,

– flags: construct write read.

• MidInterval: MID messages emission interval. Normally it is equal to TcIn-

terval

– set with class: TimeValue,

– underlying type: Time,

– initial value: +5000000000.0ns,

– flags: construct write read.

• Willingness: Willingness of a node to carry and forward traffic for other

nodes

– set with class: ns3::EnumValue,

66

– underlying type: never—low—default—high—always,

– initial value: defaultm

– flags: construct write read.

Figure 4.4: OLSR Helper Diagram

4.4 DSDV

4.4.1 DSDV Routing

DSDV routing protocol is a pro-active, table-driven routing protocol for MANETs

developed by Charles E. Perkins and Pravin Bhagwat in 1994 [29]. It uses the hop

count as metric in route-selection. This model was developed by the ResiliNets

research group at the University of Kansas [33]. A paper on this model exists at

[24].

4.4.2 DSDV Routing Overview

Every node will maintain a table listing all the other nodes it has known either

directly or through some neighbours. Every node has a single entry in the routing

table. The entry will have information about the node’s IP address, last known

sequence number and the hop count to reach that node. Along with these details

the table also keeps track of the next-hop neighbour to reach the destination

node, the time-stamp of the last update received for that node.

67

Figure 4.5: DSDV Hierarchy Diagram

The DSDV update message consists of three fields, Destination Address, Se-

quence Number and Hop Count. Each node uses 2 mechanisms to send out the

DSDV updates. They are:

1. Periodic updates which are sent out after every m-periodicUpdateInterval

(default:15s). In this update the node broadcasts out its entire routing

table.

2. Trigger updates which are small updates in-between the periodic updates.

These updates are sent out whenever a node receives a DSDV packet that

caused a change in its routing table. The original paper did not clearly

mention, when for what change in the table should a DSDV update be sent

out. The current implementation sends out an update irrespective of the

change in the routing table.

The updates are accepted based on the metric for a particular node. The first

factor determining the acceptance of an update is the sequence number. It has

to accept the update if the sequence number of the update message is higher

68

irrespective of the metric. If the update with same sequence number is received,

then the update with least metric (hopCount) is given precedence.

In highly mobile scenarios, there is a high chance of route fluctuations, thus it

has the concept of weighted settling time where an update with change in metric

will not be advertised to neighbours. The node waits for the settling time to make

sure that it did not receive the update from its old neighbour before sending out

that update.

The current implementation covers all the above features of DSDV. The current

implementation also has a request queue to buffer packets that have no routes to

destination. The default is set to buffer up to 5 packets per destination.

4.4.3 DSDV Helper

A helper class for DSDV has been written (figure 4.6). After an IPv4 topology

has been created and unique IP addresses assigned to each node, the simulation

script writer can call the functions to enable DSDV (listing 4.3).

Listing 4.3: NS3 DSDV Install

//Enalbe DSDV

DsdvHelper dsdv ;

dsdv . Set (” Per i od i cUpdate In te rva l ” ,

TimeValue (Seconds (pe r i od i cUpdate In t e rva l))) ;

dsdv . Set (” Sett l ingTime ” ,

TimeValue (Seconds (s e t t l i ngTime))) ;

In te rne tStackHe lpe r i n t e r n e t ;

i n t e r n e t . SetRoutingHelper (dsdv) ;

i n t e r n e t . I n s t a l l (c) ;

69

Figure 4.6: DSDV Helper Collaboration Diagram

4.5 DSR

4.5.1 DSR Routing

DSR protocol is a reactive routing protocol designed specifically for use in

multi-hop wireless ad hoc networks of mobile nodes. This model was developed

by the ResiliNets research group at the University of Kansas [33].

4.5.2 DSR Routing Overview

This model implements the base specification RFC-4728 [8]. Class dsr:: Dsr-

Routing implements all functionality of service packet exchange and inherits

Ipl4Protocol. Class dsr::DsrOptions implements functionality of packet process-

ing and talk to DsrRouting to send/receive packets. Class dsr::DsrFsHeader de-

fines the fixed-size header and identify the up-layer protocol. Class dsr::DsrOption

Header takes care of different DSR options and process different header according

to specification from [8]. Class dsr::DsrSendBuffer is a buffer to save data packet

as well as route error packet when there is no route to forward the packet. Class

dsr::DsrMaintainBuffer is a buffer to save data packet for next-hop notification

when the data packet has already sent out of send buffer Class dsr::RouteCache

is the essential part to save routes found for data packet, DSR responds to several

routes for a single destination Class dsr::RreqTable implements the functionali-

ties to avoid duplicate route requests and control route request rate for a single

70

destination.

Protocol operation depends on the many adjustable parameters. It support

parameters, with their default values, from [8] and parameters that enable/disable

protocol features or tune for specific simulation scenarios, such as the max size

of send buffer and its timeout value. The full parameter list is in DsrRouting.cc

file.

DSR discovers routes totally on demand. Therefore, DSR model buffers all

packets, while a RREQ is disseminated. It has implemented a packet buffer in

dsr-rsendbuff.cc. The packet queue implements garbage collection of old packets

and a queue size limit. When the packet is sent out from the send buffer, it will

be queued in maintenance buffer for next hop acknowledgement.

Route cache implementation support garbage collection of old entries and state

machine ans it has a STL map container. The key is the destination IP address,

where protocol operation strongly depends on broken link detection mechanism.

It has implemented all the three heuristics. First, uses layer 2 feedback when

possible. Link considered to be broken, if frame transmission results in a trans-

mission failure for all retries. This mechanism meant for active links and work

much more faster, than first method. Layer 2 feedback implementation relies

on TxErrHeader trace source, currently it is supported in AdhocWifiMac only.

Second, passive acknowledgement should be used whenever possible. The node

turns on ”promiscuous” receive mode, in which it can receive packet not destined

for itself, and when the node assures the delivery of that data packet to its desti-

nation, it cancels the passive acknowledgement timer. Last, we use network layer

acknowledge scheme to notify the receipt of a packet. Route request packet will

not be acknowledge or retransmitted.

Following optional protocol optimizations aren’t implemented:

• Flow state.

• First Hop External (F), Last Hop External (L) flags.

71

• Handling unknown DSR options.

• Two types of error headers:

1. flow state not supported option,

2. unsupported option (not going to happen in simulation).

DSR operates with direct access to IP header, and operates between network

and transport layer. It has also some implementation changes:

• the DsrFsHeader has added 3 fields: message type, source id, destination

id, and these changes only for post-processing,

• message type is used to identify the data packet from control packet,

• source id is used to identify the real source of the data packet since we have

to deliver the packet hop-by-hop and the ipv4header is not carrying the real

source and destination ip address as needed,

• destination id is for same reason of above.

4.5.3 DSR Helper

It has not implemented a helper class yet. In order to create a scenario, the

following should be kept in mind when running DSR as routing protocol:

• NodeTraversalTime is the time it takes to traverse two neighboring nodes

and should be chosen to fit the transmission range.

• PassiveAckTimeout is the time a packet in maintenance buffer wait for

passive acknowledgment, normally set as two times of NodeTraversalTime.

• RouteCacheTimeout should be set smaller value when the nodes’ velocity

become higher. The default value is 300s.

In order to make a node run DSR, the easiest way would be to use the ClickIn-

ternetStackHelper class in your simulation script (listing 4.4).

72

Listing 4.4: NS3 DSR Install

//Enalbe DSR

In te rne tStackHe lpe r i n t e r n e t ;

DsrMainHelper dsrMain ;

DsrHelper dsr ;

i n t e r n e t . I n s t a l l (c) ;

dsrMain . I n s t a l l (dsr , c) ;

The example scripts inside ”src/dsr/examples/” demonstrate the use of DSR

based nodes in different scenarios. The helper source can be found inside ”sr-

c/dsr/ helper/dsr-main-helper.h,cc” and ”src/dsr/helper/dsr-helper.h,cc”. The

script dsr.cc use DSR as routing protocol within a traditional MANETs environ-

ment. DSR is also built in the routing comparison case in ”examples/routing/”

where manet-routing-compare.cc is a comparison case with built in MANET rout-

ing protocols and can generate its own results.

The model has been tested as follows:

• Unit tests have been written to verify the internals of DSR. This can be

found in ”src/dsr/test/dsr-test-suite.cc”. These tests verify whether the

methods inside DSR module which deal with packet buffer, headers work

correctly.

• Simulation cases have been tested and have comparable results.

• The manet-routing-compare.cc has been used to compare DSR with three

of other routing protocols.

4.6 E-GPSR

4.6.1 Theoretical Description of Protocol

E-GPSR is an extension of GPSR, as have been mentioned in the first chapter

greedy forward is a strategy that do not create a path from source to the des-

73

tination, they find the next hop considering some parameters about position of

other nodes (i.e the closest neighbour to the destination) and forward the packet

to the next-hop.

With greedy forwarding a path could be created very quickly but its has the

disadvantage of a possible failure to find a path [4], for this reason the routing

protocol has to be guided to find a correct direction. A good way to avoid this

failure is take place some over information except the distance from destination

to decide the next hop of the path, so you can increase the possibility to find

a path. Taking into that if a node has a lot of neighbours is more possible to

communicate with a node that has connection with the destination, this could be

a good information to take care.

For the E-GPSR of this thesis a function has been made to measure the quality

of next-hop, which is:

NextHopMetric = d(j, dest)− (w ∗Nj)

• j identifies a neighbour and dest is the destination node,

• d (i, dest) is the distance between the j-node and the destination,

• Nj is the number of neighbour of the j device,

• w represents a weight that expresses the importance of the Neighbours.

The neighbour with the lowest result of this function, is the next hop for the

packet.

Several simulations have been created with different weights to find the most

efficient weight, in this case weight equal to zero means the classical GPSR. After

checking weights from 0 to 15, as showing to figure 4.7, it have been found that

a weight equal to 2 has the best performance and is also better than zero (which

is the GPSR). The simulation scenarios had the follow attributes :

• density of nodes within 1 to 7,

74

Figure 4.7: PLR with Different Weights for Neighbours

• number of UDP client-server applications that start transmit in same time

from 1 to 10,

• borders of topology from 1000m to 4001m,

• 150 different seeds which means 150 different sequences of random place

UDP client-servers setting up.

The number of nodes had been taken from this formula:

N = density ∗ ((border2)/(distancebetweenNeighbours2)

with this formula a consistency number of nodes are taken place in order to have

logical topology. A topology example of simulation could be seen in figure 2.5, in

which also showing two path (with red and blue) of UDP client server application

coloured by red.

75

Figure 4.8: Topology in Simulation about Different Weights

4.6.2 Implementation

E-GPSR has been design into NS-3 with the follow operation:

• calculate the function of quality for every neighbour with help of GPS,

• finds the next hop that could communicate with destination according the

results of the above function with help of static routing protocol,

• set a Time To Live (TTL) for each next hop,

• remove the next hop when TTL expired.

Also the ns-3::ipv4-L3 and ns-3::Internet Stack has been Configured, in order

to make the follow operations:

• install topology based routing protocol into each node,

76

• checks if topology-based routing protocol has been set:

– get the Ip address of the source from the packet,

– get the Ip address of the destination from the packet,

• checks if the current node has not a next hop:

– find a new next hop,

– set TTL for next hop,

• checks if TTL is equal to zero:

– find a new next hop,

– set TTL for next hop,

• sends the packet to next hop and reduce by one the TTL.

An overview of the classes included in the implementation can be seen into

figure 4.9.

To take position information of nodes for the E-GPSR it needs to provide a

GPS device that has this informations at any time. This device it could be an

unit on board of car or a location service base, so in this way every node has to

communicate with an infrastructure base.

Consequently in NS-3, GPS is an ideal device that knows the position of each

node and have the follow operations:

• measure the distance between two nodes,

• could give the number of neighbours of a given node.

GPS module uses the function SetNetDeviceContainer() to insert into a vector

pointers to net devices from a NetDeviceContainer, so GPS could have informa-

tion about theirs position and speed at any time, furthermore it have SetNetDe-

vice() function to put into vector of a pointer of just one device.

77

Figure 4.9: Position-Based UML Diagram

The E-GPSR needs to know the the number of neighbours about a given node to

calculate the efficiency function. So GPS class provides the GetNumberOfNeigh-

bours() function which returns a unsighted integer with the number of neigh-

bours, GPS also can give a vector with the Neighbours of given node using the

GetNodeNeighbours() function, data that the routing protocol needs to find the

next-hop. GPS in order to find if a node is neighbour with another needs to know

the distance between two nodes so the function GetDistanceBetweenNodes() pro-

vides this information. The GPS has a threshold within its decides whether or

not a node neighbouring with others. To set this threshold SetThresholdNeigh-

bour() function has to be used, where the threshold is the maximum distance in

78

which two nodes can communicate so they are neighbours.

Internet Stack Helper has been configure importing the InstallE-GPSR() func-

tion to create an E-GPSR routing protocol into every node. This could be done

by giving a node container, a node itself or a string that includes the name of the

nodes (if this has been set up to ns3).

Ipv4-l3 module has been configured to use the E-GPSR routing protocol. First

it has added a pointer which shows into E-GPSR object, so it could be use for

routing packets, for this reason SetE-GPSR() function has been insert to the ipv4-

l3-protocol class. Also the Receive() function has been configured that is the first

function called when a packet is being received from the up or down layer. The

configuration makes this function to check if E-GPSR has been setting up, so

its forward the packet within this routing protocol. Also its checks if there is a

next hop that could communicate with the destination, using the HasNextHop(),

function of E-GPSR which returns true or false about the existence of a next

hop node that could communicate with the destination of the packet. In case

that there are no next hop, the SetNextHop() function is used which invokes the

FindNextHop() function to find the next hop that it could communicate with the

destination. After this the SetNextHopTTL() function is called to set a TTL to

the next hop when this TTL expired the next hop is deleted (so a new next-hop

has to be found).

Another function that have been modified is SendRealOut() this function is

being called then the Ipv4-l3 sends the packet. It have been modified so it checks

if E-GPSR has been set, in this case using the GetNextHopTTL() function checks

if the TTL of the next hop has been expired. If so it looking for a new next hop

and a TTL for this hop using the SetNextHop() and SetNextHopTTL() functions

of E-GPSR, if next hop TTL has not been expired its forwards the packet to next

hop reducing the TTL.

In figure 4.10 is showing how the algorithm finds a path by next-hoping the

packet, with green is noticed the neighbours.

79

Figure 4.10: Routing Path

4.6.3 Configuration

In the E-GPSR it could be changed the follow parameters:

• Neighbour Distance, which is the maximum distance where two neighbour

nodes can communicate. The function about that is SetThresholdNeigh-

bour() of class GPS.

• Next Hop TTL, which is the time that a next hop consider reliable. The

function about that is SetNextHopTTL() of class Position Based Routing

Protocol.

In listing 4.5 is showing how to install E-GPSR into a NS-3 scenario.

Listing 4.5: Install E-GPSR into NS-3

// Enable po s i t i on−based rou t ing p ro t o co l

80

// Set a GPS Device to the w i f i Devices

Ptr<GPS> gpsdev i ce = CreateObject<GPS > () ;

gpsdevice−>SetNetDeviceContainer (f d e v i c e s) ;

//where f d e v i c e s i s a Net−Device Container

Ptr<EGPSR>

EGPSR =

CreateObject<EGPSR> () ;

EGPSR−>SetGps (gpsdev i ce) ;

In te rne tStackHe lpe r i n t e r n e t ;

i n t e r n e t . SetTopologyBasedRoutingProtocol

(EGPSR) ;

i n t e r n e t .EGPSR (c) ;

//where c i s a node conta iner

81

Chapter 5

Performance Evaluation

5.1 Transmission Range

5.1.1 MAC and PHY Configuration

In this section is being described how a scenario could be configure in NS-3

to establish MAC and PHY layer. In next section is showing simulation results

about transmission range using two nodes which use UDP client-server.

The IEEE 802.11p specification has introduced only few amendments to the

common IEEE 802.11 standard. For this reason, MAC and PHY layers for

VANETs can be easily configured and installed by using dedicated helper classes

of NS-3 already available for the WiFi module:

• WifiMacHelper,

• YansWifiPhyHelper,

• WiFiHelper.

So the QosWiFiMacHelper, which inherits directly from the Wifi-MacHelper, is

being model the MAC layer based on the EDCA. With respect to the original

EDCA specification, described in [2], the IEEE 802.11p suggests a different set

of CWAIFS parameters, as reported in Tab.1 [3]. YansWifiPhyHelper, instead,

creates and configures the PHY layer.

In order to enabling IEEE 802.11p amendments for both MAC and PHY layers,

it is necessary to set:

• the IEEE 802 specification,

82

• the communication channel CCH or SCH.

This could be done by calling the SetStarndard() function of WifiMacHelper.

Finally, the method Install() of the aforementioned class, receiving as input pa-

rameters the WiFi MAC helper, the PHY helper, and the node container created

into the scenario, handles the effective set up of 802.11p nodes by creating network

devices where MAC and PHY models, before configured are installed.

5.1.2 Simulation Details

It is important to discover the maximum transmission range of a WiFi device

which is strictly influenced by the physical transmission rate. The reason is

that Routing protocols is able to make routing paths only when nodes is able

to communicate each other, and this could be happen only inside of the nodes’

transmission range. In order to investigate this aspect, it have been deployed two

main cases of scenarios composed by only two nodes on which an UDP client-

server application that generates packets of 640 Bytes every 0.04 s have been set

up. In the first case it have used different physical modulation schemes and in

the second different wifi control managers.

Packet Loss Rate (PLR) have been measured of UDP application by varying

the distance between nodes and the transmission rates. Note that the PLR gives

an idea on the transmission range, if the PLR is closer to 0, communicating nodes

are into the same transmission range otherwise is out of range. The Figure 5.1

shows PLR of a UDP client-server application with different physical modulation

scheme. The Figure 5.2 shows PLR of a UDP client-server application with

different wifi control algorithms.

5.1.3 Simulation Results

As reported in figure 5.1, which is demonstrates that the PLR increases as both

physical transmission rate and distance between devices increase. Despite smaller

physical rates guarantee higher transmission ranges, they could limit significantly

the user throughput. On the other hand, higher modulation schemes can reach

83

Figure 5.1: PLR with Different Modulation Schemes

higher throughput only for very short distances between vehicles. It emerges that

the use of constant PHY settings could break down network performance, espe-

cially in vehicular scenarios where the density of nodes and network conditions

vary quickly.

An algorithm that adapts the physical transmission rate during the time can

be exploited for resolving the problem. Furthermore in figure 5.2 shows for dif-

ferent wifi control algorithms the PLR is quite the same. So we have follow the

assumption: only when the distance between two nodes is bellow 500m could be

in the same transmission range.

84

Figure 5.2: PLR with Different wifi Manager Algorithms

5.1.4 NS-3 Code

NS-3 supports several PHY rate control algorithms such as ARF (Auto Rate

Fallback), AARF (Adaptive ARF), and AARF-CD (AARF with Collision Detec-

tion). They have been conceived for adjusting the physical rate according to the

status of the transmission (i.e., the number of delivered/lost packets). The Se-

tRemoteStationManager() function of the WiFiHelper class is used for selecting

one of these strategies as showing into the listing 5.1 and 5.2

Listing 5.1: Set-up Wifi - NS-3 Code

NodeContainer c ;

c . Create (numNodes) ;

// The be low s e t o f h e l p e r s w i l l h e l p us

// to put t o g e t h e r the w i f i NICs want

WifiHelper w i f i ;

85

YansWifiPhyHelper wif iPhy = YansWifiPhyHelper : : De fau l t () ;

// s e t i t to zero ; o therwise , gain w i l l be added

wif iPhy . Set (”RxGain” , DoubleValue (−10)) ;

wif iPhy . SetPcapDataLinkType

(YansWifiPhyHelper : : DLT IEEE802 11 RADIO) ;

YansWifiChannelHelper wi f iChanne l ;

wi f iChanne l . SetPropagationDelay

(”ns3 : : ConstantSpeedPropagationDelayModel ”) ;

wi f iChanne l . AddPropagationLoss

(”ns3 : : Fr i i sPropagat ionLossModel ”) ;

wif iPhy . SetChannel (wi f iChanne l . Create ()) ;

NqosWifiMacHelper wifiMac = NqosWifiMacHelper : : De fau l t () ;

// s e t 802.11 p Serv i c e Channel

w i f i . SetStandard (WIFI PHY STANDARD 80211p SCH) ;

// s e t w i f i manager a l gor i thm

w i f i . SetRemoteStationManager (a lgor i thm) ;

/∗
a v a i l a b l e w i f i managers :

ns3 : : AarfWifiManager , ns3 : : AarfcdWifiManager ,

ns3 : : AmrrWifiManager , ns3 : : ArfWifiManager ,

ns3 : : CaraWifiManager , ns3 : : ConstantRateWifiManager ,

ns3 : : IdealWifiManager , ns3 : i : MinstrelWifiManager ,

ns3 : : OnoeWifiManager and ns3 : : RraaWifiManager .

∗/
NetDeviceContainer f d e v i c e s = w i f i . I n s t a l l

(wifiPhy , wifiMac , c) ;

Listing 5.2: NS-3 Install Wifi

//node conta iner h e l p s to organ i ze the nodes

86

NodeContainer c ;

c . Create (numNodes) ; //Number o f nodes

// The be low s e t o f h e l p e r s w i l l h e l p us

// to put t o g e t h e r the w i f i NICs we want

WifiHelper w i f i ;

YansWifiPhyHelper wif iPhy = YansWifiPhyHelper : : De fau l t () ;

// s e t i t to zero ; o therwise , gain w i l l be added

wif iPhy . Set (”RxGain” , DoubleValue (−10)) ;

wif iPhy . SetPcapDataLinkType

(YansWifiPhyHelper : : DLT IEEE802 11 RADIO) ;

YansWifiChannelHelper wi f iChanne l ;

wi f iChanne l . SetPropagationDelay

(”ns3 : : ConstantSpeedPropagationDelayModel ”) ;

wi f iChanne l . AddPropagationLoss

(”ns3 : : Fr i i sPropagat ionLossModel ”) ;

wif iPhy . SetChannel (wi f iChanne l . Create ()) ;

NqosWifiMacHelper wifiMac = NqosWifiMacHelper : : De fau l t () ;

w i f i . SetRemoteStationManager (”ns3 : : ConstantRateWifiManager”

, ”DataMode” , Str ingValue (Modulation)) ;

/∗ a v a i l a b l e Modulat ions

OfdmRate3MbpsBW10MHz

OfdmRate4 5MbpsBW10MHz

OfdmRate6MbpsBW10MHz

OfdmRate9MbpsBW10MHz

OfdmRate12MbpsBW10MHz

OfdmRate18MbpsBW10MHz

OfdmRate24MbpsBW10MHz

87

OfdmRate27MbpsBW10MHz

∗/
NetDeviceContainer f d e v i c e s = w i f i . I n s t a l l

(wifiPhy , wifiMac , c) ;

5.2 Static-grid Simulation Scenario

5.2.1 Simulation Details

In order to observer the behaviour of the routing protocols OLSR, AODV and

E-GPSR, a good idea is to start with a static and full controlled scenario, with

nodes that is not moving.

Several simulations have been made with a grid topology scenario, in order the

behaviour of OLSR, AODV and E-GPSR could be compared. In all considered

scenarios, UDP client-servers have been set up into the corners of topology (see

figure 3.3) where UDP client sends 100 packets of 600 bytes with time interval at

0.04 seconds to UDP server. For the equation of simulations 25 seeds have been

measures that means 25 different sequences of random place UDP client-servers

setting up. Furthermore in all simulation wifi Ideal Manager have been used.

Into the simulations the grid topology have been made with five different grids:

• 4x4 and number of nodes = 16,

• 6x6 and number of nodes = 36,

• 8x8 and number of nodes = 64,

• 10x10 and number of nodes = 100,

• 15x15 and number of nodes = 225.

Also an example of the grid-topology is showing in figure 5.3.

88

Figure 5.3: Grid Topology

5.2.2 Simulation Results

The PLR is quite the same for all simulations and is showing into the figure

5.3. The distance is the space between each node separately.

According the graph, all routing protocols (AODV, OLSR, E-GPSR) could

make the connection path so nodes can send packets within an UDP client-server

application, when distance between each node is bellow than 500m, this is a

logical situation if we have in our minds the previous result about transmission

range. In which has analysed that the maximum distance between two node

where is able to send packets is 500m. The point here is that routing protocols

is able to create a path among nodes that connect each other.

89

Figure 5.4: PLR with 802.11p and Different Routing Protocols

5.2.3 NS-3 Code

To set up a grid topology the code is showing to listing 5.3.

Listing 5.3: Set-up a Grid Topology - NS-3 Code

//make a g r i d t opo l o gy

Mobi l i tyHe lper mob i l i ty ;

mob i l i ty . S e tPo s i t i onA l l o c a t o r (

”ns3 : : Gr idPos i t i onA l l o ca to r ” ,

”MinX” , DoubleValue (0 . 0) ,

”MinY” , DoubleValue (0 . 0) ,

”DeltaX” , DoubleValue (d i s t anc e) , // d i s t ance f o r X in m

”DeltaY” , DoubleValue (d i s t anc e) , // d i s t ance f o r Y in m

”GridWidth” , UintegerValue (gridWidth) ,

//where g r i d Width a number t ha t

90

// makes the [number X number] t opo l o gy

”LayoutType” , Str ingValue (”RowFirst”)) ;

mob i l i ty . SetMobil i tyModel

(”ns3 : : ConstantPos it ionMobi l i tyModel ”) ;

mob i l i ty . I n s t a l l (c) ;

//where c i s a node conta iner

To set up a UDP client server the code is showing in listing 5.4.

Listing 5.4: Set-up UDP Client-Server - NS3 Code

// as s i gn IP addres se s

Ipv4AddressHelper ipv4 ;

NS LOG INFO(”Assign IP Addresses . ”) ;

ipv4 . SetBase (” 1 0 . 1 . 1 . 0 ” , ” 255 . 255 . 255 . 0 ”) ;

Ipv4 In t e r f a c eConta ine r i = ipv4 . Assign (f d e v i c e s) ;

//where f d e v i c e s a NetDeviceContainer

Appl i cat ionConta iner apps ;

//Create one udpServer a p p l i c a t i o n s on node one .

UdpServerHelper s e r v e r (s r v po r t) ;

//where s r v p o r t i s the por t o f the s e r v e r

apps = s e r v e r . I n s t a l l (c . Get (serverNode)) ;

//c i s a node conta iner

apps . S ta r t (Seconds (105.0+ t ime s t ep)) ;

apps . Stop (Seconds (250.0+ t ime s t ep)) ;

//Create one UdpClient a p p l i c a t i o n

// to send UDP datagrams from node to node

UdpClientHelper c l i e n t (i . GetAddress (serverNode) ,

s r v po r t) ;

c l i e n t . Se tAtt r ibute (”MaxPackets” ,

UintegerValue (numPackets)) ;

c l i e n t . Se tAtt r ibute (” I n t e r v a l ” ,

TimeValue (i n t e rPa ck e t I n t e r v a l)) ;

c l i e n t . Se tAtt r ibute (”PacketS ize ” ,

UintegerValue (packetS i ze)) ;

91

apps = c l i e n t . I n s t a l l (c . Get (c l i entNode)) ;

apps . S ta r t (Seconds (106.0+ t ime s t ep)) ;

apps . Stop (Seconds (240.0+ t ime s t ep)) ;

5.3 Dynamic Mobility Simulation Scenario

5.3.1 Simulation Details

It have been already checked the transmission range and the ability of routing

protocols to create path in a static scenario, but in VANETs the nodes is moving

constantly so the next level is to check the ability of routing protocols (AODV,

OLSR, E-GPSR) to establish connection paths among random-moving nodes.

For this kind of scenarios the nodes have to be placed randomly, NS-3 provides a

helper class which called ns3::MobilityHelper. Also the nodes is moving, this could

be configured with the function SetMobilityModel(), using the follow parameters:

• speed: A random variable used to pick the speed of a random waypoint-

model,

set with class: RandomVariableValue,

underlying type: RandomVariable,

initial value: Uniform:0.3:0.7,

flags: construct write read.

• Pause: A random variable used to pick the pause of a random waypoint-

model,

set with class: RandomVariableValue,

underlying type: RandomVariable,

initial value: Constant:2,

flags: construct write read.

• PositionAllocator: The position model used to pick a destination point,

set with class: ns3::PointerValue,

underlying type: ns3::Ptr < ns3 :: PositionAllocator >,

92

initial value: 0,

flags: construct write read.

The topology start in a border about 1000m and is being increased with 500m

until 5000m. The total number of Nodes is being calculated with this form:

N = density ∗ ((border2)/(distancebetweenNeighbours2)

where density is varying from 1 to 6 and the distance between Neighbours is the

distance that we consider that two nodes can transmit each other and varying

from 300m to 450m. An example of the topology is showing to figure 5.5.

Figure 5.5: Random Mobility Topology with Density 3

5.3.2 Simulation Results

93

Figure 5.6: PLR into Random Topology

In the figure 5.6 it can be seen the PLR for all routing protocols, where distance

refers to distance between source and destination in meters. As the distance is

being increase the OLSR and AODV is not able to establish the connection unlike

with the E-GPSR which has lower PLR and after 3500 meters is being stabilized.

So here we can see that AODV and OLSR in long distances MANETs where

VANETs is being involved they can not make routing paths, in contrast E-GPSR

is shows a well promising performance for VANETs.

5.3.3 NS-3 Code

Here is the code to set up a random way point into NS-3:

Listing 5.5: Set-up Mobility Random Topology - NS-3 Code

// I n s t a n t i a t e mob i l i t y h e l p e r

Mobi l i tyHe lper mob i l i ty ;

94

// Set up an o b j e c t f o r p o s i t i o n

ObjectFactory pos ;

//Type = Rectang le

pos . SetTypeId (”ns3 : : RandomRectanglePosit ionAl locator ”) ;

//Setup pos t i on o f X and Y

pos . Set (”X” , RandomVariableValue

(UniformVariable (0 . 0 , border))) ; //where border

// i s the s i z e o f r e c t an g l e

pos . Set (”Y” , RandomVariableValue

(UniformVariable (0 . 0 , border))) ; //where border

// i s the s i z e o f r e c t an g l e

// ge t the random po s i t i o n

Ptr<Pos i t i onA l l o ca to r> t aPo s i t i onA l l o c =

pos . Create()−>GetObject<Pos i t i onA l l o ca to r> () ;

// Set up the mob i l i t y model

mobi l i ty . SetMobil ityModel

(”ns3 : : RandomWaypointMobilityModel” ,

”Speed” , RandomVariableValue (ConstantVariable (2)) ,

”Pause” , RandomVariableValue (ConstantVariable (5)) ,

” Po s i t i onA l l o c a t o r ” , PointerValue (t aPo s i t i onA l l o c)) ;

// s e t the random po s i t i o n s

mobi l i ty . S e tPo s i t i onA l l o c a t o r (t aPo s i t i onA l l o c) ;

// I n s t a l l

mobi l i ty . I n s t a l l (c) ;

//where c i s a node conta iner

95

5.4 Realistic with SUMO Simulation Scenario

5.4.1 Simulation Details

A realistic VANET scenario includes nodes that is vehicles and moving with

high speeds into long distances in a highway. NS-3 does not provide modules for

VANET scenarios, in this way external simulation tools have been used.

The first tool is SUMO, as mentioned in chapter 3, SUMO is a simulation tool

which produce a vehicle traffic mobility topology. The second tool is MOVE which

produce trace files for NS-2. Finally a helper of NS-3 called ns3::Ns2MobilityHelper

provides an Application Programming Interface (API) for use NS-2 mobility trace

files into NS-3.

In mobility scenario there three types of vehicles:

• Car with length equal to 5m and max speed equal to 100 km/h.

• Bus with length equal to 11m and max speed equal to 80 km/h.

• Truck with length equal to 18m and max speed equal to 60 km/h.

The vehicles is moving around a rectangular which has width 2000m and height

600m. For more details about the topology and implementation at SUMO see

chapter 3. The topology is used with four instances about the number of vehicles:

• 50 vehicles,

• 100 vehicles,

• 150 vehicles,

• 200 vehicles.

Into this vehicles UDP client-server applications have been set up. The time

interval of UDP server is 0.04 seconds and size of send packets is 640 bytes. The

vehicles which is client or server is chosen randomly with the condition that the

96

distance between source and destination (client and server) is more than 1000

meters (see section about transmission range) in order to have next hoping of the

packet and routing protocol is being used. The number of UDP applications is

various from 10 to 50 with a step by 10. Final in the simulation 105 different seeds

have been used, that means 105 different sequences of random UDP client-servers

has been set up.

5.4.2 Simulation Results

Figure 5.7: PLR into SUMO Topologies

97

The figure 5.7 shows the PLR in contrast the number of UDP application that

have been set up. As it could be seen at this figure then the number of vehicles

is low (50 nodes), the PLR is stabilized due to the small routing paths. The E-

GPSR have better results than OLRS and AODV, but in compared of the other

topologies of 100,150 and 200 nodes the PLR is higher. The reason is that the

density of vehicle is lower, so some big gaps between vehicles appears.

OLSR and AODV starts with a medium PLR and seems is not working when

a lot of applications is simultaneously transmitting. In the other side E-GPSR

achieves a stable and lower PLR. So definitely, E-GPSR has better performance

in all topologies (50, 100, 150 and 200 nodes) that the OLSR and AODV. Also

is clear obvious that OLSR and AODV is not good enough to take over VANET

topologies.

5.4.3 NS-3 Code

Here is the code for NS-3 using Ns2Mobility helper for input a scenario with

moving vehicles:

Listing 5.6: Set-up Ns2Mobility Helper - NS-3 Code

//Enable l o g g i n g from the ns2 he l p e r

//LogComponentEnable (” Ns2Mobi l i tyHe lper ” ,LOG LEVEL DEBUG) ;

//Parse command l i n e a t t r i b u t e

std : : s t r i n g t r a c eF i l e=”/FILE−PATH/nodes200 . ns movements” ;

std : : s t r i n g l o gF i l e=” log1 . l og ” ;

u i n t 32 t numberOfnodes = 200 ;

// Create Ns2Mobi l i tyHe lper wi th

// the s p e c i f i e d t race l o g f i l e as parameter

Ns2Mobi l i tyHelper ns2 = Ns2Mobi l i tyHelper (t r a c eF i l e) ;

// open l o g f i l e f o r output

std : : o f s t ream os ;

98

os . open (l o gF i l e . c s t r ()) ;

// Create a l l nodes .

NodeContainer c ;

c . Create (numberOfnodes) ;

// The be low s e t o f h e l p e r s w i l l

// he l p us to put t o g e t h e r the w i f i NICs we want

WifiHelper w i f i ;

YansWifiPhyHelper wif iPhy = YansWifiPhyHelper : : De fau l t () ;

// s e t i t to zero ; o therwise , gain w i l l be added

wif iPhy . Set (”RxGain” , DoubleValue (−10)) ;

YansWifiChannelHelper wi f iChanne l ;

wi f iChanne l . SetPropagationDelay

(”ns3 : : ConstantSpeedPropagationDelayModel ”) ;

wi f iChanne l . AddPropagationLoss

(”ns3 : : Fr i i sPropagat ionLossModel ”) ;

wif iPhy . SetChannel (wi f iChanne l . Create ()) ;

wif iPhy . SetPcapDataLinkType

(YansWifiPhyHelper : : DLT IEEE802 11 RADIO) ;

// Add a non−QoS upper mac , and add a ra t e c on t r o l

NqosWifiMacHelper wifiMac = NqosWifiMacHelper : : De fau l t () ;

w i f i . SetStandard (WIFI PHY STANDARD 80211p SCH) ;

w i f i . SetRemoteStationManager (a lgor i thm) ;

NetDeviceContainer f d e v i c e s = w i f i . I n s t a l l

(wifiPhy , wifiMac , c) ;

ns2 . I n s t a l l () ;

99

Chapter 6

Conclusion & Future Work
This thesis has introduced an emergency field that is VANET. It has been

described technologies and techniques that is take in place into VANET networks.

Furthermore simulations tools such as NS-3 and SUMO have been presented

which is mainly used from the researchers of this technology field. Also it is being

shown in practice how to creating a complete VANET scenario in NS-3, including

the setting up step by step of MAC and PHY layers, the routing protocol and the

UDP client-server. In addition, it been presented a new Position-Based routing

Protocol which is E-GPSR, developed for NS-3.

It has been checked the ability of AODV,OLSR and E-GPSR to create a routing

path and has been measuring the maximum distance that is possible into VANET

scenario using NS-3, which is 500m. It has been investigated the performance of

AODV, OLSR and E-GPSR, in a simple static, dynamic and finally a realistic

scenarios.

The performance analysis has been demonstrated that in simple Static Grid

Topology all routing protocols (AODV, OLSR ,E-GPSR) have similar perfor-

mance and could establish routing paths within an UDP client-server application.

In the Dynamic Mobility Topology, it has been shown that AODV and OLSR

have very medium performance and weakness to make routing paths, in contrast

E-GPSR showing a well promising performance and durability to find routing

paths.

In last and finally realistic scenario includes nodes that is vehicles and mov-

ing with high speeds, the analysis gave the determinant results. In this case the

E-GPSR has shown that can cope with high dynamic and frequently changing

100

VANET topologies, and achieves very promising results. In contrast OLSR and

AODV with a very low performance shows that can not working in such environ-

ments such us VANET topologies, and amplifies the conviction that algorithms

from MANET is not suitable for VANET case.

Simulation results have demonstrated that E-GPSR this new routing strategy

is able to guarantee lower PLR than other routing algorithms already available

in NS-3.

For future work is planing to develop more sophisticate techniques into E-

GPSR mechanism and testing into NS-3 simulations. Furthermore bigger and

more complex topologies is on the way in order to cover more realistic VANET

scenarios. Further plan is going to investigate more Position-based Algorithms

and implement into NS-3 as well as to testing into realistic VANET scenarios.

Finally a comparison among Position-based protocols is being conceived.

Other future work includes the sector of Cluster-based routing protocols, which

is also a very promising technique for VANET communication. In this directions

is planning to developed basic Cluster-based algorithms and implemented to NS-

3. Finally a comparison between Position-based protocols and Cluster-based is

on procedure.

We believe that our work represents a contribution for all people that want to

start working on VANETs.

101

Appendix A
Shell Script to automatically create entries for sumo XML-file

Listing 1: Shell Script to Create XML-Files for SUMO

#crea t e the f i l e

touch h e l l o . rou . xml ;

FILE=” h e l l o . rou . xml” ;

echo ”<routes>” >> $FILE

echo ”<vtype a c c e l=\” 1 .0\ ” dec e l=\” 3 .0\ ”
id=\”Car\” length=\” 5 .0\ ” maxspeed=\” 100.0\ ”
sigma=\” 0 .0\ ” />” >> $FILE

echo ”<vtype a c c e l=\” 1 .0\ ” dec e l=\” 3 .0\ ”
id=\”Bus\” length=\” 11 .0\ ” maxspeed=\” 80 .0\ ”
sigma=\” 0 .0\ ” />” >> $FILE

echo ”<vtype a c c e l=\” 1 .0\ ” dec e l=\” 3 .0\ ”
id=\”Truck\” length=\” 18 .0\ ” maxspeed=\” 60 .0\ ”
sigma=\” 0 .0\ ” />” >> $FILE

#in s e r t newl ine to f i l e

echo ”” >> $FILE

echo ”<route id=\” route1 \” edges=\” s t a r t 1 l r up r l down

l r up r l down \”/>” >> $FILE

echo ”<route id=\” route2 \” edges=\” s t a r t 2 r l down l r up

r l down l r up \”/>” >> $FILE

102

echo ”” >> $FILE

START=0;

NB NODES=200;

ID CAR A=1;

ID CAR B=2;

DEPART TIME A=1;

until [$START −gt $NB NODES] ; do

for j in ‘ seq 1 2 ‘ ;

do

#in s e r t a func t i on f o r choos ing one

#of v e h i c l e t ype s randomly

NUMBER=$ [($RANDOM % 3) + 1]

case $NUMBER in

1)

TYPE=”Car”

; ;

2)

TYPE=”Bus”

; ;

3)

TYPE=”Truck”

; ;

e sac

103

echo ” <v eh i c l e depart=\”${DEPART TIME A}\
” id=\”veh${ID CAR A}\” route=\” route$ { j }\
” type=\”${TYPE}\” />” >> $FILE

l e t ID CAR A=$ID CAR A+1

l e t DEPART TIME A=$DEPART TIME A+2

done

l e t START=$START+1

done

echo ”</routes>” >> $FILE

104

Appendix B

Instructions to use MOVE

Once you have run the command

Listing 2: Start MOVE

java −j a r MOVE. j a r

You will see the GUI of Fig 1.

Figure 1: MOVE-GUI Fig. 1

Select the Mobility Model button to open the Mobility Model generator

window as shown to Fig 2.

Then choose the Configuration bottom of Simulation part of the window of

Fig 2.

As you do that , the window of Fig 3 will be appeared . Fill the fields (or

press the three dots to appear the file manager) Map file with a .net.xml file

and Routes file with a .rou.xml file . Fill the fields Begin End which is the

starting and ending time of simulation check the box SetOutPut(Trace File)

and fill (or use file manager) to set a output file . When you finish this and

check that everything is alright At the menu on the top press:

File -> Save as -> output.sumo.out.tr

105

This file will be used later. So , now close this window and go to the window

of Fig 2, when select the bottom Run Simulation of Simulation part of the

window the window of Fig 4 will be appeared . In the field

Sumo Configuration File put the file that you have just saved previously and

press the bottom OK this will be take some time . When you see Simulation

ended at time : ”the time that you have put previously” this mean that the

simulation has run successfully so close the window and go to the window of Fig

1 . Select Traffic Model bottom and the window of Fig 5 will appear . Choose

Dynamic Mobility bottom and you will see the window of Fig 6. From the

menu on the top press sequentially:

File->Import MOVe trace ->.rou.xml.sumo.tr (file)

After .net.xml (file) wait some time to load the files. When you noticed that

a table of nodes has appear press sequentially

File->Save AS -> my-scenario.tcl

If you reach that point, you have successfully created the tcl file for NS-2 But

the process doesnt stop here.

You have to delete some part of tcl file to be readable from NS-3 Delete the

code that shown to the listing 1

Listing 3: Delete Code form tcl-File

−−−−−−−−−−− at the begenning o f t c l f i l e −−−−−−−−−−−−−−−

==============

==

Define op t i ons

==

set va l (chan) Channel/WirelessChannel

;# channel type

set va l (prop) Propagation /TwoRayGround

;# radio−propagat ion model

106

set va l (n e t i f) Phy/WirelessPhy

;# network i n t e r f a c e type

set va l (mac) Mac/802 11

;# MAC type

set va l (i f q) Queue/DropTail /PriQueue

;# in t e r f a c e queue type

set va l (l l) LL

;# l i n k l a y e r type

set va l (ant) Antenna/OmniAntenna

;# antenna model

set va l (i f q l e n) 50 ;# max packe t in i f q

set va l (nn) 356 ;# number o f mobi lenodes

set va l (rp) AODV ;# rou t ing p ro t o co l

set opt (x) 4252 ;# x coord ina te o f t opo l o gy

set opt (y) 652 ;# y coord ina te o f t opo l o gy

set stopTime 999.00

==

Main Program

==

#

I n i t i a l i z e Globa l Var iab l e s

#

set ns [new Simulator]

set t r a c e f d [open w]

$ns trace−a l l $ t r a c e f d

se t up topography o b j e c t

set topo [new Topography]

$topo l o a d f l a t g r i d $opt (x) $opt (y)

#

107

Create God

#

create−god $va l (nn)

===

TraCI Connection Setup

===

set mob i l i t y I n t e r f a c eC l i e n t [new TraCIClient]

$mob i l i t y I n t e r f a c eC l i e n t set−remoteHost l o c a l h o s t

$mob i l i t y I n t e r f a c eC l i e n t set−remotePort 8888

$mob i l i t y I n t e r f a c eC l i e n t set−t ime In t e rva l 1 . 0

puts ”Connect to TraCI s e r v e r ”

$mob i l i t y I n t e r f a c eC l i e n t connect

$mob i l i t y I n t e r f a c eC l i e n t startSimStepHandler

Configure node

set chan 1 [new $val (chan)]

$ns node−c on f i g −adhocRouting $va l (rp) \
−l lType $va l (l l) \
−macType $va l (mac) \
−i fqType $va l (i f q) \
−i f qLen $va l (i f q l e n) \
−antType $va l (ant) \
−propType $va l (prop) \
−phyType $va l (n e t i f) \
−topoInstance $topo \
−agentTrace OFF \
−routerTrace OFF \
−macTrace OFF \
−movementTrace OFF \
−channel $chan 1

108

for {set i 0} { $ i < $va l (nn)} { i n c r i } {
set node ($ i) [$ns node]

$node ($ i) random−motion 0 ;# d i s a b l e random motion

$mob i l i t y I n t e r f a c eC l i e n t add−node $node ($ i)

}
#

−−−−−−−−− at the end o f the t c l f i l e −−−−−−−−−−−−−−−−−−−−

Te l l nodes when the s imu la t i on ends

#

for {set i 0} { $ i < $va l (nn) } { i n c r i } {
$ns at $stopTime ”$node ($ i) r e s e t ” ;

}
$ns at $stopTime ” $mob i l i t y I n t e r f a c eC l i e n t c l o s e ”

$ns at $stopTime ” stop ”

$ns at $stopTime ”puts \”NS EXITING . . . \ ” ; $ns ha l t ”

proc stop {} {
g l oba l ns t r a c e f d

$ns f lu sh−t r a c e

c l o s e $ t r a c e f d

}

puts ” S ta r t i ng Simulat ion . . . ”

$ns run

109

Figure 2: MOVE-GUI Fig. 2

110

Figure 3: MOVE-GUI Fig. 3

Figure 4: MOVE-GUI Fig. 4

111

Figure 5: MOVE-GUI Fig. 5

Figure 6: MOVE-GUI Fig. 6

112

Appendix C
The following list of packages should be accurate for Ubuntu 9.10 release; other

releases or other Debian-based systems may slightly vary. minimal requirements

for C++ (release): This is the minimal set of packages needed to run ns-3 from

a released tarball.

sudo apt−get i n s t a l l gcc g++ python

minimal requirements for Python (release): This is the minimal set of packages

needed to work with Python bindings from a released tarball.

sudo apt−get i n s t a l l gcc g++ python python−dev

Mercurial is needed to work with ns-3 development repositories.

sudo apt−get i n s t a l l mercur ia l

Running python bindings from the ns-3 development tree (ns-3-dev) requires

bazaar

sudo apt−get i n s t a l l bzr

Debugging:

sudo apt−get i n s t a l l gdb va l g r ind

GNU Scientific Library (GSL) support for more accurate WiFi error models

sudo apt−get i n s t a l l g s l−bin l i b g s l 0−dev l i b g s l 0 l d b l

The Network Simulation Cradle (nsc) requires the flex lexical analyzer and

bison parser generator:

sudo apt−get i n s t a l l f l e x b i son

To install gcc-3.4 for some Network Simulation Cradle (nsc) stacks:

sudo apt−get i n s t a l l g++−3.4 gcc−3.4

113

To read pcap packet traces

sudo apt−get i n s t a l l tcpdump

Database support for statistics framework

sudo apt−get i n s t a l l s q l i t e s q l i t e 3 l i b s q l i t e 3 −dev

Xml-based version of the config store (requires libxml2 ¿= version 2.7)

sudo apt−get i n s t a l l l ibxml2 l ibxml2−dev

A GTK-based configuration system

sudo apt−get i n s t a l l l i b g t k2 .0−0 l i b g t k2 .0−dev

To experiment with virtual machines and ns-3

sudo apt−get i n s t a l l vtun lx c

Support for utils/check-style.py code style check program

sudo apt−get i n s t a l l un c ru s t i f y

Doxygen and related inline documentation:

sudo apt−get i n s t a l l doxygen graphviz imagemagick

sudo apt−get i n s t a l l t e x l i v e t e x l i v e−pdf

t e x l i v e−l a tex−ext ra t e x l i v e−gener i c−ext ra

t e x l i v e−gener i c−recommended

The ns-3 manual and tutorial are written in reStructuredText for Sphinx

(doc/tutorial, doc/manual, doc/models), and figures typically in dia:

sudo apt−get i n s t a l l python−sphinx dia t e x l i v e

t e x l i v e−pdf t e x l i v e−l a tex−ext ra

t e x l i v e−extra−u t i l s t e x l i v e−gener i c−recommended

Support for Gustavo Carneiro’s ns-3-pyviz visualizer

sudo apt−get i n s t a l l python−pygraphviz python−kiwi

python−pygoocanvas l ibgoocanvas−dev

114

Support for openflow module (requires some boost libraries)

sudo apt−get i n s t a l l l i bboo s t−s i gna l s−dev
l i bboo s t−f i l e s y s t em−dev

115

Glossary
ACK - ACKnowledgement

AIFS - Arbitration Inter-Frame Spaces

AODV - Ad-Hoc On Demand Distance Vector Routing Protocol

CCH - Control CHannel

CSMA/CD - Carrier Sense Multiple Access with Collision Detection

CW - Contention Window

DLL - Data Link Layer

DCF - Distributed coordination function

DSDV - Destination-Sequenced Distance-Vector

DSR - Dynamic Source Routing

EGPSR - Extended-GPSR

EDCA - Enhanced Distributed Channel Access

GPS - Global Positioning System

GPSR - Greedy Perimeter Stateless Routing

LLC - Logical Link Control

MANET - Mobility Ad-hoc NETwork

MOVE - MObility model generator for VEhicular networks

NAV - Network Allocation Vector

NS-2 - Network Simulator 2

NS-3 - Network Simulator 3

OLSR - Optimized Link State Routing Protocol

OSI - Open Systems Interconnection

PHY - PHYsical layer

PBRP - Position Based Routing Protocol

PLR - Packet Loss Ratio

PLCP - Physical Layer Convergence Protocol

PMD - Physical Medium Dependent

RTS/CTS - Request To Send frame/Clear To Send

RREQ - Route Request

116

SAP- Service Access Point

SAP - Subnetwork Access Protocol

SCH - Service CHannel

SUMO - Simulation of Urban MObility

TBRP - Topology Based Routing Protocol

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

V2I - Vehicle to Infrastructure communication

V2V - Vehicle to Vehicle communication

VANET - Vehicular Ad-hoc NETwork

VII - Vehicle Infrastructure Integration

WAVE - Wireless Access in Vehicular Environments

WSMP - WAVE Short Messages Protocol

117

References

[1] IEEE 1609. IEEE 1609 Family of Standards for for Wireless Access in Ve-

hicular Environments (WAVE), available from IEEE standards.

[2] IEEE 802.11. Information Technology - Telecommunications and Informa-

tion Exchange between Systems - Local and Metropolitan Area Networks -

Specific Requirements - Part 11: Wireless (LAN) Medium Access Control

(MAC) and Physical Layer (PHY) Specifications. ANSI/IEEE Std. 802.11,

ISO/IEC 8802-11, 1999.

[3] IEEE 802.11p. IEEE Draft Standard for Information Technology -

Telecommunications and information exchange between systems - Local and

metropolitan area networks - Specific requirements - Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) specifications

Amendment 6: Wireless Access in Vehicular Environments. IEEE Std

802.11p, 2010.

[4] M. Abdoos, K. Faez, and M. Sabaei. Position based routing protocol with

more reliability in mobile ad hoc network. In Internet, 2009. AH-ICI 2009.

First Asian Himalayas International Conference on, pages 1 –4, Nov. 2009.

[5] Yuh-Shyan Chen Chung-Ming Huang. Telematics Communication Technolo-

gies and Vehicular Networks: Wireless Architectures and Applications. Aug.

2010.

[6] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR),

2003.

[7] cygwin. Cygwin , linux feeling - on windows. available at

{http://www.cygwin.com/}, 2011.

[8] D. Maltz D. Johnson, Y. Hu. The Dynamic Source Routing Protocol (DSR)

for Mobile Ad Hoc Networks for IPv4, 2007.

118

REFERENCES

[9] Josh Broch David B. Johnson, David A. Maltz. Dsr: The dynamic source

routing protocol for multi-hop wireless ad hoc networks. 2001.

[10] S. Deering and R. Hinden. RFC 2460 Internet Protocol, Version 6 (IPv6)

Specification. Internet Engineering Task Force, Dec. 1998.

[11] ETSI. Intelligent transport systems (ITS), radiocommunications equipment

operating in the 5 855 MHz to 5 925 MHz frequency band, harmonized EN

covering essential requirements of article 3.2 of the RTTE directive., Dec.

2007.

[12] V. Govindaswamy, W.L. Blackstone, and G. Balasekara. Survey of recent

position based routing mobile ad-hoc network protocols. In Computer Mod-

elling and Simulation (UKSim), 2011 UkSim 13th International Conference

on, pages 467 –471, Apr. 2011.

[13] Kenneth P Laberteaux Hannes Hartenstein. VANET:Vehicular Applications

and Inter-Networking Technologies. 2010.

[14] IEEE 802.2. Logical Link Control. ANSI/IEEE Std 802.2-1985, 1984.

[15] ITS. Commission Decision of 5 August 2008 on the harmonised use of radio

spectrum in the 5875 - 5905 MHz frequency band for safety-related applica-

tions of Intelligent Transport Systems, 2008.

[16] B Govinda Laxmi Ramesh Babu B Jagadeesh Kakarla, S Siva Sathya. A

survey on routing protocols and its issues in vanet. International Journal of

Computer Applications (0975 8887), 28(4):38 –44, Aug. 2011.

[17] Ding Junxia. Simulation and evaluation of the performance of fsr routing

protocols based on group mobility model in mobile ad hoc. In Compu-

tational Intelligence and Software Engineering (CiSE), 2010 International

Conference on, pages 1 –4, Dec. 2010.

[18] Fan Li and Yu Wang. Routing in vehicular ad hoc networks: A survey.

Vehicular Technology Magazine, IEEE, 2(2):12–22, Jun. 2007.

119

REFERENCES

[19] Mohammad Moustafa Qabajeh Liana Khamis Qabajeh, Laiha Mat Kiah. A

qualitative comparison of position-based routing protocols for ad-hoc net-

works. IJCSNS Interantional Journal of Computer Science and Network

Security, 9(2):131 – 140, Feb. 2009.

[20] Qiang Liu, Hua Wang, Jingming Kuang, Zheng Wang, and Zhiming Bi.

Wsnp1-1: M-tora: a tora-based multi-path routing algorithm for mobile ad

hoc networks. In Global Telecommunications Conference, 2006. GLOBE-

COM ’06. IEEE, pages 1 –5, Dec. 2006.

[21] Tom H. Luan, Xinhua Ling, and Xuemin Shen. Mac performance analysis

for vehicle-to-infrastructure communication. In Wireless Communications

and Networking Conference (WCNC), 2010 IEEE, pages 1 –6, Apr. 2010.

[22] Wu Ming, Yang Lin-tao, Li Cheng-yi, and Jiang Hao. Capacity, collision

and interference of vanet with ieee 802.11 mac. In Intelligent Networks and

Intelligent Systems, 2008. ICINIS ’08. First International Conference on,

Nov. 2008.

[23] MOVE. Mobility model generator for vehicular networks. available at

http://sourceforge.net/apps/mediawiki/move, 2011.

[24] Hemanth Narra, Yufei Cheng, Egemen K. Çetinkaya, Justin P. Rohrer, and

James P.G. Sterbenz. Destination-sequenced distance vector (DSDV) routing

protocol implementation in ns-3. pages 439–446, March 2011.

[25] NS-3. Network simulator. available at http://www.nsnam.org/, 2012.

[26] NS2. Network simulator - ns-2. available at

{http://nsnam.isi.edu/nsnam/index.php/Main_Page}, 2011.

[27] Yanlin Peng, Z. Abichar, and J.M. Chang. Roadside-aided routing (rar) in

vehicular networks. In Communications, 2006. ICC ’06. IEEE International

Conference on, volume 8, Jun. 2006.

[28] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance

Vector (AODV) Routing, 2003.

120

REFERENCES

[29] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-

sequenced distance-vector routing (dsdv) for mobile computers. SIGCOMM

Comput. Commun. Rev., 24(4):234–244, Oct. 1994.

[30] J. Postel and J. K. Reynolds. RFC 1042: Standard for the transmission of

IP datagrams over IEEE 802 networks, Feb. 1988.

[31] M. Rajput, P. Khatri, A. Shastri, and K. Solanki. Comparison of ad-hoc

reactive routing protocols using opnet modeler. In Computer Information

Systems and Industrial Management Applications (CISIM), 2010 Interna-

tional Conference on, pages 530 –534, Oct. 2010.

[32] Sanjoy Das Ram Shringar Raw. Perfomance comparison of position-based

routing protocols in vehicle-to-vehicle (v2v) communication. International

Journal of Engineering Science and Technology (IJEST), 3(1):435 – 443,

Jan. 2011.

[33] David Hutchison ResiliNets, James P.G. Sterbenz. Resilinets research group.

available at http://www.ittc.ku.edu/resilinets, 2011.

[34] H. Somnuk and M. Lerwatechakul. Multi-hop aodv-2t. In Intelligent Ubiq-

uitous Computing and Education, 2009 International Symposium on, pages

214 –217, may 2009.

[35] Tao Song, Weiwei Xia, Tiecheng Song, and Lianfeng Shen. A cluster-based

directional routing protocol in vanet. In Communication Technology (ICCT),

2010 12th IEEE International Conference on, pages 1172 –1175, Nov. 2010.

[36] M.N. SreeRangaRaju and J. Mungara. A unified approach to enhance the

performance of zrp for manets on an urban terrain. In Progress in Informatics

and Computing (PIC), 2010 IEEE International Conference on, volume 1,

pages 532 –536, Dec. 2010.

[37] SUMO. Simulation of urban mobility. available at

http://sumo.sourceforge.net/, 2011.

121

REFERENCES

[38] Daxin Tian, Yunpeng Wang, Guangquan Lu, and Guizhen Yu. A vanets

routing algorithm based on euclidean distance clustering. In Future Com-

puter and Communication (ICFCC), 2010 2nd International Conference on,

volume 1, pages V1–183 –V1–187, May 2010.

[39] O. Tonguz, N. Wisitpongphan, F. Bai, P. Mudalige, and V. Sadekar. Broad-

casting in vanet. In 2007 Mobile Networking for Vehicular Environments,

pages 7 –12, May 2007.

[40] Y. Toor, P. Muhlethaler, and A. Laouiti. Vehicle ad hoc networks: ap-

plications and related technical issues. IEEE Comm. Surveys & Tutorials,

10(3):74 –88, Sep. 2008.

122

