TN Technological Educational Institute

of Thessaloniki (7 [9

e I 2 TN
""""""" Department of Information Technology

SPARQL, the query language for RDF

(Bachelor’s Thesis)

Written by:
Fotini Bogiatzi

fotinibogiatzi@gmail.com Thesis Supervisor:
Dr. Euclid Keramopoulos

euclid@it.teithe.gr
Thessaloniki 2011

Prologue

This Bachelor’As thesis titled "SPARQL, the query language for RDF" was written by Fotini
Bogiatzi during the academic semester of 2010-2011 while studying in the Department of
Information Technology, at the Technological Educational Institute of Thessaloniki, Greece.

The supervisor for this thesis was Dr. Euclid Keramopoulos.

Abstract

The goal of this thesis is to provide an introduction for people new to the Semantic Web,
about the query language SPARQL. The Semantic Web is the Web of meaning, where
information is no longer only displayed by machines, but also understood and processed by
them. The goal of Semantic Web is to have unambiguous information, reusability of data
and distributed knowledge. To realize the Semantic Web goal, data on the Web needs to
be represented in a simple data model that even machines can understand. This model is
the Resource Description Framework (RDF), a graph model written in triples. The RDF
language describes resources. Ontologies are needed to describe concepts that the RDF
data will build upon. Ontologies are designed to create class hierarchies, abstract concepts,
etc. The Web Ontology Language (OWL) is used to create ontologies. With ontologies and
data, RDF datasets are born, existing all over the Web, available for sharing, reusability,
and distribution of information. The RDF data needs to be queried, and therefore a query
language is needed. In the Semantic Web vision, this language is called SPARQL Query
Language for RDF. This thesis analyzes SPARQL, its syntax, its constructs and provides

examples of its use.

[eplAndn

O otdyoc¢ g Tapodoag TTuXLoknG etvo 1 Snuovpyiol puotg OAOKANPWEVIE ELOAYWYNG
ot YAwooo ouwtnudtwv SPARQL. Ytoxelel ot ATopo TOu dev £XOUV YVROOELS YLOL
Tov LnMuoooroykd lotd ko Tig texvoloyieg tou. O Inuaoioloyikdg lotdg eivor
eméktoom Tov lotol dmov mpoodidel vomua oto Sedopéva. Me tov nuactoloyikd lotd
N TAnpowopia dev Tapovotdleton amAd amd T pnyovég, aAN& pTopel va kortotvonOet
ko voo eme€epyaotel amd avtéc. O otdxog Tou Lnuacloloylkol lotol eivo T
Snovpyia EexkdBopnc ko copfic TANpoyoplag, 1 eTavaxpnoLLoToinon Twv dedopévwy
kot 1 €0koAn katavops) yvoone. o v emitevxBel o otdyog tou Lmuoololoyikol
lotoV, Tpémel Ta Sedopéval Tou umdpxouv otov loTd va avamapoctoBoldv pe TN
pop@h evdg amtAov povtélovu dedopévwv. Me autdv tov TpdTo akdpaL Kol oL unyovég
uopolv val kotavorjoouy tow dedopévar. To povtélo autd twv dedopévwv ovoudleton
Resource Description Framework (RDF), ko eivon évar povtédo ypdyov. H yAdooo
RDF eival pioe YAOOOO avaTtalp&oToong TG TANPOYopilog OXETIKE e TdpouG oTov
lotd. Ovtoloyiec mpoodidouve peta-mtAnpoopior otor HdN undpyovto dedopéva. O
ovtoloyiec oxedldoTnkay yiow THV SMuLovpyia LEpapXL®dV KALOEWY, ALPTPNILEVOV EVVOLDV,
kTtA. O ovtohoyieg dnuiovpyovvran pe tnv YAdooo Web Ontology Language (OWL). Me
ovtohoyiec ko deSopéva, Toe PAP Sataioete dnuiovpyoivtan, Tomtobetobvtol otov loTd,
ko efvorl étoual yiow Slatvopt], KoTavopn Ko €TOVOLXPMNOLLOTIOINoM TN TIATpopopiag.
To RDF 8ebopéva ypetdlovTol piot YAOooO OUTHUATWY. 2TOoV LMUoololoykd loTd,
avth 1 yYAwooa ovopdleto SPARQL. H mapodoa ruytoky avahoelr Tnv SPARQL, to

OUVTOLKTLKO TTG, KOl TTAPEYEL TTOLPOLSELY LTl YLOL TNV XPNoM TNG.

Acknowledgements

| would like first to give thanks to my supervisor, Dr. Euclid Keramopoulos for his patience
when | felt stressed, and for his help.

Furthermore, | would like to express my immense gratitude for Michal Nagy, for his
support and fruitful discussions.

A shout-out goes to my friends for their support, and to my family for their patience.

Contents

Contents

List of Figures

1 Semantic Web

1.1 General
1.2 RDF . . .
121 RDF Graph.
122 URI. ..
1.2.3 Syntax
1231 BlankNodes

1.2.4 RDF Containers
1.2.41 Unordered Container, Bag

1.2.4.2 Ordered Container, Sequence

1.2.4.3 Container of Alternatives, Alternative

1.2.5 RDF Collections

1.3 Notations
131 General
1.3.1.1 Conversion between formats

1.32 Notation 3 L
133 Turtle
134 N-Triples
135 RDF/XML

1.4 RDF Storages
141 Jenao

CONTENTS 9

1.42 Oracle Spatial RDF 35
143 Sesame 35
1431 Summary 36

1.43.2 Namespaces 37

1433 Contexts 37

1.43.4 Types 38

1435 Explore. 39

1.43.6 Query 40

1.43.7 Export 41

1.5 Epilogue 42
2 Ontologies 45
2.1 General 45
2.2 RDFS -RDF Schema, 46
221 Classes e 48
222 Properties 49
2.2.3 Container Classes and Properties 50
224 RDF Collections 52

23 OWL 54
2.3.1 Introduction to OWL Sub-languages 55
2.3.1.1 OWL Datatypes 56

232 OWLLite 56
2321 Features 57

2322 Classes 57

2.3.2.3 Equality - Inequality Features 57

2.3.2.4 Property Characteristics 58

2.3.2.5 Property Restrictions 61

2.3.2.6 Restricted Cardinality 62

2.3.2.7 Extra Restrictions 63

233 OWLDL e 64
234 OWLFull .00 64

24 Reasoners 65

2.4.1 Forward chaining reasoners L. 65

10

CONTENTS

2.4.2 Backward chaining reasoners 66
2.4.3 Description Logic reasoners 66

2.5 Epilogue 66
Protégé 69
3.1 Introduction 69
3.2 Protégé Features L 70
3.3 Comparison of Versions 72
3.4 Demonstration of Protégé L. 73
341 Classes 74
342 Properties 7
3.4.3 Instances - Individualso 79
3.44 Refactoring 80
345 Reasoning 80
346 OWLViz 81
347 Export 82
348 Plug-lns 82

3.5 Epilogue 84
SPARQL 85
41 General 85
42 Syntax 86
421 BasicQuery 37
42.1.1 Blank nodesinaqueryresult 89

42.1.2 Guidelinesand syntax 89

422 Graph Patterns 91
4221 Basic Graph Patterns 91

4222 Group Graph Patterns 91

4223 Optional Graph Patterns 94

4224 Alternative Graph Patterns 97

4225 Patterns on Named Graphs 99

4.2.3 Solution Sequence Modifiers 100
4231 ORDERBY 100

CONTENTS 11
4232 Projection 102

4233 DISTINCT 102

4234 REDUCED. 103

4235 LIMIT 104

4236 OFFSET 106

424 Query Forms 106

4.3 Comparison with SQL and XQuery, 111
4.4 Epilogue 112
Bibliography 115

List of Figures

1.1.1 The Semantic Web stack [10] 20
1.2.1 RDF graph representing one triple 21
1.2.2 RDF graph representing multiple triples 22
1.2.3 Subject - Predicate - Object statement 24
1.2.4 Pairwise disjointness 27
1.2.5 Example of a blank node [37]o 28
1.3.1 The relationship between RDF notations 30
1.4.1 Starting screen of Sesame Workbench 36
1.4.2 Creating a new repository in Sesame L. 36
1.4.3 Persistent storage for ourdata 37
1.4.4 Summary of the new repository 37
1.4.5 Uploading of RDF data to repository 38
1.4.6 Existing namespaces in the repository L. 38
1.4.7 Contexts in the repository 39
1.4.8 Existing types in the repository 39
1.4.9 All the object properties 40
1.4.1AIl the datatype properties 40
1.4.11Datatype properties of an ontology with inferred axioms 41
1.4. 1Al the symmetric properties 41
1.4.13The empty query window in Sesame Workbench 42
1.4.14Choosing the desirable format to export the RDF data 42
2.2.1 An RDF container of type rdf:Bag 51
2.2.2 An example of an Alternative [37] 52
2.3.10WL sub-languages 56

14 List of Figures

2.3.2 A visualization of the owl:AllDifferent construct 59
2.3.3 lllustration of the inverseOf construct 59
3.4.1 Protégé 4.0.2 welcome screeno 74
3.4.2 Active Ontology screen 74
3.4.3 Entities tab in the family ontology 75
344 Addingasubclass 76
3.4.5 List of Classes of the family ontology 76
3.4.6 Choosing an equivalent class for the class Child 77
3.4.7 Creating cardinality restriction for the hasMother property 77
3.4.8 List of Object Properties in family ontology 78
3.4.9 List of Data Properties for family ontology 79
3.4.10ndividuals Tab with additional information 80
3.4.110bject Property assertion for Individual "Sophia" 81
3.4.1%ist of Individuals grouped by Class 82
3.4.1Results from the reasoner 83
3.4.14nferred class hierarchy 83
3.4.1%/isualization of the class hierarchy 84
421 Query result 88
4.2.2 Individuals with their first name as "Peter"o 92
4.2.3 All individuals under the age of 30 93
4.2 4 Results of the bound function 94
4.25Results of tbound()o 94
4.2.6 Parents with children and their friends 95
4.2.7 Parents with children that could possibly have friends 96
428 FILTER on OPTIONAL clause effect 97
4.2.9 People that belong to the Sibling class 98
4.2.10howing people who belong to the Brother or Sister class 98
4.2.185how the first names for those that belong in the Brother class 99
4.2 1AIl the male individuals that haveage 101
4.2 13All the male individuals that have an age, ordered according to their age . . . 101

4.2.18how possible grandparents in the dataset 102

List of Figures 15

4.2.15The results are significantly decreased now, all of them unique 103
4.2.16All the possible mothers without any modifier 104
4.2 1AIl the mothers with the effect of the REDUCED modifier 104
4.2 1%eople in the dataset under age 50 105
4.2.19The three youngest people in the dataset 106
4.2.20The two oldest individuals that are under 50 107
4221The CONTRUCT resultset 108
4.2.227 new hasNiece property constructed L. 108
4.2.23The family:hasNephew property created by the CONSTRUCT clause 109
4.2.24The ASK query form returns "no" 110
4.2.25The ASK query form returns "yes" 110

4.2 2@Results of the DESCRIBE query form 111

Introduction

The World Wide Web as we know it today is a Web of documents. The machines were
designed to display the data located on the Web to humans, but are not able to understand
the data. Therefore they cannot make use of it. The vision to have machines that process
information developed and so Semantic Web was born. Semantic Web aims to make
information so simple that even machines can understand it. Therefore, complex human
language structures need to be explicitly defined in a simple way. This is the role of
the Resource Description Framework (RDF), from which RDF data is created. Abstract
concepts and class hierarchies need to be defined. Vocabularies are used for this purpose in
order to describe data using those concepts. These vocabularies are called ontologies, and
one of the possible languages to create them is the Web Ontology Language (OWL). There
is also a need for a tool to query the RDF data, which is called SPARQL query language
for RDF (recursively SPARQL). This thesis introduces the Semantic Web technology and
related concepts. It also analyzes the technologies with examples, in order to show SPARQL
and what it is capable of.

In Chapter 1, we introduce the Semantic Web and present its goals and benefits. We
introduce the RDF language, a building block for the Semantic Web. RDF is a language
describing resources in the form of a graph. This graph can represent statements about
facts, real or abstract. Resources are identified on the Web by Uniform Resource Identifiers),
which are unique and global and do not necessarily locate a website on the Web. In
the same chapter we also describe the syntax for RDF, as well as RDF containers and
collections. Notations are ways to write the RDF graph in a textual format. These are
analyzed and shown with examples. Tools to store RDF data are needed, the so-called
RDF storages. Sesame is an RDF storage that is analyzed with screenshots because it will
be used to demonstrate the SPARQL queries. In Chapter 2, we give an introduction to

ontologies. Ontologies are needed to describe abstract concepts in a domain model, to

17

18 List of Figures

create class hierarchies, define the structure of data, etc. We start with describing features
that exist in RDF Schema, a simple descriptive language for the creation of ontologies.
Furthermore we analyze and give examples for OWL features, since they build upon the
RDF Schema features. OWL language is the language used to create ontologies, and it has
three sublanguages, OWL Lite, OWL DL and OWL Full.

Chapter 3 demonstrates the ontology that was created for this thesis in Protégé. Protégé
is an open-source platform to create ontologies and domain models. This tool can be used
instead of manually writing OWL. First we present the features in the latest stable version
of Protégé, and then we compare the newer with the older stable version. After that we
demonstrate the usage of Protégé with the aid of screenshots.

Chapter 4 reaches the main point of this thesis, SPARQL. SPARQL is the query language
for RDF. In the first section of the chapter we provide general information about SPARQL,
from its creation to its different versions. Then we describe the syntax used, how to form
a basic query, add constraints, etc. The examples are used in Sesame, and screenshots

demonstrate the results. In the last section we compare SPARQL to SQL and XQuery.

Chapter 1

Semantic Web

1.1 General

The World Wide Web was created for humans, therefore most of the data on the Web
today is only displayed by machines, not understood by them [RDF]. Developers started to
think of a possible way to make these machines to perform tasks more intelligently. There
are two approaches to this problem.

One way is to make the machines so intelligent that they can understand the complex
human language. Artificial Intelligence is trying to solve this problem.

Another way is to simplify the description of the world so much, that even computers
can understand the meaning. This is where Semantic Web steps in. The Semantic Web is
the Web of data [35]. This is a vision for the Web that is being realized currently, in which
data is defined and described in a simple way. In Figure 1.1.1, we can see the Semantic
Web stack.

The Semantic Web realizes two goals - unambiguity and full descriptions [21]. One
goal of the Semantic Web is to have unambiguous and context-independent information.
The Resource Description Framework (RDF) was created for this reason, to simplify
the complexity of the human language, structure it and make it unambiguous. The
Universal Resource Identifiers (URI) exist to create unambiguous global references to
entities. Ontologies create unambiguous concepts. Another goal is to have more meaning
with the same data. By explicitly defining concepts and using reasoners on the ontologies,
new data can be inferred. By generating new data from the reasoners we can have more

meaning. Data designed to be used with the Semantic Web technology has to be in a

19

20 CHAPTER 1. SEMANTIC WEB

Rules Trust
Data Proof o
2
Data Logic <
Self- %
desc. Ontology vocabulary =
on
doc. RDF + rdfschema a
XML + NS + xmlschema

Figure 1.1.1: The Semantic Web stack [10]

certain format called RDF. RDF is a simple data model designed to describe concepts and
express knowledge in a distributed, decentralized world [39] [40]. The World Wide Web
Consortium (W3C) created the first recommendation for RDF in 1999 [28]. RDF is a
general-purpose language to describe resources on the Web. A resource can be a person,
a song, a video, a place, and more. The computers this way no longer process or present
data without understanding what it is about, but with RDF defined data, machines can
understand the meaning behind the data. This opens up new possibilities for "intelligent"
applications that process information.

"One benefit of the RDF property-centric approach is that it allows anyone to extend
the description of existing resources, one of the architectural principles of the Web" [31]
[11].

There is no permission needed to create new concepts in RDF, and RDF applications
can thus connect RDF files posted on various locations over the Internet and store them
into a single knowledge base. Let us consider that Amazon creates an RDF document with
prices of their books and their corresponding reviews, and BookDepository does the same
using the same vocabulary. An intelligent Semantic Web application can now take the
ontology, the RDF documents, and create a greater knowledge database by posting prices
and reviews of both online sellers for each book, therefore creating a comparison.

Another benefit is that new information can be inferred from these documents. This is

done by linking documents with their common vocabularies and by allowing each document

1.2. RDF 21

to use any vocabulary needed [13]. These vocabularies are called ontologies, and they will
be discussed further in the thesis. For example if one creates a complete ontology about
humans, there is no need for anyone to create another such ontology again. Whether future
programmers want to create ontologies about books and authors, or athletes and sports,
anything that is related to humans is already defined. The only thing needed to do is to use
concepts and properties from the human ontology, referring to them by their URIs (Uniform
Resource ldentifier), also to be explained in section 2.2. Therefore RDF makes it easier to
connect information spread across the Internet in distributed documents, and for knowledge

to be structured and reused.

1.2 RDF

1.2.1 RDF Graph

RDF graph is a collection of RDF triples [26]. The graph shows information in a way
that humans can immediately understand. An RDF graph visualizes one (Figure 1.2.1)
or more (Figure 1.2.2) RDF triples. These graphs are directed and labelled. A triple is a
statement written in RDF in order to describe an entity (real or abstract). It is in the format
of subject-predicate-object. Every triple expresses a fact. The classic Entity-Relationship
diagrams or Class diagrams are very similar as they are all designed to provide visual models

for concepts [53].

f:hasWife @

Figure 1.2.1: RDF graph representing one triple

The above example is an RDF graph representing one statement, stating the fact about a
resource. Below we can see an example of an RDF graph representing multiple statements,
therefore building an RDF dataset. The statements and syntax will be analyzed further
below.

It is important to note that the arrow must always point from the subject to the object
[34]. Using the RDF graph is a simple and easy way to understand and view the whole RDF

document or its subset. Furthermore it makes it easier to see the relationships between

22 CHAPTER 1. SEMANTIC WEB

—> f:Woman
A

f-hasMother
f:hasSibling rdf:type
f-hasChild
<— f:-Madaline
f.hasAge f:hasFirstName
Y
21 "Madaline"

Figure 1.2.2: RDF graph representing multiple triples

resources and properties. Every arrow in the RDF graph represents a predicate of a triple.
Every set of the arrow with the two ends on each side represent a statement. In an RDF

document, there should be as many triples as there are arrows in the RDF graph.

1.2.2 URI

The Uniform Resource ldentifier is a form of identification on the Web. Its purpose is to
globally identify resources [39] [13]. URLs (Uniform Resource Locators) are a special type
of URL. In general there is no need for the URI to pinpoint to an actual location to the Web.
One shouldn’t assume that it does, because URIs are used in Semantic Web to identify, not
locate (URLs on the other hand have this requirement. There is no special authority that
creates URIs; anyone can create one using any name they desire, using a few guidelines
[12]. The name can be a reference to an actual location on the Web, or it can be an
imaginary one. A URI may take different forms; it is not required to look like a website
address. Even URNs (Uniform Resource Name), a subtype of URIs that identifies books,
can be used [39]. There is no guarantee that something will exist on the Web, as will be
further discussed below. If it is an actual location, then this means that the full description
and specification of the corresponding resource can be found at that location.

In RDF, URIs are used to identify resources [55]. They contain the main URI and at the

end may optionally have a fragment identifier. This is separated with the "#" character

1.2. RDF 23

with the rest of the URI. The fragment identifier is the name of the resource. These URlIs
in RDF can have Unicode characters, making it possible for many languages to exist. They
are encoded in US-ASCII.

The URI <http://www.example.com/family#Frances> consists of the main URI <http:
//www .example. com/family> and the fragment identifier Frances which is the resource. The
fragment identifiers are always separated by the rest of the URI with the pound sign "#"
. For example, the URI <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> contains the
W3C specification for RDF located on the Web. URIs are treated differently by RDF and
by Web browsers [29]. RDF uses URIs to identify resources, while Web browsers use URIs
to retrieve resources. RDF many times uses URIs to identify resources that do not exist on
the Web, like abstract concepts of life. When two URIs are different, RDF considers them
to be two different resources (unless otherwise specified) since they are lexically different.

What RDF does not assume about URIs [29]:

e RDF does not assume a URI points to an actual location on the Web and therefore

can be retrieved.

e RDF does not assume that two URIls are the same when their domain URIs are

common.

For example, it is not considered that the following two URIs are describing the same

resource, because of their syntactic differences.

<http://www.example.com/family#Soap>

<http://www.example.com/family#Sophia>

Even though they both consist of the URI <http://www.example.com/family>, it is not
assumed that they are about the same resource unless explicitly specified.

In order to simplify the creation of RDF documents as well as sharing and reading them,
it is possible to have abbreviated URIs in a document. There are three different ways to

write a URI:

1. The first way is to write the full URI: <http://www.example.com/ontology/family>.
In this case whenever we want to refer to a resource in the ontology, it is done

by writing the complete URI each time, followed by the character "#" and the

24

CHAPTER 1. SEMANTIC WEB

resource identifier. A URI that identifies the resource Georgia would look like <http:

//www.example.com/ontology/family#Georgia>.

. Another way is shown in the following example. We have the BASE URI written once

at the beginning of the document, and when it is needed to refer to it, we just use

<family>. This is a relative URI. An example looks as following:

BASE <http://www.example.com/ontology/>

<family>

. The third way is to abbreviate URIs by declaraing a namespace. With the @prefix

keyword we assign an arbitrary namespace to the domain URI. Whenever the
namespace appears in the document, the reasoner or query processor will know which

URI link it belongs to. An example of this approach is the following:

Q@prefix f: <http://www.example.com/ontology/>

f:family

1.2.3 Syntax

The foundation of RDF is a graph model for representing named properties and

property values [28]. This graph, which represents RDF data, follows the model of

subject-predicate-object statements (triples). With these triples we can describe resources

in an easy to understand and structured way. The subject is always the resource in question;

the predicate is the attribute of the said resource, and object is the value of that attribute.

In Figure 1.2.3 we can see a visualization of this.

<predicate>
>

Figure 1.2.3: Subject - Predicate - Object statement

As mentioned above, the subject represents a resource described by the statement. This

resource can be anything imaginable. For example it could be a webpage, an element of

a webpage, or a whole website. But the extent of what a resource can be is not limited

to the Web. It is possible to semantically describe a song, a person, a place, a book, even

1.2. RDF 25

an abstract meaning such as "like", as in the typical example "John likes Mary". When
describing properties, the subject is the property being described (e.g., hasChild). In RDF
documents these resources must always be expressed in the form of URIs [28].

The predicate can be an attribute, property, state or relationship of the subject. This
must always be a URI as well. The predicate is also known as the property of the triple
[34].

The object can be a URI, or of primitive type. Primitive type means that it is a
non-class type, for example a string, boolean, integer, etc. The object can be anything
from the range of primitive types, from a string to a boolean property. This essentially
means that it can either be a resource or a value, called a literal. These literals have the
option to be accompanied by a URI, but this will be discussed further below.

The following is an example of these two cases, the first being a statement with a URI

as an object, and the second is a statement with a literal as an object.

<http://www.example.com/family#Father>
<http://www.example.com/family#hasChild>
<http://www.example.com/family#Child> .

<http://www.example.com/family#Father>

<http://www.example.com/family#firstName> "Peter".

RDF documents that do not have same URIs cannot be matched or related with each other.
When common URIs exist this means that the RDF documents are describing the same
thing. This is how RDF tools can "understand" what is being described and know what it is
about. For example, if one RDF document states the specifications of a certain motorcycle,
then someone else could extend this description by using the same URI and simply adding
more information. This is an essential part of Semantic Web vision, the reusability of data,
distributed knowledge and using the Web as a knowledge base.

It is tedious and non-human friendly to write the full URIs every time a resource is
described in an RDF document. For this reason, URIs can be shortened by using the
@prefix keyword. The domain URIs are written once in the beginning of the document,
and the rest of the document containing RDF triples is used with the appropriate and

corresponding prefixes, shown in the example below.

26 CHAPTER 1. SEMANTIC WEB

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
O@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Q@prefix o: <http://www.example.com/my-ontology/olympic-games#> .

0:Game rdf:type rdfs:Class
o:Athlete rdf:type rdfs:Class ;
rdfs:subClass0f o:Human .

In the above example we can see that the URI <http://www.w3.org/1999/02/
22-rdf-syntax-ns#> was declared in the beginning of the document with the corresponding
rdf: namespace. Whenever we see in the document a construct beginning with rdf: | this
means that it is a resource belonging to the declared URI. Instead of writing the whole
URI <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> each time the resource is
needed, we shorten it by simply typing rdf:type. Internally, it is always interpreted
as <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>, and this is simply a help for
human-readability.

An RDF document may need URIs for the RDF specification, RDFS, OWL, XSD, and

the ontology itself. All these technologies will be explained further in this thesis.

Q@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
Oprefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

1.2.3.1 Blank Nodes

A blank node is a concept that represents a resource without a name. There is an infinite set
of blank nodes, with no limitations as to how many can be used [34]. This makes them very
useful for large knowledge bases, when the name of the resource does not matter. Blank
nodes are also used to describe restrictions in an ontology (to be explained further in the
thesis). Internally, a name is created to identify each blank node. But this generated name
is not permanent and therefore should not be used as an identifier. The RDF specification
does not mention how the blank nodes should be internally implemented, and therefore it

does not matter. However, it should always be possible to determine if two blank nodes

1.2. RDF 27

are the same or not. The set of blank nodes with the set of all the URIs and the set of
all literals are all disjoint with each other (Figure 1.2.4). This means that a blank node is

neither a URI nor a literal.

set of blank
nodes

set of literals

Figure 1.2.4: Pairwise disjointness

Blank nodes are usually written in ontologies in the form of _:node342dcvx . The
label node342dcvx is the blank node’s label. Blank nodes can also be written with square
brackets, i.e. "[]". This is the abbreviated form. These brackets can be placed also at the
end of the triple without changing the meaning. The following statements are all equivalent

with each other.

[1 family:hasChild family:Sophia
[family:hasChild family:Sophia 1]
_:nodeb54xd3 family:hasChild family:Sophia .

The above statements all state that the individual Sophia has a parent, but we do not
really care who this parent individual is. We can see a visualization of a blank node in

Figure 1.2.5.

1.2.4 RDF Containers

RDF provides a means to encapsulate data. This allows a property value to refer to a single
container as a resource. This has been created because sometimes it is needed to refer to

a group of things as a property value. RDF containers are intended to describe a group of

28 CHAPTER 1. SEMANTIC WEB

hitp:fiwww_example. org/staffid/85740

hittp:fiwww example orgfterms/address

hitp:fnuww_example.org.ftermsfc:/ Nﬂp:h\uw_example.orga’termsipomal(:ode

Bedford 01730
hitp:ifwww example. orgiterms/street hitp:fiwww example. orgiterms/state
1501 Grant Avenue Massachusetts

Figure 1.2.5: Example of a blank node [37]

objects. For example, in an ontology about a university, one may want to list the students
enrolled in a course, to state that a book has been written by several authors, and many
more use cases. The members of a container may be resources — blank nodes as well — or
literals [23]. Containers are described in RDF with predefined types and properties. There
are three predefined types of containers: bags, sequences and alternatives. In section 3.2.1
of the thesis we will discuss how to define these RDF containers, whereas this section is a

theoretical introduction to them.

1.2.4.1 Unordered Container, Bag

A Bag is a resource which represents a group of resources or literals. A Bag can therefore be
a value of a property. It is possible for a Bag to contain duplicate members. The member

order does not matter.

1.2.4.2 Ordered Container, Sequence

A Sequence (Seq) is a resource that represents an ordered list of resources or literals. It
is possible for a Sequence to include duplicate members. In Sequences the order of the
members is important. For example, a Sequence might be used to describe a group that

must be maintained in alphabetical order.

1.2.4.3 Container of Alternatives, Alternative

An Alternative (Alt) is a resource that represents a group of resources or literals that are

alternatives to each other, usually for a single value of a property. The user can select only

1.3. NOTATIONS 29

one of the members. For example, an Alt might be used to describe alternative language
translations for the title of a book, or to describe a list of alternative Internet sites at which
a resource might be found. An application using a property whose value is an Alt container

should be aware that it can choose any one of the members of the group as appropriate.

1.2.5 RDF Collections

RDF collections describe groups that can contain only the specified members, and none else.
The difference is that a container only says that certain identified resources are members;

it does not say that other members do not exist.

1.3 Notations

1.3.1 General

Any RDF data can be transformed and written in textual format, apart from being
displayed as a graph. The textual format can be written in different interchangeable
formats, depending on the preference. The two different views - graphical and textual
- are equivalent. RDF is a data model that can be presented in various textual formats,
including serialization. The syntax and therefore the encoding is different for each format.
These formats will be further analyzed below. There are a few different ways to write an
RDF document in textual format. These are the so-called notations, with small differences
between each other. These are RDF /XML, Notation 3 (shortly N3), Turtle, and N-Triples
(Figure 1.3.1). A popular notation is N3 [40]. It is much easier for humans to understand
than RDF/XML. The latter is more often used for serialization and information processing
applications, because XML parsers have already been developed and are well understood

by developers.

1.3.1.1 Conversion between formats

Tools that convert one RDF data interchange format to another usually exist on the Web.
Not every format can be converted, but in general it's easy to find a converter between

RDF/XML and N3 or Turtle (e.g. Sswap [4]). In any case, the data encoded in the triples

30 CHAPTER 1. SEMANTIC WEB

Notation3

Turtle

Figure 1.3.1: The relationship between RDF notations

is what matters, not the notation they are written in [5]. Each notation is simply a method

to write the data in a textual format, according to each developer’s needs.

1.3.2 Notation 3

Notation 3 or its abbreviated form N3 is the notation that is used often to write RDF
documents. It is more human-readable than RDF/XML. It is designed for RDF graphs to
be written in a compact and natural way [9].

Triples are written in the classical subject-predicate-object format, each element
separated by the other by whitespace. Each triple must be terminated at the end with
adot "." . The keyword "a" can be used as an alternative to the rdf:type construct, and

It Is case-sensitive.

Oprefix family: <http://www.example.com/family.owl#> .
Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

family:Sarah a family:Human , family:Female , owl:Thing ;
family:hasAge "19""~"xsd:int ;

N~~~

family:hasSurname "Connor"~~xsd:string ;
family:firstName "Sarah"~~"xsd:string ;

family:hasFriend family:Ange , family:Sarah .

1.3. NOTATIONS 31

The ";" symbol is used for triples that have common subjects, and the symbol is

used for triples with common subject and predicate. This will be analyzed more in section

4.2.

1.3.3 Turtle

Turtle (TTL) stands for Terse Triple Language and is a subset of N3. Like its superset
N3, Turtle is a natural way to write RDF triples, human-readable and easy to understand.
Turtle is compatible with the other two formats that are used, N-Triples and Notation 3,
as well as the SPARQL query language, mentioned further in this thesis. "Turtle is an
extension of N-Triples carefully taking the most useful and appropriate things added from
Notation 3 while keeping it in the RDF model" [8].

Comments are available for use by adding the character "#". The effect of this is valid
till the end of the line [8].

The following do not exist in Turtle, but are included in N3 [7]:
2. is of

3. paths like :a.:b.:c and :a~:b":c

4. @keywords

5. => implies

6. = equivalence

7. @forAll

8. ©forSome

9. <=

A few differences that exist in Turtle, but not in N3 [7]:
1. Decimal arbitrary length literals

2. Boolean literals

32 CHAPTER 1. SEMANTIC WEB

Below we will show an example of the same code as presented for N3, but written in

Turtle:

Q@prefix family: <http://www.example.com/family.owl#> .
Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

family:Sarah a family:Human , family:Female , owl:Thing ;

|~

family:hasAge "19"""xsd:int ;

N~

family:hasSurname "Connor"~~xsd:string ;
family:firstName "Sarah"~~xsd:string ;

family:hasFriend family:Ange , family:Sarah .

We can see that in this subgraph of the same example, N3 and Turtle look exactly the
same. The notations in general have small differences between each other, but are not

shown in this example.

1.3.4 N-Triples

N-Triples is a line-based format for encoding RDF graphs, written in plain text [32]. The
character encoding is 7-bit US-ASCII, which limits the range of what is available to be used.
N-Triples is a subset of Turtle. N-Triples should not be confused with Notation 3 which is
a superset of Turtle [51]. N-Triples was intended to be a rigid subset of N3. Therefore,
N3 tools are possible to be used to read and process the data written in N-Triples. For
example, CWM (a popular reasoner, see section 2.4.1) can provide an output format of
N-Triples when the tool is invoked using the command "cwm-ntriples" [32]. It is suggested
to store N-Triples formatted data in files with a ".nt" suffix. This distinguishes the files
from belonging to the N3 notation. N-Triples is used to state RDF test cases, and to
define the connection between RDF/XML and the RDF abstract syntax. RDF/XML is
recommended for applications to exchange RDF information, whereas N-Triples is more for

human readability.

<http://www.example.com/ontology/family-inferred.owl>
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#type>
<http://www.w3.0rg/2002/07/owl#0ntology> .

1.3. NOTATIONS 33

<http://www.example.com/family.owl#Sarah>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.example.com/family.owl#Human> .
<http://www.example.com/family.owl#Sarah>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.example.com/family.owl#Female> .
<http://www.example.com/family.owl#Sarah>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.0rg/2002/07/owl#Thing> .
<http://www.example.com/family.owl#Sarah>
<http://www.example.com/family.owl#hasAge>
"19"~~<http://www.w3.0rg/2001/XMLSchema#int> .
<http://www.example.com/family.owl#Sarah>
<http://www.example.com/family.owl#hasSurname>
"Connor"~~<http://www.w3.0rg/2001/XMLSchema#string> .
<http://www.example.com/family.owl#Sarah>
<http://www.example.com/family.owl#firstName>
"Sarah"~~<http://www.w3.org/2001/XMLSchema#string>
<http://www.example.com/family.owl#Sarah>
<http://www.example.com/family.owl#hasFriend>
<http://www.example.com/family.owl#Ange> .
<http://www.example.com/family.owl#Sarah>
<http://www.example.com/family.owl#hasFriend>

<http://www.example.com/family.owl#Sarah> .

We can clearly see how such a notation differs from N3 or Turtle in terms of

human-readability.

1.3.5 RDF/XML

The RDF/XML notation expresses the RDF model using XML. By using XML, RDF
information can easily be exchanged between different types of computers, operating
systems and application languages. Using XML is easy because there are more tools for

XML that have already been developed even before Semantic Web erupted. This does not

34 CHAPTER 1. SEMANTIC WEB

mean that XML is better than other notations. For example there are parsers for N3, but
there are not so many yet. The disadvantage of RDF /XML is that it is not human-readable

like other notations are. An example of the RDF /XML notation is shown below.

<?7xml version="1.0" encoding="UTF-8"7>
<rdf:RDF
xmlns:family="http://www.example.com/family.owl#"

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#">

<rdf:Description

rdf:about="http://www.example.com/family.owl#Sarah'">
<rdf:type

rdf :resource="http://www.example.com/family.owl#Human"/>
<rdf:type

rdf :resource="http://www.example.com/family.owl#Female"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/0owl#Thing"/>
<family:hasAge rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">
19</family:hasAge>
<family:hasSurname rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Connor</family:hasSurname>
<family:firstName rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
Sarah</family:firstName>
<family:hasFriend rdf:resource="http://www.example.com/family.owl#Ange"/>
<family:hasFriend rdf:resource="http://www.example.com/family.owl#Sarah"/>

</rdf :Description>

1.4 RDF Storages

There are currently some tools for storing RDF data on the Web. These include:
e Jena and Josek

e Oracle Spatial RDF

e Sesame

1.4. RDF STORAGES 35

e Virtuoso Universal Server

e RDFLib

1.4.1 Jena

Jena was developed by Hewlett-Packard from the HP Labs Semantic Web Program and
it is widely used. As stated in the Jena website, "Jena is a Java framework for building
Semantic Web applications. It provides a programmatic environment for RDF, RDFS and
OWL, SPARQL and includes a rule-based inference engine." [1]. Joseki is a HTTP engine
allowing Jena storage to be web-accessible with SPARQL [21].

1.4.2 Oracle Spatial RDF

Oracle Spatial is based on the Spatial extension which was initially introduced for managing
geographic data. Oracle Spatial does not support SPARQL, and therefore RDF triples are

mapped to and stored in relational tables [21].

1.4.3 Sesame

Sesame is an open-source project developed by the Dutch software company Aduna [3].
"'Sesame is a framework for storage, inferring and querying of RDF data". In many respects
Sesame similar to Jena, but while Jena pays a lot of attention to reasoning, Sesame is
optimized for storage and querying. Sesame is also often used by developers for RDF
storage.

To use Sesame, it is possible to do so through a Console or through its Web application
via Apache Tomcat. In this thesis, the Web application will be used for demonstration, called
Sesame Workbench. Typing http://localhost:8080/openrdf-workbench in the browser
after starting up Tomcat, we can see the following screen (Figure 1.4.1).

There are no user repositories at the moment. First we must create an empty repository.
On the menu located on the left, we click on "New repository". The In Memory Store type
must be chosen, and all we need to do is write an ID and a description for identification.

We can see the procedure of this in Figure 1.4.2 and Figure 1.4.3.

36 CHAPTER 1. SEMANTIC WEB

Current Selections:

Sesame server: hitp:/flocalnost:8080/openrdf-sesame |
Repository:

positories

| Location
| Bt/

jopenrdi-s ' des/SYSTEM |

Explore
Query
Export
Modify
Add
Remove
Clear
System
Information

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.1: Starting screen of Sesame Workbench

Current Selections:
== Sesame server: http://localhost:3080/openrdf-sesame [

Re ries Repository:
New repository
Delete repasitory

Summary

Namespaces

Contexts
Types
Explore
ey Title: Family|

| Add
Remove

& In Memoary Store -

f

Clear

System
Information

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.2: Creating a new repository in Sesame

1.4.3.1 Summary

After clicking on "Create", we see the following screen. We can see that the ID field is
needed to identify the repository in Sesame. This screen can be found again if we click on
"Explore->Summary" in the left-hand menu, shown in Figure 1.4.4.

The repository is still empty after creation, which can be easily seen by looking into the
Types link on the menu. Therefore it needs to be filled with data from the ontology. This is
done by clicking "Modify->Add" and simply uploading the owl file, in this case family2.owl.

The rest will be automatically filled by Sesame, as shown in Figure 1.4.5.

1.4. RDF STORAGES 37

m Workbench

Current Selections:
Sesame server: hitp://localhost:8080/openrdf-sesame [
Repository:

New repository

Summary
Namespaces
Contexts
Types
Explore
Query Title: Family

In Memary Store +

f

e Persist @ Yes@No
Medify Sync delay: 0

| Add

rence
Clear

System
Information

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.3: Persistent storage for our data

qurkhench

Current Selections:
B Sesame server: htip:/fiocalhost:8080/openrdf-sesame [

] s Repository: Family () I
New repaository
Delete repository

Summary
Namespaces
Contexts

tory Location
i

e Family
ExioRsy on: http://localhost:8080/openrdf-sesame/ repositories/f
Query ame server: http://localhost:5080 openrdf-sesame

Export

dif
| Add
Remove
Clear

System
Infarmation

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.4: Summary of the new repository

1.4.3.2 Namespaces

Clicking on the link Namespaces we can see the namespaces that currently exist. We can
see this in Figure 1.4.6. If desired, it is possible to add more.
1.4.3.3 Contexts

Contexts existing in the repository could be compared to tables in a relational table. In

essence they are sections of data, divided logically. A repository should be able to support

38 CHAPTER 1. SEMANTIC WEB

* Add RDF
Base URI: file:fifamily-inferred.owl
Context: <file:/{family-inferred.ow!

Dataformat: RDF/XML
Location of the RDF data you wish to upload
RDF Data URL:
@) Select the file containing the RDF data vou wish to upload
RDF Data File: C:\Thesis\family-inferrec m

Enter the RDF data you wich to upload

RDF Content:

Upload

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.5: Uploading of RDF data to repository

N g‘mespaces In Repository

Prefix: -

Namespace:

| Update | Delete

Prefix Hamespace

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.6: Existing namespaces in the repository

several contexts, which in turn are called named graphs. These named graphs can be used
in SPARQL queries, instead of querying one large default graph. In this case we have
only one context in the repository (Figure 1.4.7), and therefore will not analyze the matter

further.

1.4.3.4 Types

By clicking on "Explore—Types", we can see a list of all the available concepts in the
repository, as shown in the figure below (Figure 1.4.8).
By clicking on a type, we can explore everything that is related to it. For example, if

we click on owl:ObjectProperty, we get the screen shown in Figure 1.4.9.

1.4. RDF STORAGES 39

ﬁexts In Repository

| Context

=file://familv-inferred.owl>

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.7: Contexts in the repository

pes In Repository

eFunctionalPropertv

IrreflexiveProperty

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.8: Existing types in the repository

1.4.3.5 Explore

The search keyword to explore a certain construct, class or property is case-sensitive, and it
matches only the complete string. It is not possible to insert a substring in hopes of finding
the parent string. For example, to search for the blank node label _:node15t2dbpplx2,
we have to insert exactly that string. Inserting only _:node does not yield any results.
In Figure 1.4.10, we can see three datatype properties. These are the currently created

datatype properties in the family ontology.

40 CHAPTER 1. SEMANTIC WEB

slore (owl:ObjectProperty)

| subject Predicate | Object Context
gwl:ObjectPropertv | <file://fam

fam

Resource: owl-ObjectProperty

Limitresutts: 100+

Show

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.9: All the object properties

) ore (owl:DatatypeProperty)

rdf:tvpe

Subject
fi :DatatvpePropertv | «fil

wl:DatatvpePropertv | <file:/familv=.owl>

Resource: owl:DatatypeProperty

Limit results: 100

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.10: All the datatype properties

Below, in Figure 1.4.11, we can see the difference between an imported ontology with
no inferred axioms, and an imported ontology including the inferred axioms. What has been
added is the owl:topDataProperty construct. For the rest of the thesis the context of the

inferred ontology will be used unless otherwise specified.

In Figure 1.4.12 below, we see a list of all the symmetric properties in the ontology.

1.4.3.6 Query

This is where all the SPARQL queries are performed and the results returned (Figure 1.4.13).
The needed namespaces are already written in the beginning of the query window, but if

we need to use more we can add them to the list. It is possible also to query using SeRQL,

1.4. RDF STORAGES 41

(owl:DatatypeProperty)

Predicate | Object Context

rdfitvpe | owl:DatatvpePropertv

rname ‘' pe l:DatatvpeP:

ataPropertv ype l:DatatvpeProp

vifirstName rdfitvpe | owl:DatatvpePropertv

Resource: owl:DatatypeProperty

Limit results: 100«

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.11: Datatype properties of an ontology with inferred axioms

‘(owl:SymmetricProperty)

Subject Predicate Object

mmetricPropertv

rdfitvpe (o
rdf:tvpe

rdfitvpe

familv:hasFriend

mmetricPropertv

familv:h

mmetricPropertv :/familv-inferred.owl=

Resource: owl:SymmetricProperty

Limit results: 100 =

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 1.4.12: All the symmetric properties

but this is not the topic of this thesis.

Queries with their results and their corresponding screenshots will be shown in section

4.2.2.

1.4.3.7 Export

By clicking on Export we can save the data as a different notation, like Turtle, N3 (in this
case they are the same), N-Triples, etc (Figure 1.4.14). With this method we can compare

the different notations and use whichever suits us according to the circumstance (Figure

1.4.14).

42

CHAPTER 1.

osi;tory

Query:

Limit resutts:

SPARGL +

PREFIX rdfs:<htcp://www.w3.org/2000/01/rdf-schema$>
PREFIX owl2xml:<netp://wiw.w3.org/2006/12/0wl2-xml¥>
PREFTX family:<http://www.example.com/family.owld>
FREFIX .w3.0rg/2001/XMLScChemat>

PREFIX w3.0rg/2002/07/0wly

PREFTX .w3.0rg/1999/02/22-rdf-syntax-nsi>
PREFIX dc:<htcop:i//purl.org/dc/elements/1.1/>

00 v

clude inferred statements

Copyright © Aduna 1997-2008
Aduna - Semantic Power

SEMANTIC WEB

Figure 1.4.13: The empty query window in Sesame Workbench

Limit results:

yository

format: Turtle >
100 + The resultsshown maybe truncated.

Subject

familv:Father

familv:Father

familv:.

Father

isjointWith familv:Mother

ilv:Father

intWith Sister

jointWith

hClassOf

cintWith

isjeintWith

isjointWith

sicintWith

hClassOf

isjpintWith

jointWith

isjeintWith

ype

hClassOf

bClassOf

familv:Parent

familv:Human

familv:Parent

bCla: :nodes st8dcczaxs

odet St8decs

rdfitvpe

swl:onPropertv

:nodeist8deczaxT

Figure 1.4.14: Choosing the desirable format to export the RDF data

1.5 Epilogue

In this chapter we started by giving an introduction for the Semantic Web, then proceeded

to explain the technology of RDF. RDF is a method of representing resources in the form

of a graph. URIs are used for global identification of resources. We can also create RDF

1.5. EPILOGUE 43

containers, such as a Bag, Sequence or Alternative. Notations are ways to write RDF in a
textual format, equivalent to the graph. N3, Turtle, N-Triples and RDF /XML are all data
interchange formats. RDF storages exist to store RDF data, and possibly query the data.
A few popular RDF storages include Jena, Oracle Spatial RDF, and Sesame. The latter is
used in this thesis to demonstrate examples of queries in Chapter 4. Data represented in

RDF needs metadata, and this is what will be discussed in the following Chapter 2.

Chapter 2

Ontologies

2.1 General

An ontology is a core element of the Semantic Web. As stated by W3C, "An ontology
defines the terms used to describe and represent an area of knowledge" [47]. Another
definition of ontology is that "An ontology is an explicit specification of a conceptualization"
[17]. An ontology describes the meaning of concepts and their relationships, and therefore
is similar to a vocabulary of human language. In addition to defining and describing terms,
ontologies also define the structure of knowledge within a certain domain (e.g. fishing
domain, domain of medicine, transportation domain, etc.).

With ontologies, the vision of Semantic Web can be further realized through "intelligent"
applications. These applications can come closer to the level of human conception by using
domain-specific ontologies and semantically annotated data. Ontologies are meant to be
used by applications and databases, but they are also used by people that need to define
or share information about a specific area of knowledge (domain). They are also being
used more and more by businesses and scientific communities in order to process domain
knowledge, as well as share with others and reuse it.

Within the Semantic Web stack (Figure 1.1.1), an ontology is based on RDF. One thing
that confuses Semantic Web newcomers is that an ontology is also an RDF document.

The reasons for developing an ontology include:
e To share a common understanding of the structure of information

e To offer re-usability of domain knowledge

45

46 CHAPTER 2. ONTOLOGIES

e To explicitly state assumptions in a domain (e.g. a woman is a female person)
e To analyze the domain knowledge

In many cases, ontologies develop out of the need to define data in a domain for use
in applications. In other words, ontologies are developed more as a means to an end,
as opposed to them being the intended end product. Their use in describing information
on the Web in an unambiguous way is one such example. Software agents, applications
that are domain-independent, and methods used for problem-solving can use ontologies
or knowledge bases as data. A knowledge base is in essence an ontology with its set of
instances [25].

There are different degrees of ontologies and each is dependent on the structures they
represent. For example, there are ontologies to describe metadata schemes (for example
Dublin Core, to be explained further below), simple taxonomies and logical theories.
As such, ontologies need to have a high degree of structure. In order to develop an
ontology, logic-based language is used to provide "detailed, accurate, consistent, sound
and meaningful distinctions can be made among the classes, properties and relations." [47]
Support for decision making, understanding of speech and natural language, knowledge
management, electronic commerce and intelligent databases are all intelligent applications
that can have ontology tools with automated reasoning. This way ontologies are not only
descriptions of knowledge bases, but also good providers for intelligent applications that

aid humans.

2.2 RDFS — RDF Schema

Ontologies are important for applications that aim for cross-communication between various
sources. Up until a few years ago, this was done with XML DTDs and XML Schemas. Even
though they are sufficient for exchanging data with mutually agreed definitions, a reliable
outcome cannot be guaranteed due to the lack of semantic assigning to those definitions.
This happens even in the natural language, with words having similar meanings, or the
meaning being dependent on the context. RDF Schema tries to solve this problem by
"allowing simple semantics to be associated with identifiers" [47]. Class hierarchies are
defined, and the same with property hierarchies. RDF Schema on its own might not be

sufficient to create a complex ontology. An example of such an ontology is a musical

2.2. RDFS — RDF SCHEMA 47

ontology, where a state "string quartet has exactly four musicians" is not definable by RDF
Schema.

RDF Schemas must not be confused with XML Schemas. Even though both are
Schemas, their usage and role is very different. RDF Schemas are descriptive, whereas
XML Schemas are prescriptive. This essentially means that while XML Schemas provide
strict guidelines and rules of how XML should be written, RDF Schemas simply enhance
already defined descriptions. RDF Schema extends RDF semantically [31]. This means
that RDF Schema provides more predicates in order to describe classes and properties in a
more complete way. Classes in RDF Schema are treated like Object-Oriented programming
classes. This essentially means that resources (a class or property) can be instances of
classes, subclasses of other classes, and more.

A property is also an entity, an abstract concept of the real world. This means that
it is not only possible to describe concrete objects, but also properties. Properties need
to be described in order to provide complete information in the ontologies. Properties can
have domains as well. The domain states the class of the property’s subject. The range
expresses the class of the property’s value. As an example to illustrate this, we can use
a property hasChild. If this property is defined as having domain Parent and range Child,
then a statement "Peter hasChild Sophia" is valid only if individual Peter is of type Parent

and at the same time individual Sophia is of type Child.

Oprefix family: <http://www.example.com/family#> .
family:Frances family:hasChild family:Sophia .

family:Frances family:firstName "Frances"

The property range of hasChild is of type Human, and the range of firstName is of type
String. In both cases the domain is of type Human. All of the resources belong to the same
ontology since they all have the same namespace name family:.

Every predicate that exists in RDF Schema is usually preceded by the namespace name
rdfs:. We can create a different namespace, as long as the prefix namespace is connected
to the proper URI, <http://www.w3.0rg/2000/01/rdf-schema#>. For example, if we want

to define a resource as a literal, we will write it as following:

family:Parent rdfs:subClass0f family:Human .

48 CHAPTER 2. ONTOLOGIES

2.2.1 Classes

In RDF Schema both classes and instances are resources. A class is a set of resources in
RDF. Much like in Object-Oriented programming, a member of a class is called an instance.
It is possible for a class to be an instance of itself. To define a resource as an instance of

a predefined class, the property rdf:type is used. An example is shown below:

family:Sophia rdf:type family:Female .

family:Sophia rdf:type family:Wife .

rdfs:Resource This is the class of everything [31]. Everything described with RDF

Schema and therefore, RDF, is a resource. This class is an instance of rdfs:Class.

rdfs:Class The group of RDF classes is a class in itself which is rdfs:Class. rdfs:Class is

an instance of itself.

rdfs:Literal This is the class of all literal values, for example string, date, integer, boolean,
and many more. rdfs:Literal is an instance of rdfs:Class and a subclass of rdfs:Resource.
All literals have a lexical form that is a Unicode string [34]. A literal can be plain, or typed.
Typed literals are those that belong to a specific predefined type. These can belong to
XML Schema [36]. They are usually written with the namespace "xsd: ", e.g. xsd:string.
Typed literals are accompanied by datatype URI references. Plain literals are strings that
can optionally have a language tag, denoting the natural language of the text. The main
difference is that with typed literals the applications know how to interpret and handle the
literals, whereas with plain literals it is not possible.

Typed literal:
family:Sophia family:firstName "Sophia'"~~xsd:string .
Plain literal:

family:Sophia family:firstName "Sophia"

rdfs:Datatype This is the class of datatypes, as the name suggests. Every instance of
rdfs:Datatype is a subclass of rdfs:Literal. The construct rdfs:Datatype is an instance as

well as a subclass of rdfs:Class.

2.2. RDFS — RDF SCHEMA 49

rdf:XMLLiteral The class of the XML literal values is rdf:XMLLiteral. It is an instance

of rdfs:Datatype, ergo a subclass of rdfs:Literal.

rdf:Property The class rdf:Property is the RDF properties class. It is also an instance
of rdfs:Class.

2.2.2 Properties

rdfs:domain This is an instance of the class rdf:Property. It is used to express that the

domain of a certain property is a certain class. For example, the triple
family:hasChild rdfs:domain family:Parent

states that whenever we create a statement that uses hasChild as the predicate, the
subject of the statement must be an instance of the class Parent. We can state that
the domain of the rdfs:domain property is the class rdf:Property. Which means that the
resource being annotated with this property will always be an instance of the rdf:Property

class.

rdfs:range The property rdfs:range is also an instance of the class rdf:Property. It is used

to express that the range of a certain property is a certain class. For example, the triple
family:hasChild rdfs:range family:Child .

states that whenever we create a statement that uses hasChild as the predicate, the
object of the statement must be an instance of the class Child. Therefore we can say that

the range of the rdfs:range property is the class rdfs:Class.

rdf:type The property rdf:type is used to declare that a resource is an instance of a class.

This property is also an instance of rdf:Property. For example, the statement
family:Sophia rdf:type family:Human .

means that Human is an instance of rdfs:Class, and that the resource Sophia is an instance

of Human.

50 CHAPTER 2. ONTOLOGIES

rdfs:subClassOf This property, an instance of rdf:Property, states that all instances of
one class are also instances of another class. The domain and range of this property are

both instances of rdfs:Class. The triple
family:Female rdfs:subClassOf family:Human .

means that family:Female and family:Human are instances of rdfs:Class, and that
f:Female is a subclass of family:Human. The property rdfs:subClassOf is transitive. The

meaning of this will be explained further on in this thesis.

rdfs:subPropertyOf This property declares that all resources that are related by a

property are also related by another property. For example, the statement
family:hasMother rdfs:subProperty0f family:hasParent

tells us that family:hasMother and family:hasParent are instances of the rdf:Property
class, and that family:hasMother is a sub-property of family:hasParent. The property
rdfs:subPropertyOf is transitive.

rdfs:label: With the rdfs:label property a label is attached to the resource that is easily

read by humans.
family:PeterD rdfs:label "Peter David"

The domain of the rdfs:label property is an a resource, and the range is a literal.

rdfs:comment The rdfs:comment property attaches to the resource a comment about

it, possibly describing it for quick recognition by a human.
family:PeterD rdfs:comment "Peter David, tall guy with glasses"

The domain of the rdfs:comment property is a resource, and the range is a literal.

2.2.3 Container Classes and Properties

RDF containers are resources with the purpose to represent collections. The members in a
container are either resources or literals. A blank node is also considered a member of the

container. RDF has no real understanding of the differences of each container. These are

2.2. RDFS — RDF SCHEMA 51

just intended to indicate the accepted understanding of the purpose of each container, and

it is up to the developer to use them as intended.
rdfs:Container The rdfs:Container class is a superclass of the RDF Container classes.

rdf:Bag The rdf:Bag class is the class of RDF Bag containers. This class is a subclass
of the rdfs:Container class. Syntactically it is not different than rdf:Seq and rdf:Alt. It is
used to show the reader that the container is unordered. To state that a blank node or
a resource with a URI is a container of type rdf:Bag, we use the rdf:type property. The

resource then describes the group as one entity. An example is shown in Figure 2.2.1.

f:

rdf;_1 rdf: 2

Figure 2.2.1: An RDF container of type rdf:Bag

rdf:Seq This is the class of RDF Sequence containers. It is also a subclass of
rdfs:Container. It is syntactically the same as rdf:Bag and rdf:Alt. The difference is that
it is used to show the human user that the numerical order in which the membership
properties of the container is important. These membership properties are explained in the

rdfs:ContainerMembershipProperty subsection.

rdf:Alt The class rdf:Alt is the class of RDF Alternative containers. This is also a subclass
of rdfs:Container. As mentioned above, this class is syntactically also no different than
rdf:Bag and rdf:Seq. The rdf:Alt class signals to the reader that processing will suggest
selecting one of the members of the container. The first member of the container is the

default choice. An example of an Alternative is shown in Figure 2.2.2.

52 CHAPTER 2. ONTOLOGIES

hitp: ffexample. org/packagesfX11

http:flexample.org/pgckagesivocab#DistributionSite
bt Ahwewew w3, org/ 1 99902422-rdf-syntax-ns#Alt

199902122 -rdf-syntax-ns#type

fip:iifip example. org
’;ﬂrfﬁrfﬂffﬂ’Tmﬁﬁ;;;;;;;;H99%02&24m63ma»nﬁt1
hittp: Mwww w3, org/1 99H02/22-rdf-syntax-ns#_2

ﬁ\\" fip:ftp1.example arg

w3.orgM 99 02/22-rdf-syntax-ns#_3

fip:/ftp2.example.org

Figure 2.2.2: An example of an Alternative [37]

rdfs:ContainerMembershipProperty To describe the members of a container, we
define a property of type rdfs:ContainerMembershipProperty for each corresponding
member. The rdfs:ContainerMembershipProperty class has instances with names in the

following manner:

rdf:_1, rdf:_2, rdf:_3 , etc.

They are used to declare that a resource is a member of a container (Figure 2.2.1).
Each instance of the rdfs:ContainerMembershipProperty class is a sub-property of the
rdfs:member property. The container resource is the domain of the property, and the
range is the member of the container. It is possible to have other properties that describe

the container resource.

rdfs:member Every container membership property is a sub-property of rdfs:member.
Therefore, rdfs:member is the super-property of all the container membership properties.
The rdfs:member property is an instance of rdf:Property. The domain of rdfs:member is a

resource, and the range is a resource as well. It states that a resource is a member of

2.2.4 RDF Collections

A collection represents a list of items. RDF Schema does not demand only one first element
of a list. Nor does it require for a list to have a first element [31]. A visual representation

will be shown further in section 2.3.2.3.

2.2. RDFS - RDF SCHEMA 53

rdf:List This is an instance of rdfs:Class that can be used to build descriptions of lists

and other list-like structures.

rdf:first This collection is an instance of rdf:Property that can be used to build
descriptions of lists and other list-like structures. For example, Ardf:firstB declares that
there is a first-element relationship between A and B. The domain of rdf:first is a list
(rdf:list), and the range is a resource (rdfs:Resource). The resource B is the first element

of the list that is represented by the resource A.

rdf:rest The rdf:rest collection is an instance of rdf:Property. It is used to create
descriptions of lists. For example, Ardf:restB states that there is a rest-of-list relationship
between A and B. Both the domain and range are rdf:List. The domain, in this case named
A, is the the resource that represents the list. The range B is the resource that is part of

the list, but not the first element.

rdf:nil This is an instance of rdf:List and it is used to represent an empty list-like structure.
For example, Ardf:restrdf:nil states that A is the instance of an rdf:List that contains
only one element, while the rest is an empty list. That one element can be declared with
rdf:first.

An example ontology based on the Olympic Games was created for demonstrating RDF
Schema. The subset code is in pure RDF Schema in order to show it syntactic rules and
constraints, as well as its simplicity. The complete ontology can be found in Appendix B.
We can see that it is not possible to distinguish between the different types of properties,

to declare a property as an inverse of another, etc.

Q@prefix : <http://www.example.com/olympics.owl#> .

Oprefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

Q@prefix protege: <http://protege.stanford.edu/plugins/owl/protege#> .
Q@prefix rdf: <http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#> .
:Game rdf:type rdfs:Class

:Human rdf:type rdfs:Class .

:Sport rdf:type rdfs:Class .

:Stadium rdf:type rdfs:Class

:Athlete rdf:type rdfs:Class ; rdfs:subClassOf :Human .

54 CHAPTER 2. ONTOLOGIES

:hasGender rdf:type rdf:Property ; rdfs:domain :Human
; rdfs:range rdfs:Literal .

:hasLevel rdf:type rdf:Property; rdfs:domain :Game
; rdfs:range rdfs:Literal .

:hasFirstName rdf:type rdf:Property; rdfs:domain :Human
; rdfs:range rdfs:Literal .

:playedIn rdf:type rdf:Property; rdfs:domain :Game
; rdfs:range :Stadium .

:hasStadiumName rdf:type rdf:Property; rdfs:domain :Stadium
; rdfs:range rdfs:Literal .

:inCity rdf:type rdf:Property; rdfs:domain :Stadium

; rdfs:range rdfs:Literal .

2.3 OWL

Ontologies for the Semantic Web can also be written in OWL, which stands for Web
Ontology Language. Currently there are two versions of OWL, namely OWL version 1.0
and OWL version 2.0. OWL 2.0 became a W3C recommendation just recently and there
are not many implementations of it. Therefore, whenever we refer to OWL, we mean
OWL version 1.0, unless explicitly specified otherwise. OWL version 1.0 is a W3C (World
Wide Web Consortium) standard, and became a formal W3C recommendation on February
10, 2004 [52]. OWL is derived from the DAML4OIL Web Ontology Language [6] [20].
DAML+OIL is a language that succeeds the languages DAML and OIL, and it combines
features of both [49]. DAML stands for DARPA Agent Markup Language, and it was
created by the Defence Advanced Research Projects Agency. OIL stands for Ontology
Inference Layer or Ontology Interchange Language. The DAML project was terminated in
2006, with OWL already having taken its place. OWL is the latest development among
the ontology languages, aimed to support and belong to the Semantic Web vision. This
means that with OWL the unambiguous information on the Web is processed by computers.
OWL ontologies can be distributed, as OWL allows ontologies to refer to concepts defined
in other ontologies. Because of this, OWL is created for the Semantic Web as knowledge

bases are built and information is structured [19].

2.3. OWL 55

OWL is a stronger and more expressive language than RDF Schema, with greater
machine interpretability. It builds upon RDF Schema and extends its features. With
this, OWL succeeds to add more flexibility and syntactic freedom. This language was
designed to be interpreted by machines. It can be written in XML, since XML has already
cemented the serialization format. This way the information written in OWL (and therefore
XML) can easily be exchanged between different platforms and applications, rendering
it fully versatile and widely-used. OWL has the ability to process machine interpretable
information stored on the Web [44]. Therefore, it is designed for use by applications that
process information and not only present it to humans. OWL extends the vocabulary of
RDF [30] and adds possibilities to describe concepts, to create complex hierarchies and
the relationships between classes and properties, and many more features that will be
analyzed further below. With OWL we can state for example that two classes are disjoint
with each other, meaning that there cannot be an instance belonging to those two classes
simultaneously. Furthermore, we can state that a property is the inverse of another property,
as well as many more capabilities for classes and properties. An important difference between
an OWL and an RDF document is that OWL formally describes the semantics of abstract
concepts, whereas RDF documents describe concrete entities based on those predefined

concepts.

2.3.1 Introduction to OWL Sub-languages

OWL has three sub-languages - OWL Lite, OWL DL and OWL Full. They are in order of
increasing complexity and decreasing completeness (Figure 2.3.1). Each language will be
further analyzed and discussed below.

All classes are subclasses of owl:Thing, the root class. All classes are subclassed by
owl:Nothing, the empty class. No instances can be members of owl:Nothing. Modellers
use owl:Thing and owl:Nothing to assert facts about all or no instances [23]. A property is
a relation between two entities that specifies class characteristics. There are two types of
properties in OWL, object properties and datatype properties. For the object property, the
property range is a class (individual to individual relation). A datatype property is when
the range is a data type (individual to datatype relation). The domain in both cases is an
object with a URI. Datatype properties are formulated using owl:DatatypeProperty type,

whereas object properties are formulated using owl:ObjectProperty. Languages in the OWL

56 CHAPTER 2. ONTOLOGIES

OWL Full

OWL DL

Figure 2.3.1: OWL sub-languages

family support various operations on classes such as union, intersection and complement.

They also allow class enumeration, cardinality, and disjointness.

2.3.1.1 OWL Datatypes

Datatype properties may have as range RDF literals or simple types that are defined
according to the XML Schema datatypes. Most of the built-in XML Schema datatypes
are used in OWL [45]. These XML Schema datatypes, as well as rdfs:Literal, are part of
the built-in OWL datatypes. All OWL reasoners are required to support the xsd:integer and
xsd:string datatypes [45]. There might be a confusion among the datatypes and deciding
which one is correct to use. Assigning a range value, we can see that xsd:int exists, but
xsd:integer does as well. What is the difference? The datatype xsd:int represents 32-bit
signed integers and is derived from the Long datatype. On the other hand, xsd:integer
represents unbound signed integers and values may begin with an optional "+" or "-" sign.

The latter is derived from the Decimal datatype.

2.3.2 OWL Lite

OWL Lite is designed to be the simplest of the three, thus having many constraints
concerning classes, cardinality, etc. OWL Lite is easier to support by reasoning software.
Reasoning an OWL Lite document is fast because of its simplicity. Every OWL Lite ontology
is an OWL DL ontology.

2.3. OWL 57

Originally, OWL Lite was created to provide support for people who needed to define
hierarchies of classes and simple constraints. For example, even though it supports
cardinality constraints, the only values allowed are 0 or 1. The reason was to have a
simpler way to provide tool support for documents written in OWL Lite. This in theory
allows easy transformation for taxonomy systems.

The limitations on the syntax in OWL Lite are aimed to create a simple but useful
subset of OWL features. OWL Lite contains at least basic capabilities for the creation
of an ontology, as subclass hierarchy structure, optional or required properties, minimal
cardinality, etc. Being less complex than OWL DL or OWL Full creates the possibility for

efficient OWL Lite reasoners.

2.3.2.1 Features

First of all, OWL Lite contains also RDF Schema features, which were explained previously
in the thesis. These include: Class, rdfs:subClassOf, rdfs:Property, rdfs:subPropertyOf,
rdfs:domain, rdfs:range, and Individual. OWL Lite extends these features and adds more
functionality. Equality and inequality features, property characteristics and restrictions, as

well as cardinality with its restrictions.

2.3.2.2 Classes

In OWL Lite (and OWL DL) an individual can never be an OWL class as well, and the
inverse is true too. The same applies to properties and data values. The construct owl:class

is a subclass of rdfs:class.

2.3.2.3 Equality - Inequality Features

owl:equivalentClass: Instances can belong to more than one class, when the classes are
stated to be equivalent. This allows the possibility to set synonymous classes. For example,
the class Offspring can be stated to be equivalent to the class Child. From this, we can

safely assume that any instance of Offspring is also an instance of Child, and vice versa.

owl:equivalentProperty It is possible to state two properties to be equivalent. This is

helpful in order to create synonymous properties.

58 CHAPTER 2. ONTOLOGIES

owl:sameAs This construct is used to state that two individuals are the same. This is

used when we want to create different names for the same individual.

family:Vivian rdf:type owl:Thing , family:Female ;

owl:sameAs family:Vivi

owl:differentFrom Everything in RDF must be explicitly defined, therefore we must
also define distinction among instances. With the construct differentFrom we can state two
individuals to be different from each other. This helps the reasoner understand that Peter
and PeterD are two different people. It might not otherwise be assumed. This construct
also helps the reasoner to realize contradictions, especially where cardinality restraints are

involved.

owl:AlIDifferent This is used to define a whole group of distinct entities, e.g. a group
of five different people. For example, we can state that all the individuals in the family
ontology are distinct with each other. Instead of using the construct differentFrom for each

individual with all the rest, we can use the construct AllDifferent (Figure 2.3.2).

_:nodelbsb4dmbgcx44 a owl:AllDifferent ;
owl:distinctMembers _:nodelbsb4m6gcx4b .
_:nodelbsb4mbgcx4b rdf:first family:Sarah ;
rdf:rest _:nodelbsb4mbgcx46 .
_:nodel5sb4mbgcx46 rdf:first family:Frances ;
rdf:rest _:nodelbsb4mbgcx5l.
_:nodelbsb4mbgcxbl rdf:first family:PeterD ;

rdf:rest rdf:nil .

2.3.2.4 Property Characteristics

owl:inverseOf A property X can be stated to be inverse of property Y. This means
that if individuals A and B are connected with X (creating statement A X B), then B will
be connected with A with the Y property (creating statement B Y A). For example, the

property hasParent is the inverse property of hasChild (Figure 2.3.3). This means that if

2.3. OWL 59

rdf:type .
_:node15sb4m6gcx44 owl:AllDifferent

owl:distinctMembers

rdf:first
_:node15sb4mégcx45)——>

rdf:rest

rdf:first
_:node15sb4mégcx46)——>

rdf:rest

df:first
_:node15sb4m6gcx51 % f:PeterD

w:rest

Figure 2.3.2: A visualization of the owl:AllDifferent construct

family:Sophia family:hasChild family:Ange, then the reasoner can assume that family:Ange

family:hasParent family:Sophia .

family:hasChild a owl:0bjectProperty ;
rdfs:range family:Child ;
rdfs:domain family:Parent ;

owl:inverseOf family:hasParent

f:hasWife

EhasHusband

Figure 2.3.3: lllustration of the inverseOf construct

owl: TransitiveProperty A property can be stated to be transitive. This means that if
a property X is transitive, then any instances of that property with common entities are
transitive with each other. For example let us take the case where the property hasFriend is
transitive. Then the triple family:George family:hasFriend family:Sarah is an instance of the
transitive property, and family:Sarah family:hasFriend family:Mark is another instance of the
transitive property with common entities. The reasoner can now deduce that family:George
family:hasFriend family:Mark. One important thing to note is that OWL Lite (and OWL DL)
do not allow transitive properties to have maximum cardinality of 1 [44]. Furthermore, OWL
DL requires that no cardinality constraints are declared on the property, its super-properties,

or even on its inverse [46].

family:hasFriend a owl:0bjectProperty , owl:TransitiveProperty ;

60 CHAPTER 2. ONTOLOGIES

rdfs:domain family:Human ;

rdfs:range family:Human .

owl:SymmetricProperty A property may be stated to be symmetric. If a property X
is symmetric, and the entities A and B form an instance of that property, then B and A
will also be an instance of that property [26]. For example, the property hasSpouse is
set to be symmetric, then we can safely state that if £:Sophiaf:hasSpousef:Peter, then

f:Peterf:hasSpousef:Sophia.

family:hasSpouse a owl:0bjectProperty , owl:SymmetricProperty ;
rdfs:range family:Parent ;

rdfs:domain family:Parent

owl:FunctionalProperty If a property is functional, this means that it has a unique
value. Every individual can have maximum one unique value. It is not required for it to
have a value however. This is basically saying that the maximum cardinality will be 1, and
the minimum will be 0. For example, hasFather could be a functional property, depending
on the culture. This would mean that an individual may have only one father, but it is not

mandatory. In the following example, hasFather is a functional object property.

family:hasFather a owl:0bjectProperty , owl:FunctionalProperty ;
rdfs:domain family:Child ;
rdfs:range family:Father ;

rdfs:subProperty0f family:hasParent

owl:InverseFunctionalProperty This construct is used to state that the inverse of
a functional property is functional as well. We can therefore know that the inverse of
functional property X has maximum cardinality of 1 too. In the following example, we state

that hasHusband is a functional property as well as the inverse of the property hasWife.

family:hasHusband a owl:0bjectProperty , owl:FunctionalProperty
, owl:InverseFunctionalProperty ;

rdfs:range family:Husband ;

rdfs:domain family:Wife ;

rdfs:subProperty0f family:hasSpouse ;

2.3. OWL 61

owl:inverseOf family:hasWife

2.3.2.5 Property Restrictions

Apart from the property characteristics, there are also property restrictions which constrain
the usage of properties even more depending on how they are used. These are used
within the owl:Restriction construct. The owl:onProperty construct states that property
being restricted. Most restrictions have a global range, meaning that they apply to
all the instances of the corresponding property. The properties owl:allValuesFrom and

owl:someValuesFrom have a local range as they depend also on the class.

owl:allValuesFrom This construct is used to state that all the values pertaining a specific
property must be of a certain class. For example, if we want to say that a resource can
be a Parent if it has human children, we can declare it in the following manner, written in

Turtle:

family:Parent a owl:Class ;

rdfs:subClass0f family:Human , _:nodelbSsb4m6gcx7

_:nodelbsb4dmbgcx7 a owl:Restriction ;
owl:onProperty family:hasChild ;
owl:allValuesFrom family:Child .

The above example states that the class Parent is a subclass of the class Human, and
of a blank node that serves as a "virtual class". It is an instance of owl:Restriction, and the
properties of this restriction are owl:onProperty and owl:allValuesFrom. This virtual class
is a class of all the individuals X for which this is true: If there are any statements that
involve individual X as the subject and property hasChild as the predicate (statements of
type X hasChild *), then the object in all of these statements must be of type Child. It does
not mean that there must be statements involving X as the subject and hasChild as the
predicate; there may have none. But if they exist, then the objects in all of them must be
instances of class Child. If the resource belonging to the class Parent is connected to another
resource of class Dog with the hasChild property, this means that there is inconsistency and

the resource cannot be considered a Parent.

62 CHAPTER 2. ONTOLOGIES

owl:someValuesFrom This restriction is similar to owl:allValuesFrom, but it is used to
declare that only some values pertaining a property must be of a certain class. This is also
a minCardinality = 1 restriction. The property in question must have at least one instance
of a certain class, but not all instances have to be of that class. It is written in Turtle as

follows:

family:Sibling a owl:Class ;

rdfs:subClass0f family:Human , _:nodelbsb4dm6gcx9

_:nodelbsb4dmbgcx9 a owl:Restriction ;
owl:onProperty family:hasSibling ;

owl:someValuesFrom family:Sibling .

This means that for a person to be of type Sibling, it must be connected with at least
one other instance of type Sibling with the hasSibling property. If the same person was
connected with an instance of type Baby with the hasSibling property for example, it would
still be considered correct, because it only states that some values from the hasSibling

property must be of type Sibling, not all instances.

2.3.2.6 Restricted Cardinality

As mentioned previously in this thesis, OWL Lite has restricted cardinality, allowing only
values of 0 and 1. These restrictions are known as local restrictions because they apply to

properties of a certain class.

owl:minCardinality This stands for minimum cardinality. If the minimum cardinality on
a property is 0, this just declares that the property is optional for a certain class. If the value
is 1, it states that any instance of a specific class will be related to at least one individual
with that property. Therefore, the reasoner can assume that the property must always have
a value for instances of that class. To demonstrate, we can use the typical example of
the property hasChild belonging to the class Parent. The property hasChild should have a
minCardinality of 1, because a human cannot be a parent without having at least one child.
It is not mandatory to be a parent though, so class Human can have a minCardinality of 0

on the hasChild property.

2.3. OWL 63

owl:maxCardinality This also applies to properties concerning a specific class. This
restriction stands for maximum cardinality. If the maxCardinality of a property of a certain
class is 1, then this means that any instance of that class will be related to one individual
at most with that property. Stating maximum cardinality does not give any information for
the reasoner about the minimum cardinality. If the maximum cardinality is 0, then instances

of a class must not be related to any individuals by that property.

family:Child a owl:Class ; owl:equivalentClass family:0ffspring

; rdfs:subClass0f family:Human , _:nodelbsb4m6gcx35

_:nodelbsb4mbgcx35 a owl:Restriction; owl:onProperty family:hasMother
; owl:onClass family:Mother

; owl:maxQualifiedCardinality "1"~"xsd:nonNegativelnteger

The above example states that there is a cardinality restriction on the class Child
pertaining the hasMother property, with maxCardinality being 1. This means that each

child cannot have more than one mother.

owl:cardinality This is useful when we want to say that minCardinality and
maxCardinality are both of the same value. If a property’s cardinality is 1, this means
that the minimum cardinality is 1, and the maximum cardinality is 1. For example, the
class Human has exactly one value for the property hasBirthMother. Knowing this, the
reasoner can infer that if two different instances of class Mother are related to the same

individual with the property hasBirthMother, then there must be a mistake or inconsistency.

2.3.2.7 Extra Restrictions

OWL Lite puts the restriction on the construct owl:intersectionOf that it must be used
only on lists that have more than one member, and these members must be only class
names. For example, stating that a Woman is the intersection of a Female and a Human
with both belonging in a collection, is valid. OWL Lite also requires that the statements
owl:allValuesFrom and owl:someValuesFrom have class names or datatype names as the

object.

64 CHAPTER 2. ONTOLOGIES

2.3.3 OWL DL

OWL DL extends OWL Lite, and adds maximum functionality and expressiveness of
knowledge. DL stands for Description Logic. "A Description Logic (DL) models concepts,
roles and individuals, and their relationships" [DL]. The goal of OWL DL is to provide
maximum expressiveness but at the same time having completeness of reasoners. OWL DL
has no restrictions on the language constructs, but these constructs have certain restrictions
as to how they can be used. For example, transitive properties are not allowed to have
cardinality restrictions. Every OWL DL ontology is an OWL Full ontology. OWL DL requires
type separation (a class cannot be an individual or property at the same time, a property
cannot also be an individual or class). Furthermore, OWL DL requires that properties are
either object properties or datatype properties. As in OWL Lite, owl:Class is a subclass of
rdfs:Class.

2.3.4 OWL Full

OWL Full provides maximum functionality and expressiveness just like OWL DL, but in the
case of OWL Full there is complete syntactic freedom. It is the most complex language of
the three, but it is the most powerful as well. There are no guarantees that every feature
of OWL Full can be reasoned completely by reasoning software. Plus it takes longer time
for a reasoner to complete its reasoning because of its complexity.

OWL Full is based on different semantics from OWL Lite or OWL DL, and is intended
to be compatible with RDF Schema. For example, in OWL Full a class can be treated
simultaneously as a collection of individuals and as an individual, something not allowed
in OWL DL or OWL Lite. RDF documents are in OWL Full, unless they are specifically
constructed to be in OWL DL or Lite. This means that if a person finds an RDF document,
they can assume that it is written in OWL Full unless specified otherwise. An OWL Full
reasoner can therefore be used safely. Even if the document is stated to be in OWL DL,
an OWL Full reasoner can be used because every legal OWL DL document is an OWL Full
document.

In OWL Full, rdfs:Class and owl:Class are equivalent. Furthermore, object properties
and datatype properties are no longer disjoint with each other as in OWL Lite and OWL
DL, since data values can be treated as individuals.

The possibility to use the following constructs from OWL is added to OWL DL and

2.4. REASONERS 65

OWL Full, whereas it is forbidden in OWL Lite [46]:

owl:oneOf Classes can be described by enumeration of their individuals. For example, the
class Seasons can be described by enumerating the individuals Spring, Summer, Autumn,
Winter. The reasoner can deduce that the cardinality is 4 because there cannot be any

more or less instances for this class.

owl:unionOf, owl:complementOf, owl:intersectionOf We can state for example

that the class Woman is the intersection of the classes Human and Female.

owl:hasValue A property can have a requirement of having a certain individual as a

value.

owl:disjointWith We can declare disjoint classes, e.g. an individual can never be an
instance of Woman and Man simultaneously, so these classes can be stated as disjoint with

each other.

minCardinality, maxCardinality, cardinality There is also no restriction on cardinality

as in OWL Lite. We can have cardinality restrictions greater than 0 or 1.

2.4 Reasoners

Reasoners or rules engines are software tools that accept axioms or facts and produce logical
consequences [54]. It is basically an inference engine. There are many types of reasoners,

depending on the method of reasoning. Some of these are:

e forward chaining reasoners
e backward chaining reasoners

e description logic reasoners

2.4.1 Forward chaining reasoners

Forward chaining reasoners work as the name suggests, forwards, by starting with the data

that has been given and by inference rules it can extract more data. This process goes

66 CHAPTER 2. ONTOLOGIES

on until there is some break point or it reaches the end of the data. If there is a specific
goal (for example to find out certain information), then the reasoner goes through the
data until the goal is reached. Forward chaining is also called data-driven, because the
data determines which rules will be used. One advantage of forward chaining reasoners
compared to backward chaining reasoners is that since forward chaining reasoners start
with data, new inferences can be triggered with the addition of new data. This gives them
an edge for situations where dynamic content is a main aspect [50]. A popular forward

chaining reasoner is CWM.

2.4.2 Backward chaining reasoners

Backward chaining reasoners are the opposite of forward chaining reasoners. They are also
called goal-driven. This is because the reasoner starts with the goal and works backwards

to see if there is data to support the goal, thus the goal determines which rules will be used

[48].

2.4.3 Description Logic reasoners

Description Logic (DL) reasoners are reasoners that are made for OWL-DL documents.
Some popular description logic reasoners include FaCT++, Pellet, RacerPro, CEL, and
more. FaCT++ is based on C++ and is open-source software, whereas Pellet is Java-based

and commercial software. RacerPro and CEL are Lisp-based.

2.5 Epilogue

Ontologies are needed in Semantic Web in order to describe abstract concepts and define
class and property hierarchies. Ontologies are usually written in OWL, which is built on
RDF Schema. RDF Schema semantically assigns definitions and is descriptive language
(whereas XML Schema is prescriptive). RDF Schema is probably not sufficient enough
to create a complex ontology, because it is not possible to have property or cardinality
restrictions. OWL uses RDFS features and extends them by adding more functionality and
possibilities. OWL has three sub-languages, OWL Lite, OWL DL, and OWL Full, each
one being more complex than the previous. Reasoners are tools that perform reasoning,

meaning that they infer and produce data using pre-defined rules. These ontologies can be

2.5. EPILOGUE 67

written in applications that are designed for this purpose. We will analyze one of these in

the following chapter.

Chapter 3

Protégé

3.1 Introduction

Protégé is a free open-source platform developed by Stanford Center for Biomedical
Informatics Research at the Stanford University School of Medicine. It provides tools to
create ontologies and domain models. It is possible with Protégé to create, edit and visualize
ontologies, as well as save them in various formats. Classes and properties in an ontology
can be created, edited and visualized as well. Protégé supports the usage of various plug-ins
as well as Java-based API (Application Programming Interface) [2].

The Stanford University currently supports three versions of Protégé, versions 3.4.5
Release, 4.0.2 Release, and 4.1 Beta. In this thesis the 4.0.2 Release version will be used.
Although the 3.4.5 Release version might seem like a better option at the current moment,
the goal of the thesis is to have a futuristic scope. The 3.4.5 Release version will continue to
be supported for a while longer, but 4.0.2. Release version is the one that will become the
future stable version. For this reason, the screen shots of the developed example ontology
will be in the 4.0.2 Release version.

As stated in the OWL Web Ontology Language Guide [45], "An OWL ontology may
include descriptions of classes, properties and their instances. Given such an ontology,
the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not
literally present in the ontology, but entailed by the semantics. These entailments may be
based on a single document or multiple distributed documents that have been combined

using defined OWL mechanisms".

09

70 CHAPTER 3. PROTEGE

3.2 Protégé Features

The main features of Protégé 4.0.2, taken from the Protégé Wiki page [27], are :

GUI Framework
e Configurable (persistent) layout of components
e Creation, import, and export of user configured tabs
e Multiple alternative views of the same ontology
e Tear-off and cloning of components
e Keyboard shortcuts
e Drag and drop support

e Lazy loading components/plug-ins for improved speed and memory usage

API
e OWL API for OWL 2.0 provides efficient in-memory model
e Plug-in framework is OSGi compliant Equinox (easily extensible)

e Generic application framework is separated from OWL Editor Kit

Modularization

e Intelligent use of local /global repositories to handle import dependencies

Loading of multiple ontologies into a single workspace

Switching between ontologies dynamically

Ul hints for showing in which ontology statements are made

Refactoring: merging ontologies and removal of redundant imports

Refactoring: moving axioms between ontologies

3.2. PROTEGE FEATURES 71

Navigation
e History
e Global/local find
e Global usage

e Hyperlinking in editors

Refactoring Tools

e Renaming (including multiple entities)

Handling disjoints/different

Quick defined class creation

Various transforms on restrictions (including covering)
e Conversion of IDs to labels

e Moving axioms between ontologies

Reasoning Support
e Inferred axioms show up in most standard views

DL Query tab for testing arbitrary class expressions

Direct interface to FaCT++4 reasoner

Direct interface to Pellet reasoner

e Reasoners are plug-ins

OWL Editing
e Consistent rendering of ontology entities, using URI fragments or annotation values
e OWL description parsing (also supports names in annotations)

e Built-in change support allowing compound changes and undo

72 CHAPTER 3. PROTEGE

e Autocompletion and expression history
e Syntax highlighting
e Auto creation of IDs/labels for new entities

e SWRL rules editing

Plug-ins

e Highly pluggable architecture with support for lots of different types of plugin
including views, menu actions, reasoners, preferences, several manager hooks and

more
e Auto-update for notification of new plugins and new versions

e Many plugins available including reasoners, matrices, scripting, clouds, existential
tree, text mining, explanation, ontology processing, lint test framework, natural

language generation and more

3.3 Comparison of Versions

A beginner may be confused as to which Protégé version should be used. There are
significant differences between Protégé 3.4 and Protégé 4.0, thus the developer's choice
should be considered carefully. Below there is an analysis and comparison of the two versions

from different points of view.

Frames Support In Protégé 3.4 the editing of frames is supported through the
Protégé-Frames editor. In version 4.0 there is no support as the Protégé-Frames editor

has not been migrated yet.

OWL Support Version 3.4 supports OWL 1.0, whereas version 4.0 supports OWL 2.0.
The latter version provides a framework purely for OWL language, while version 3.4 provides
support for OWL and RDF Schema. There is no SPARQL support yet in Protégé 4.0, as
well as no support for OWL Full. Protégé 4.0 has direct connection to Pellet, FaCT++

and other DL reasoners for optimum speed.

3.4. DEMONSTRATION OF PROTEGE 73

Plugins In both Protégé versions a large set of plugins is provided, developed by Stanford
as well as external developers. In version 4.0 the plugin framework has been switched to

OSGi, which allows any type of plugin extension.

User Interface In version 3.4, widgets are used for configuring the user interface, whereas

in 4.0 version, plugins define all the user interface elements.

Multi-user Support In version 3.4, many users can edit the same ontology
simultaneously via the client-server version of Protégé, whereas it is not possible in Protégé

4.0 yet.

Database Storage Model In Protégé 3.4, one can store ontologies in a database
provided by the JDBC database back-end. This is not possible in version 4.0 as the database

back-end has not been migrated yet.

3.4 Demonstration of Protégé

An example ontology has been created specifically to demonstrate Protégé and specifically
version 4.0.2. This is based on the domain model known to everyone, for example a
family domain. This ontology was created also to demonstrate property characteristics and
restrictions in OWL, as well as cardinality constraints. The complete OWL document can
be found in Appendix A. The goal of this example is to create a complete ontology. Several
instances are provided in order to show examples of property characteristics and restrictions.

The main screen of Protégé is the Welcome screen, shown in Figure 3.4.1. We open
the family2.owl file using the "Open OWL Ontology" button.

The first screen that opens by default is the "Active Ontology" tab (Figure 3.4.2).
This serves as an overview of the whole ontology. Annotations about the ontology include
information about the creator, language, publisher, contributors, and more. Metrics on the
ontology can also be seen here, as well as axioms of each content (classes, object properties,
and more).

The next tab on the Main menu is the Entities tab (Figure 3.4.3). Here one can navigate
through all the classes, properties and individuals that belong to the ontology. This way

everything is in one place.

74 CHAPTER 3. PROTEGE

Create new OWL ontology

Open OWL ontology

Open OWL ontology from URI
oOpen from the TONES repository

Open recent

fhome/m/Desktop/Thesis/family2.owl
fhome/mjontologies/blabla/blabla.owl

Figure 3.4.1: Protégé 4.0.2 welcome screen

[Active Ontolgy | Entities | Clsses | Object Properties | Data Properties | individusle | OWLViz | DL Query |

(oo Ao |
Weirics [=]
fnpatations; Class count 14
description Object property count 1
A basic ontology on the concept of family” Data property count 3
RS Individual count 13
"Fotini Bogiatzi® DL expressivity SHOIQ(D)

Class axioms

SubClass axiems count

Equivalent classes axioms count
Disjoint classes axioms count
GCl count

Hidden GCI Count

Object property axioms
Sub object property axioms count

Equivalent object properties axioms count

0
Inverse object properties axioms count 2
0

Disjeint ebject properties axioms count

Functional object property axioms count

OWLIXNL Rendering | OWL Functians! Syntax Rendering |
Srtzlogy Impants I Genars| sxizms I ADFXNL Rendaring

Imported ontologies: mE=E Transitive object property axioms count

Symmetric object property axioms count

‘ Inverse functional sbject property axioms

Direct imports

2
2
3
Anti-symmetric object property axioms co... |0
Reflexive object property axioms count 0

0

Indirect imports
Irreflexive object property axioms count
Object property domain axisms count 1
Object property range axioms count 11

Object property chain subproperty axioms... 0

Data property axioms e

Figure 3.4.2: Active Ontology screen

3.4.1 Classes

One of the first things that someone should do when creating an ontology is to create
the classes, therefore define a class hierarchy. This can be done in the Entities section,
but it is possible to be done by clicking on the "Classes" tab located on the Main menu.
This section contrary to the Entities tab contains information only about classes and their
hierarchy. This brings us to the Class window. We can see the list of available classes

and their members. In an empty ontology, only the superclass Thing will exist. To add a

3.4. DEMONSTRATION OF PROTEGE 75

Fle Edt Onbloges Ress Took Refactor Tabs Help

<> [&

Y ot ropetes | s | oW | oL |

ivalent ol sszes
Offspring

Figure 3.4.3: Entities tab in the family ontology

new subclass, we click on the "Add Subclass" button located far-left above class "Thing".
From the same row of buttons the right button is for deleting a class. In Figure 3.4.4 we
can see the dialog box that prompts the user to enter a class name. Directly underneath
the textbox, the URI of the class name can be seen, with the fragment identifier being last.
This is what separates the actual resource name from the rest of the URI, as mentioned
previously.

In Figure 3.4.5 that is following, we can see the list of classes that exist in the Family

ontology that was developed for the purpose of demonstration in the thesis.

Equivalent Classes To set equivalent classes in Protégé, the user must click on the
"Equivalent Classes" setting that is on top at the Description box. Of course the proper
class must be selected, and it must be done in the "Classes" tab. For example, if we want
to set the classes "Child" and "Offspring" to be equivalent, we click on the "Add" button,

and are presented with the screen shown below (Figure 3.4.6).

Cardinality Views In order to set cardinality restrictions in the ontology, the Cardinality
View plug-in should be installed first of all. To enable viewing and usage, by clicking on
"View — Class views — Cardinality View" we can set the corresponding box to be positioned

anywhere we want in the Classes tab view. To create a new cardinality restriction, we click

76

CHAPTER 3. PROTEGE

File Edit Ontologies Reasoner Tools Refactor Tabs View Window Help

<> [© family.owl (ittp:fwwn example.

com/Family. owl)

Active Ontology | Entities | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Query |

[Asserted class hierarchy || Inferred class hierarchy |

L EAET

| Class Annatations || Glass Usage

Annotations

v @Thing
- Human
- @Child
V- @Female

Sibling

Create a new OWLClass

Please enter a class name

Offspring|

uri: hittp:jfwww.example. comffamily. onl#0ffspring

[oK][cancel

]

Inferred anonymous superclasses

Members

property | min| max] filler

cla #Ange

#Frances
#George
$Peter
#FPeterD
#Sophia

[l

Figure 3.4.4: Adding a subclass

|/ Asserted class hierarchy r Inferred class hierarchy

(%]

E

¥ Thing
v-

Human

----- 0ffspring
..... ch-l'ld

V- @O Female
Mother
Sister
Wife
Male
Brother
Father
Husband
----- Parent

----- Sibling

Figure 3.4.5: List of Classes of the family ontology

on "Add Row" which brings up the screen shown in Figure 3.4.7. In this case we are

creating a cardinality restriction for the property hasMother. This ontology was designed

for a family with biological parents, which means that the property hasMother is referring

to the birth mother. Each child has only one biological mother or father, so we can state

that the cardinality restriction for hasMother is exactly one. This is achieved in Protégé by

setting minimum of 1 and maximum of 1.

We can see in Figure 3.4.7 that the classes Offspring and Child are indeed set to be

3.4. DEMONSTRATION OF PROTEGE 7

FAssertEd class hierarchy | Object restriction creatar | Data restriction creatar

Class expression editor

AT

¥-@Thing
V- @Human
- @Child

Female
Male

; 0ffspring
-~ ®Parent
~@Sibling

.
>

Figure 3.4.6: Choosing an equivalent class for the class Child

© Create New Row

[Class f Data Constant | Data Range | Individual |

Restricted properties Filler
[][] (%] &[]
®™hasChild v-@Thing
~-mmhasFriend ¥ @Human
¥ ®mhasParent _©offspring
-mmhasFather
®hasMother ~@Child
hasSibling v-@Fenale
WhasSpouse ~'Mother
Sister
Wife
b @ Hale
- @Parent
Sibling
Cardinality

Figure 3.4.7: Creating cardinality restriction for the hasMother property

equivalent, due to the different circle preceding the class name. The three white lines

indicate the equivalence.

3.4.2 Properties

Object Properties In order to define object properties, we click on the tab "Object
Properties" located on the Main Menu. We can see that the screen is divided again in

different sections. The Characteristics section is for setting special characteristics on the

78 CHAPTER 3. PROTEGE

properties. Therefore we can define symmetric properties, inverse functional properties,
transitive properties and more. This is done simply by clicking in the appropriate box of the
desirable characteristic. The reasoner can thus deduce certain information that it wouldn’t
be able to do otherwise. For example, unless otherwise stated, the reasoner cannot know
that the property hasFriend is symmetric. Everything must be explicitly defined in order
to have a complete ontology. Below, in Figure 3.4.8, we can see the screen of the Object
Properties along with the list of properties that the Family ontology contains. Properties
can have sub-properties as it was mentioned previously in the thesis, and this also can be
seen. The reasoner can deduce that sub-properties contain at least the same characteristics
as the super-property. Object properties in Protégé are identified and recognized by their

distinctive blue color.

<4 family.owl (http://www.example.com/family.owl) - [C\Thesis\family2.owl] l = |[=] ﬁ

File Edit Oniologiee Reasoner Tools Refactor Tabs View | Window | Help

E o> |® family.ow| (hitp:/f example. comi/family.o '| ﬂﬁ| |

Active Ontology | Entties | Classes | Objsct Properties | Data Properties | Individuals | OWLViz | DL Query |

Object properties: i MBEE i Annotations |/’0biEI:-‘tF'l certy Usage |

4 || -
[m][]
. mhasChild I Functional Damains (intersection) s
- Mhashriend s
hasParent] Inverse functiona Sibling
mhasFather Fansitve
i hasMother Ranges (intersection)
hasSibling Symmetric Sibling ol
whasBrother 7 Asymmetric e
: W hasSister
‘=. -l"IESSﬂEILISE D Reflexive Equivalent object properties
et S [Irreflexive I
mmhasWife Super properties
Inverse properies
B D =

Figure 3.4.8: List of Object Properties in family ontology

Data Properties The data properties of each ontology can be seen by clicking on the
"Data Properties" tab. Here we can see a similar screen as the "Object Properties" section.
Data properties are defined and recognized in the ontology editor with the green color
(Figure 3.4.9). Also, they have only one characteristic which is the functional characteristic.
Sub-properties can also be defined here, although in this example there are none. The
firstName and hasSurname properties can be defined as disjoint if we do not want the same

name to be as a first name and surname. Decisions like these are arbitrary.

3.4. DEMONSTRATION OF PROTEGE 79

=& family.owl (hgi'm .examele.com{famil 1

File Edi Oniolegiee FReaszoner Toole Refactor Tabes View Window Help

E o> |® family.owl (hitp:/fwww . example. com/famity. ow!l '| @E| |

Active Ontology | Enties | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Query |

roperties: U
Lot rties: has MSEE rDsts Property Annctations rl}ata Property Usage |
| T | X Annotations: hasSurname e
mfirctName Annotations
-~ mmhasAge
+-WhasSurname
Charact MEME WM Description: hasSurname =10 e
1 Functional Domains (intersection) ||
Human
Ranges 1
@ string
|-

Figure 3.4.9: List of Data Properties for family ontology

3.4.3 Instances - Individuals

Individuals are class instances created to make the ontology more concrete. They are the
resources. The list of these individuals can be found in the "Individuals" tab on the Main
Menu. To create a new individual, in this case a human part of the family ontology, we
simply click on the "Add individual" located in the Individuals section box. If we want
to delete one, we click on the "Delete individual(s)". The description of each individual
can be seen also in the "Description" section, as well as the "Property assertions" section.
From these two sections we can see the summary of each individual in the ontology, which
classes it belongs to and which properties it is associated with. An example of this is seen
in Figure 3.4.10 about the individual named Sophia.

To assert a new property for an individual, we click on the "Add" button on the
appropriate type of property we desire. For example, to set Sophia’s mother, by clicking on
the plus sign in the "Object property assertions" part we are met with the following screen
(Figure 3.4.11).

We can be sure that these are object properties from the blue color.

In large ontologies with many individuals per class, a user may want to view the list of
those individuals grouped by their corresponding classes. This is a quick way to see all the
classes that contain instances, and how many instances each class has. This is done by
clicking on the "Individuals By Class" tab. The result of the currently used family ontology

is shown below in Figure 3.4.12.

80 CHAPTER 3. PROTEGE

<4 family.owl (http://www.example.com/family.owl) - [C\Thesis\family2.owl] l ==l ﬁ
-

File Edit Oniologiee FReaszoner Toole Refactor Tabe View Window Help

E o> |® family.owl (hitp:/v _example. com/family.o '| 8ﬁ| |

Active Ontology | Entties | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Query |

Individuals By Class | rln:liv'i:uslAnn:tstians rlndividual Uszge |

Annotations
%] |
¢ Ange
& Frances
& George [Description: Ange IEEE M Property assertions: Ange = [IHEE|
* EEIIIi‘QiE Types Object property assertions I
4 Madaline Brother ®hasMother Sophia
§ o Child wshasfather Peter]
& Feterd
@ Peterd Human mmhasBrother George
Sarsh Thing
’ Suuhia Data propery assertions
’ Theo Same individuals i hasSurname "Kalan"
@ Vivi mfirstame "Ange” f
’ Vivian Different individuals -hEEAﬂE 19
Sarah, Frances, Sophia, Georgia,
FEIEI‘A. MEdE“I’IE. Eeurge. ‘|’ivian. MNegative object property assertions
Theo, Peter, PeterD
MNegative data property assertions

Figure 3.4.10: Individuals Tab with additional information

3.4.4 Refactoring

To change the name of an entity, we click on "Refactor" located on the Title menu and
from there on "Change entity URI". There is an option to change either a specific entity
name, or even all the entities with the same URI. If there is a large ontology, there it is
possible to "Change multiple entity URIs". In this case there is no distinction between
separate URIs. This means that if a class and an object property contain the same name,

they will both be changed. For example, the class Sister and the object property hasSister.

3.4.5 Reasoning

Reasoners are integrated into the Protégé environment with plugins. Any reasoner can
be used, each one has its advantages and disadvantages. Pellet is written in Java, and
FaCT++ is written in C4+4. To enable the reasoner, it simply needs to be clicked on the
drop down menu of "Reasoner". Immediately the reasoner deduces any information that
has not been explicitly defined. This can be seen by the differently colored background in

the parts that were reasoned, as well as the dotted border. For example, in Figure 3.4.13

3.4. DEMONSTRATION OF PROTEGE 81

< Sophia X
mi | | | ¥ X
o }asChild L] Ange
- hasFriend # Frances
V- mmhasParent 'y
I . mmhasFather ¢ EEur‘g!! l
P eorgia
. - WhasMather & Madali .
b WmhasSibling ¢ e
b ®mhasSpouse Peter
& Peterh
4 PeterD
Sarah
Sophia
® Theo
® Vivi
Vivian
" Ok Cancel
| —

Figure 3.4.11: Object Property assertion for Individual "Sophia"

below, we can see that the reasoner deduced that the domain of the property hasMother
can also be Offspring, and that the range can be a Parent as well.

In the tab "Inferred class hierarchy" located in the Entities or Classes section, we can
see that the reasoner has deduced also that the class Nothing is a subclass of class Thing

(Figure 3.4.14).

3.4.6 OWLViz

The OWLViz tab is for visualizing the hierarchy of classes in the form of a graph (Figure
3.4.15). They can also be incrementally navigated, something very helpful for large
ontologies or ontologies based on complicated domain models. The asserted class hierarchy
and the inferred class hierarchy can be compared this way as well. The graph can easily be
exported and saved as an image file. This is done by clicking the "Export to Image" button
on the OWLViz toolbar.

It may happen that at first errors will occur upon clicking the "OWLViz" tab, it is usually

82

Individuals by cila: 00 H &=

: Brother (2)
, "'ﬂungE
“ { Beorge

- © Child (3)

..... "ﬁ.ngE

""" # George
~ 4 Sophia
Father (2)

Female (&)
""" # Georgia
- 4 Madaline
- 4 Sarah

- @ Vivian
Human ()
Husband (2)
Male (2)

Mother (2)
Wife (2)
Thing (13)

CHAPTER 3. PROTEGE

Figure 3.4.12: List of Individuals grouped by Class

an occurrence when GraphViz is not installed, or when the GraphViz DOT application is

not found in the path. Simply correcting the path to the application in the preferences fixes

the problem.

3.4.7 Export

To save the ontology, all that is needed is to click on "File-> Save". The extension of the

file will be .owl. This file now can be imported into RDF storage, query processor, etc.

However, in order to include also the inferred axioms created by the reasoner, it is needed

to click on "File->Export inferred axioms as ontology". This is done after the reasoner

(e.g. Pellet) has been activated in Protégé. Otherwise, Sesame will not be able to detect

the inferred information during SPARQL queries (more information in Chapter 5).

3.4.8 Plug-Ins

There are some interesting plug-ins available for Protégé, including :

OWL2Query OWL2Query is a conjunctive query and metaquery engine and visualization

plug-in. It facilitates creation of queries using SPARQL or graph-based syntax,

3.4. DEMONSTRATION OF PROTEGE

[family.ow! (ntp://www.example.com/family.ow) - [C\

File Edi Onioclegies

Reaszoner Toole Refactor Tabs View

Window Help

E o> |® famity.owl (http:/iw.

w.example. comifamity. ow!)

- @]

Active Ontology | Enties | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Query |

Individusls By Class |
Individuals

Individuals: £ ME®EE

KalEd

[Individusl Annctstions | Individusl Usage |

Annotations: Ange MEEE

Annotations

& Ange
' Frances Description: Ange
' EEIIII‘QE Types Ohbject property assertions |
: other = hasMother Sophia
: :E'Tjrﬂl'a ®Brath hasMather Saph
adaline
& Peter & Child mm}asFather Peterl
& FPeterd @ Human whasBrother George
eterd ing Wz sParent Sophiz
Peterd @Th hasParent Soph
fzpring asParent Peter)
: Souril el et eter]
PY -Sruhzl:a @ Sibling s sSibling Ange
& Vivi o WsSibling Beorge
’ Vivian Same individuals WhzsFriend Sarch
Different individual Wz sPriznd Ange
& Sarah, Frances, Sophia, Georgia, B e e e
Peterh, Madaline, George, Vivian, - - |
Theo, Peter, Peter "hasSurname "Kalan
wfirstame Ange”
mhashge 19 [+]

Figure 3.4.13: Results from the reasoner

rA(tive Ontology rEntities r Classes r Object Properties r_I:

r Asserted class hierarchy r Inferred class hierarchy |

Inferred class hierarchy: Sister DNEEE
v-@Thing

0ffspring = Child
Parent
Sibling

Figure 3.4.14: Inferred class hierarchy

and evaluates them using any OWL APl-compliant reasoner [22]. This plug-in is

compatible with the 4.1 Beta version.

Annotation Template View A view that can be configured to show a set of standard

84 CHAPTER 3. PROTEGE

| Sibling

(chid yr—i=a
_ T—lza —[={ Offspring

is-a

— | Wife
|, Parent N

J — | Mather

“is-3 [Fernale ¥

T sister

| Husband
(male ' o
— 1 Brother

| Father

Figure 3.4.15: Visualization of the class hierarchy

annotation fields for every class/property/individual. This makes it quicker to
annotate as they are always in the same order, editable inline and easy to navigate

[14].

Cardinality View An experimental alternative to the conditions widget that shows

restrictions in relation to their cardinality.

Cloud Views This plug-in helps the developer and contributors to visualize the ontology

as a tag cloud, which is a set of related tags.

OWLViz Enables class hierarchies in an OWL ontology to be viewed and incrementally
navigated, allowing comparison of the asserted class hierarchy and the inferred class

hierarchy.

Changes Tab Allows users to track and annotate changes to Protégé ontologies.

3.5 Epilogue

Chapter 3 describes the platform that provides tools to create ontologies and domain
models, Protégé. A comparison of versions is given for those that are not sure where to start
from. A demonstration of the creation of an ontology is also provided using step-by-step
examples and screenshots of the process. In the following chapter, we will talk about the

query language for RDF.

Chapter 4

SPARQL

4.1 General

SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query
Language. As is suggested by the name, SPARQL is both a protocol and an RDF query
language. The SPARQL query language for RDF is a specification for querying RDF data,
done by pattern matching. SPARQL queries RDF data (datasets) which is in the form
of graphs [15]. The SPARQL protocol for RDF is a specification for invoking SPARQL
queries remotely, and receiving the results. "It specifies a simple interface that can be
supported via HTTP or SOAP that a client can use to issue SPARQL queries against some
endpoint" [15]. SPARQL is considered the query language of Semantic Web and is part
of the Semantic Web vision. There are currently two versions of SPARQL, 1.0 and 1.1.
On 15 January 2008, SPARQL 1.0 became an official W3C Recommendation [41]. For the
rest of this thesis, whenever we refer to SPARQL we mean version 1.0. Furthermore, we
mean the SPARQL query language for RDF and the SPARQL protocol for RDF will not be
analyzed. Both the SPARQL query language for RDF and the SPARQL protocol for RDF
are products of the RDF Data Access Working Group of W3C.
SPARQL 1.0 includes:

1. SPARQL 1.0 Query Language
2. SPARQL 1.0 Protocol
3. SPARQL Results XML Format

SPARQL 1.1 is currently in development, and includes:

85

86 CHAPTER 4. SPARQL

1. Updated 1.1 versions of SPARQL Query and SPARQL Protocol
2. SPARQL 1.1 Update

3. SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs
4. SPARQL 1.1 Service Descriptions

5. SPARQL 1.1 Entailments

6. SPARQL 1.1 Basic Federated Query

With SPARQL it is possible to query unknown relationships, transform RDF data from
one ontology to another, query structured as well as semi-structured data, and unite different

databases into a single query [16].

4.2 Syntax

As mentioned previously, SPARQL queries data by matching patterns. This means that
subgraphs of the RDF dataset are defined, and if such subgraphs exist (if a substitution for
the variable is found) then they appear in the query result set. The only difference is that

the subgraphs in the query may contain variables.
SPARQL query results can return in various formats, i.e. RDF, XML, HTML and JSON.
A SPARQL query may contain [16]:

1. Prefix declarations, to abbreviate URIs

2. Result clause, to declare what should be returned and shown in the result set
3. Dataset definition, to state what RDF graphs are being queried

4. Query pattern, to specify the query

5. Query modifiers, to modify the query results in quantity and order

An example of a query is the following ('#' means one-line comment):

prefix declarations
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX f: <http://www.example.com/ontology/family#>

4.2. SYNTAX 87

result clause

SELECT 7mother

dataset definition

FROM <http://www.example.com/ontology/family>

query pattern
WHERE {

?mother rdf:type f:Mother

query modifiers

ORDER BY ...

4.2.1 Basic Query

At a glance, SPARQL is syntactically like SQL. This feature makes it easy for SQL
users to learn how to use SPARQL. Like SQL, SPARQL also consists of two mandatory
clauses (SELECT and WHERE) and one optional (FROM). The SELECT clause defines
the variables that should appear in the query results. The FROM clause states the RDF
graphs that will be queried. The WHERE clause declares the query pattern that should
match against the RDF data.

The triple in the following example query is a basic graph pattern, consisting of a triple
pattern with one variable in place of the object. For the following queries of the whole
chapter, we will use the RDF dataset shown in Appendix A. The queries will be written and

shown in Sesame.

RDF data:
family:Wife rdf:type owl:Class
SPARQL query:

SELECT 7class
WHERE

88 CHAPTER 4. SPARQL

family:Wife rdf:type 7class .

The variable could have any character or name (e.g. 7x). The query returns only one
solution, shown below in Figure 4.2.1. If we want to select all the variables that appear in

a query, we can also write "SELECT * "

:_uery Result (1)

Limit results: 100

Class

owl:Class

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.1: Query result

The result of the query is called a solution sequence. The sequence depends on the
way of the pattern matching. A query may have none, one or multiple solutions. Each
solution presents an alternative of how the query pattern could match the data. A solution
sequence is a list of solutions, which is not necessarily ordered. This is done by the solution
sequence modifiers (explained further below in section 4.2.3). In a result set, we can see all
the possible bindings. A binding is a pair matching a variable to an RDF term. This RDF
term can be a URI, a literal, etc. In the result set shown in Figure 4.2.1, the variable Class

is bound to the RDF term owl:Class.

4.2. SYNTAX 89

When there is a literal in the query pattern, the pattern matching varies depending on

the type of literal, further analyzed below.

Language Tags When a literal is accompanied by a language tag, then the query pattern
must contain the language tag as well, otherwise a solution cannot be found. The literal
"Sophia" is not the same as "Sophia"@en.

Numeric Types A typed literal representing a number (e.g. xsd:integer) can be shortened

to only its numeric value. In a query asking who is aged 42 years old, instead of writing:
?person f:hasAge "42"""xsd:integer .

we can make the query simpler and write:
?person f:hasAge 42 .

The same is possible for a typed literal representing a string (xsd:string). When the
string contains whitespace, it should be enclosed in double quotes.

For arbitrary datatypes, the full URI must be written. A solution will be found if such
exists because of the lexical matching. As stated in the W3C document for SPARQL, "The
query processor does not have to have any understanding of the values in the space of the

datatype" [33].

4.2.1.1 Blank nodes in a query result

A query result may contain blank nodes as well. These are written as "_:" followed by the
corresponding label. The scope of the blank nodes are local to the result set. It does not
mean that the same blank node label will be returned as the existing label in the dataset,
and it should not be expected. We can safely assume that two blank nodes are different if

they have different labels from each other in the result set.

4.2.1.2 Guidelines and syntax

To abbreviate a URI, instead of writing @prefix which is correct to some notations, we use

the keyword PREFIX: .

For literals, double quotes () or single quotes (3’) may be used with an optional

language tag (e.g., "@en"). If it is a typed literal, then it can be followed by the datatype

90 CHAPTER 4. SPARQL

URI, starting with " ~~ " If there is a need to have quotation marks in the literal itself,
then SPARQL allows this with the usage of three single (or double) quotation marks.
Variables in the query should be preceded by the question mark " 7 " or the dollar sign
"'$ " These characters are not part of the variable name and they indicate to the query
processor that the label is a variable. Query variables have a global scope for each query.
Blank nodes in a query are not references to blank nodes in the data. They serve to
pinpoint variables that cannot be distinguished. They can be written with their label (e.g.,
_:54xwd), or with their abbreviated form, "[]". We cannot use the same blank node label
in two different graph patterns of the same query. There are two possible ways to write

blank nodes in their abbreviated form:

[1 f:hasAge "30"

[f:hasAge "30"]

Both cases are the same as the statement:
_:5eb5 f:hasAge "30"

It is possible to truncate common concepts in a query, for example if a subject is used
more than once in the graph pattern. This is done by using the " ; " symbol and writing
the subject only in the first triple. These are called predicate-object lists. For example,

instead of writing:

f:Sarah f:hasFriend f:Ange .
f:Sarah f:hasAge "1g"

It is possible to write:

f:Sarah f:hasFriend f:Ange ;
f:hasAge "ion

It is possible to have object lists, when multiple triples share the subject and the

predicate. In this case the usage is with the comma """ . For example:

f:Madaline f:hasSibling f:Sophia .

f:Madaline f:hasSibling f:PeterA .

4.2. SYNTAX 91

We can write:

f:Madaline f:hasSibling f:Sophia , f:PeterA .

4.2.2 Graph Patterns

SPARQL deals with graph pattern matching [33]. Simple as well as complex graph patterns

can be used. The various types of graph patterns according to the specification are:

1. Basic Graph Patterns

NS

. Group Graph Patterns

w

. Optional Graph Patterns
4. Alternative Graph Patterns

5. Patterns on Named Graphs

4.2.2.1 Basic Graph Patterns

Basic graph patterns are those that are a set of triple patterns. Using these basic graph
patterns we can group them, add a filter, etc. The set of triple patterns must match the

query in order for results to show.

4.2.2.2 Group Graph Patterns

Group graph patterns are used with braces , inside which the triple patterns are enclosed.
It is possible to have a group of one main basic graph patterns, or to break up the group
by using an empty group pattern in between the triples patterns. A constraint placed on
the group (keyword FILTER) has a scope on the whole group. It does not matter where
the constraint is placed (whether it is before the triple patterns, in between them or at the
bottom). The keyword FILTER has a variety of functions. The FILTER function regex(
) matches plain literals that are not accompanied by language tags. The format is regex

(string, pattern).

SELECT 7surname
WHERE { ?x family:hasSurname ?surname .

?x family:firstName ?7name

92 CHAPTER 4. SPARQL

FILTER regex (?7name, "Peter")

The result is shown in Figure 4.2.2.

' Query Result (2)

Limit results: 100

Surname
"Smith’

"Kalan”

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.2: Individuals with their first name as "Peter"

The regular expression matching is case-sensitive. To make it case-insensitive, we use

the flag "i" [18]. The format is regex (string, pattern, flags). The query below:

SELECT ?surname
WHERE { ?x family:hasSurname ?surname .
?x family:firstName 7name

FILTER regex (?name, "peter" , "i")
}

produces the same result set as in Figure 4.2.2.
FILTER can restrict also numeric values by using arithmetic expressions. The function

regex is not used here. The result of the example below is shown in Figure 4.2.3.

SELECT 7name 7age
WHERE { ?name family:hasAge T7age
FILTER (7age < 30)

4.2. SYNTAX 93

‘Query Result (5)

Limitresults: 100

Copyright © Aduna 1997-2008
Aduna - Semantic Powear

Figure 4.2.3: All individuals under the age of 30

Another function used with FILTER is bound(). The format is bound(?var) and returns
true if the variable is bound to a value. Even if the variable has a value NaN (Not a Number),
it is considered bound. For example, let us query all the people that have an age. The

results are shown in Figure 4.2.4.

SELECT?name 7age
WHERE { ?x family:firstName ?7name .
OPTIONAL { ?x family:hasAge 7age } .
FILTER (bound(?age))
b

We can also use Negation to query if a graph pattern is not expressed by asking if the
variable is not bound. The negation of bound() is bound(). An example is shown below,

showing all the people that do not have an age. The result is shown in Figure 4.2.5.

SELECT 7name 7age
WHERE { ?x family:firstName ?7name .
OPTIONAL { ?x family:hasAge 7age } .
FILTER (!bound(7age))
+

It is possible to query if two RDF terms are defined as equal. We do this by using

the RDFterm-equal operator. This is expressed with the operator "=" . Logical-or and

94 CHAPTER 4. SPARQL

‘Ange’ "1g™*xsdiint
"Frances’ Trg ™t xzdiint
‘George’ T26™~xsd:int
"Peter” "87 " *xsd:int
"Peter” "6o™~xsd:int

‘Sarah™ “xsd:string | 19" “x=d:int

"Sophia’ g7 ~+x=diint

Vivian™*xzd:iztring | 20" *x=zd:int

"Vivian™*xsd:istring | "zo™ “xsd:int

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.4: Results of the bound function

"Theo™ ~xsd:string

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.5: Results of !bound()

logical-and can also be used in SPARQL, using the operators "| 1" and "&&". Using the
isBlank() function on FILTER, we can also query if an RDF term is a blank node.
4.2.2.3 Optional Graph Patterns

The patterns that are queried demand that the entire patterns match in order for a solution

to appear in the query result set. As mentioned previously, every variable is bound to an RDF

4.2. SYNTAX 95

term in each solution. However, not all data is structured and complete. SPARQL excels
by querying semi-structured data. This is done by employing the OPTIONAL keyword.
With this keyword, solutions are not eliminated if the optional part does not match. This is
especially helpful when semi-structured data exists with partial information. To demonstrate

this, let us consider the following example.

SELECT 7parent 7child 7friend
WHERE { ?parent family:hasChild ?child

?child family:hasFriend 7friend

The query above consists of a basic graph pattern, which in turn consists of two triple
patterns. The query translates to: "Show me all the parents with their children that have

friends". The solution sequence is shown below in Figure 4.2.6.

Limit results: 100

Parent Child

familv:Madaline | familv:Georgia | familv:Geo

familv:Madaline | familv:Georgia | family

familv:Georgia | fan

aline | familv:Georgia | familv

familv:Ange familv:Ange

familv:Ange familv:Sarah

familv

familviAnge familv:Zarah

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.6: Parents with children and their friends

All the variables are bound to the solutions, because it is a requirement for basic graph

patterns. However, if we add the OPTIONAL keyword:

SELECT 7parent 7child 7friend
WHERE { ?parent family:hasChild ?child .

OPTIONAL { ?child family:hasFriend ?friend }

96

We get a very different result (Figure 4.2.7):

CHAPTER 4.

ery Result (15)

Limit results: 100

Parent Child
familv:Frances | familv:Madaline
familv:Frances | familv:PeterA
familv:Frances | familv:Sophia

familv:Madaline | familv:Georgia

Friend

familv:Georgia

:Madaline | famr

viGeorsia

famil

familv:Madaline | familv:Georgia

famil

familv:Madaline | familv:Georgia

familv:Vivian

familv:Peter

familv:Peter

familv:PeterD

familv:iAnge

familv:PeterD

familviAnse

familv:Sarah

familv:Georze

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.7: Parents with children that could possibly have friends

SPARQL

We can observe in Figure 4.2.7 that not all variables are bound to the solutions, and

therefore even children without friends were included in the results. This query translates

to: "Show me all the parents and their children, and if the children have friends show

them as well". We can also see some cases where a child is a friend of himself. This is

the case because the property f:hasFriend has been set in the ontology to be both inverse

and transitive. Constrains on OPTIONAL Constraints can be placed on an optional graph

pattern as well. For example, we could apply an age filter on the persons that have age

information about them. This way all the humans will show up in the results, but for those

that are younger than 30 years old (and have an age), their age will show up as well (Figure

4.2.38).

SELECT 7person 7age

WHERE { ?person rdf:type family:Human

OPTIONAL { ?person family:hasAge 7age

}

FILTER (7age < 30)

4.2. SYNTAX 97

Query Result (13)

Limit results: 100

Person Age
familv:Ange T19™ A xsd:int
fami

fami "26™~xsdiint
fami

fami

fami

fami

fami

fami Tig™ ~“ysd:int

fami

fami

fami "20™ *ysd:int

familv:Vivian "zo ™ *ysd:int

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.8: FILTER on OPTIONAL clause effect

Among the solutions that don’t have the age variable bound, are those that didn’t have

any age, along with those than are older than the applied filter (30 years old).

4.2.2.4 Alternative Graph Patterns

Let us take the case where we would want to see all the people that belong to the Brother
or Sister class. Without UNION, we would do it by querying instances of the Sibling class

only, as shown below in Figure 4.2.9.

SELECT 7sibling
WHERE { ?sibling rdf:type family:Sibling }

This method, however, is not flexible. We cannot know immediately if the person
belongs to the Brother or Sister class, and we cannot use any constraints on those separate
classes. With UNION however, this is possible. Results of the following query are shown in

Figure 4.2.10.

SELECT 7sister 7brother
WHERE { {7sister rdf:type family:Sister } UNION

{ ?brother rdf:type family:Brother } }

Now that we have separated the graph patterns into two alternatives, we can for example

place additional patterns, filters or constraints depending on what we want. For example

98 CHAPTER 4. SPARQL

Sibling

familv:Ange

familv:Georse

familv:Madaline

famil v:Petera

familv:Sophia

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.9: People that belong to the Sibling class

ult (5)

it results: 100w

Sister Erother

famil v:Madaline

familv:Scphia

familv:Ange

familv:George

familv:Petera

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.10: Showing people who belong to the Brother or Sister class

below we ask for: "Show me all the people that belong to the Sister class, all the people
that belong to the Brother class, and for the latter show me their first names" (Figure

4.2.11).

SELECT 7sister 7brother 7firstName
WHERE { {?7sister rdf:type family:Sister } UNION

{ ?brother rdf:type family:Brother

4.2. SYNTAX 99

?brother family:firstName ?firstName } }

"Query Result (4)

Limit results: 100

Sister Brother FirstMame
familv:Madaline
familv:Sophia

familviAnge JAnge’

familv:George | "George’

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.11: Show the first names for those that belong in the Brother class

4.2.2.5 Patterns on Named Graphs

An RDF dataset represents a collection of graphs, which in turn contains one default
graph, and optional named graphs. The default graph does not have a name. IRIs
(Internationalized Resource Identifiers) are used to identify the named graphs. Each FROM
clause is accompanied by an IRI that points to a graph. A difference between URIs and
IRIs is that URIs are US-ASCII encoded, whereas IRIs are UTF-8 encoded. An example of

a query with named graphs is shown below.

SELECT “?var

FROM NAMED <urlOfGraphA>

FROM NAMED <urlOfGraphB>

WHERE {

GRAPH <url0fGraphA> { graph patterns from A }
GRAPH <url0fGraphB> { graph patterns from B }
}

100 CHAPTER 4. SPARQL

If the queried dataset contains the graphs, we do not need to write the FROM NAMED

clause. This happens only when we want to query the named graphs remotely.

4.2.3 Solution Sequence Modifiers

The solutions that are found in a result set are not ordered. These solutions form a sequence
(collection) and this sequence can be modified according to the our needs and desires of

the outcome. These modifiers are:

ORDER BY This modifier is used to put the solutions in order, according to a variable.
Projection A subset of the solution sequence is shown only.

DISTINCT Every solution in the sequence is unique with this modifier.

REDUCED Permits any solutions that are not unique to be eliminated.

OFFSET It can be declared where the solutions should start from.

LIMIT We limit the number of solutions shown.

These clauses will be further analyzed below.

4.2.3.1 ORDER BY

With the ORDER BY modifier, we can order the solutions in the solution sequence according
to a variable. Optionally, we can include an order modifier (ASC() or DESC ()), which
will indicate an ascending or descending order. The result set of the following query is

shown in Figure 4.2.12.

SELECT 7name 7age
WHERE { ?name rdf:type family:Male .

?name family:hasAge 7age

This solution sequence is ordered automatically by the name, but not the age. If we
were to desire ordering by age, we would do the following (results are shown in Figure

4.2.13):

4.2. SYNTAX 101

familv:Ange |719"*“xsd:int

familv:George | "26™ “xsd:int

familv:Peter | 87 ~“xsd:int

familv:PeterD | "60"™"“xsd:int

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.12: All the male individuals that have age

SELECT 7name 7age
WHERE { ?name rdf:type family:Male
?name family:hasAge 7age }

ORDER BY 7age

mit results: 100w

Mame Age

familv:Ange | 719" *xsd:int

familv:Georse | '26"*xsd:int

familv:PeterD | "60"""xsd:int

familv:Peter |87 ~"xsd:int

Copyright ©@ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.13: All the male individuals that have an age, ordered according to their age

Strings and literals are not the only RDF terms that are ordered by this modifier. URlIs
may be ordered as well, by comparing them as plain literals. Numeric values are ordered

with the "<" operator. There is also an order between RDF terms. Unbound results are

102 CHAPTER 4. SPARQL

sorted first, then blank nodes (blank nodes are not ordered among themselves), URIs, RDF

literals (plain literals are sorted first, and typed literals follow).

4.2.3.2 Projection

Projection is possible by using SELECT and giving only the variables that we would like to
see in the solution sequence (only the variables in SELECT will appear).

4.2.3.3 DISTINCT

It is possible that duplicate solutions may be present in the solution sequence, as for example

in Figure 4.2.14.

SELECT 7grandparent

WHERE { ?grandparent family:hasChild ?parent .
?parent family:hasChild 7child .

b

fiuery Result (6)

Limit results: 100

Grandparent

familviFrances

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.14: Show possible grandparents in the dataset

The solution sequence contains non-unique results. This can be changed with the
DISTINCT modifier. No duplicates will be included in the result set with this keyword
(Figure 4.2.15).

SELECT DISTINCT 7grandparent

4.2. SYNTAX 103

WHERE { ?grandparent family:hasChild ?parent .
?parent family:hasChild 7child .
+

Query Result (2)

Limit results: 100

Grandparent
familv:Frances

famil v:Peter

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.15: The results are significantly decreased now, all of them unique

4.2.3.4 REDUCED

With the REDUCED modifier, non-unique results are simply permitted to be eliminated.
It cannot be predicted as to how many non-unique results will appear. The REDUCED
modifier produces results that are between the results of DISTINCT, and results when
using no such keyword at all. For example, in the family dataset the same mother appears
more than once in the results. The result set of the following query is shown in Figure

4.2.16.

SELECT 7mother
WHERE { ?child family:hasMother ?mother .
+

Adding the REDUCED modifier to the query, we get the following results (Figure 4.2.17):

SELECT REDUCED “mother
WHERE { ?child family:hasMother ?mother .
+

104 CHAPTER 4. SPARQL

familv:Sophia

family

famil v:Madaline

famil viFrances

familv:Frances

familv:Frances

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.16: All the possible mothers without any modifier

familv:Frances

Copyright © Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.17: All the mothers with the effect of the REDUCED modifier

In this case we see that the effect is the same as we had applied DISTINCT. This is
valid. It could have also been possible for the individual Frances to show up two or three

times in the solution sequence.

4235 LIMIT

The LIMIT clause limits how many solutions can be present in the results. For example if

we have a large dataset, and want to see only a few results, or if we are interested only

4.2. SYNTAX 105

in the top five, etc. If LIMIT is set to zero, then no results are returned. In the following
query we ask for all the people in the dataset that are under 50 years old, and the results

are shown in Figure 4.2.18.

SELECT 7person 7age

WHERE { ?person family:hasAge 7age
FILTER (7age < 50)

X

ORDER BY 7age

B

' Query Result (5)

Limit results: 100

Person Age

familv:Ange "1~ ~xzd:int

"1™~ ~xzd:int

"20”*xsd:int

rian | 20" ~xsd:int

familv:George | "26™**xsd:int

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.18: People in the dataset under age 50

Applying the LIMIT clause, we can show only the first three results for example. In the
following query we ask to see the three youngest people out of those who are under 50,

therefore also the youngest in the whole dataset (Figure 4.2.19).

SELECT 7person 7age

WHERE { ?person family:hasAge 7age
FILTER (?age < 50)

b

ORDER BY 7age

LIMIT 3

106 CHAPTER 4. SPARQL

‘Query Result (3)

Limit results: 100 =

Person Age
amilv:Ange | 19" "xsd:int
fam :Sarah | 19" ~xsd:int

familv:Vivi ‘20" *x=d:int

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.19: The three youngest people in the dataset

4.2.3.6 OFFSET

The OFFSET clause prints only those solutions that appear after the specified number of
solutions [33]. If OFFSET should be used with the modifier LIMIT to specify a certain
subset of the solutions, then also ORDER BY should be used in order for it to be useful.
Following the previous example and using OFFSET, we get as a result the two oldest

individuals that are under 50 (Figure 4.2.20).

SELECT 7person 7age
WHERE { ?person family:hasAge 7age
FILTER (7age < 50)
+
ORDER BY 7age
LIMIT 3
OFFSET 3

4.2.4 Query Forms

SPARQL consists of query forms that form result sets or RDF graphs depending on the
solutions. These query forms are SELECT, CONSTRUCT, ASK and DESCRIBE. The
SPARQL Query Results XML Format can be used to serialize the results from a SELECT

4.2. SYNTAX 107

.: Query Result (2)

Limit results: 100

Person Age
familv:Vivian | "20™ *xsd:int
familv:Georze | "26™~~xsd:int

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.20: The two oldest individuals that are under 50

query or ASK query [42]. The SELECT query form returns a solution sequence of variable
bindings to RDF terms. The CONSTRUCT query form returns a graph that we specify in
the query. This is done by substituting the triple patterns with the solutions and adding all
the triple patterns together (with UNION) to form a graph. The triples are not ordered,
therefore it is possible to apply a solution modifier to order the resulting graph. The result

of our following CONSTRUCT is shown in Figure 4.2.21.

CONSTRUCT { ?person family:hasAge 7age }
WHERE { ?person family:hasAge 7age
}

We can see from the previous example that we construct the statement (in the
CONSTRUCT clause), and in the WHERE clause we provide the query pattern. In this
example we just queried all the people that have an age. The result can be downloaded in
any notation desired.

In the following example, we can see a more complex example where we construct a
new object property for the family ontology. This way it is possible to create new data by
combining the existing data, one of the goals of Semantic Web. In this example we create

a new object property family:hasNiece that can be written in any notation (Figure 4.2.22).

CONSTRUCT { 7person family:hasNiece 7niece }

108

CHAPTER 4.

/ Result (9)
Download format: Turtle » @/

Limit results: 100

Subject Predicate Object

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.21: The CONTRUCT result set

WHERE { ?person family:hasSibling ?parent.
?parent family:hasChild “niece.

?niece rdf:type family:Female.

 Result (3)
| Download format: Turtle A I@]

Limit resutts: 100+

Subject Predicate Object

familv:Madaline | familv familv:Georgia |

:Petera fam familv:Georsia

familv:Sephia familvihasNiece | familviGeorsia |

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.22: A new hasNiece property constructed

SPARQL

Even though the individual Madaline is a mother to the individual Georgia, the solution

still shows up in the results because the family:hasSibling property is set to be both

symmetric and transitive, and therefore it becomes a reflexive property.

Similar results can be observed for the family:hasNephew property, constructed in the

example below (Figure 4.2.23).

CONSTRUCT { 7person family:hasNephew ?nephew }

4.2. SYNTAX

WHERE { ?person family:hasSibling 7?parent.

?parent family:hasChild 7nephew.

7nephew rdf:type family:Male.

ery Result (6)

Download format: Turtle - | Download |
Limit results: 100 -

Subject Predicate Object
familv:Madaline | familv:hasNephew | familv:Ange
familv:Peters familv:hasNephew | fan
familv:Sophia familv:hasNephew | fan
familv:Madaline | familv:hasNephew | £
familv:PeterA familv:hasNephew | f
familv:Sophia familv:hasNephew | f

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.23: The family:hasNephew property created by the CONSTRUCT clause

109

The ASK query form is used to answer a "yes" or "no" question about the query pattern.

If the query pattern has a solution, the result will be "yes". For example, if we query any

siblings for the individual Georgia, we get the following result, shown in Figure 4.2.24:

ASK { ?person family:hasSister family:Georgia }

Let us take an example that will return "yes" (Figure 4.2.25). In this example we query

if the individual Madaline has any child.

ASK { family:Madaline family:hasChild ?x }

The answer given is simply "yes", we cannot know just from this simple query if the

individual Madaline has one child or more. The DESCRIBE query form returns an RDF

graph that contains data about the resource queried. The syntax "DESCRIBE * " is for

querying information about all the variables available in a query. In the following example,

110 CHAPTER 4. SPARQL

" Query Result

xNo

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.24: The ASK query form returns "no"

?—';(i'Uery Result

+Yes

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.25: The ASK query form returns "yes"

we query all the information that is concerning the individual that has a first name "Ange"

(Figure 4.2.26).

DESCRIBE 7x

WHERE { ?x family:firstName "Ange"}

All the object properties as well as the datatype properties that are in relation with this

individual appear in the results. If instead of "DESCRIBE 7x " we had written "DESCRIBE

* " we would have gotten the same results because there is only one variable in the query.

4.3. COMPARISON WITH SQL AND XQUERY 111

/ Result (26)
Download format: Turtle > @,

Limit results: 100

Subject Predicate

:hasFriend
hasChild

familv

rdf:firs

:nedes st8dcczaxsw

Copyright @ Aduna 1997-2008
Aduna - Semantic Power

Figure 4.2.26: Results of the DESCRIBE query form

4.3 Comparison with SQL and XQuery

As with any fairly new language, people seek to compare it to other older languages,
especially when similarities appear prominent. SPARQL can be compared to SQL and
XQuery, who perform a similar task but for completely different data. Below are some
advantages and disadvantages of SPARQL [15].

One main advantage is that SPARQL is created purely for the purpose to query RDF
data. SPARQL looks and behaves like RDF, and there is no need for mapping of the RDF
data to perform a query. Furthermore, there is no need to specify relationships between
data that is structured differently, because the relationships have a fixed size and all the
data needed in a query is in one graph. Therefore, explicit join syntax is not required in
SPARQL [24]. SPARQL supports querying semi-structured data, with unreliable structure.
There is a possibility to query unknown relationships, and the OPTIONAL keyword can

112 CHAPTER 4. SPARQL

be comparable to the SQL left joins. Also, in a single query it can be possible to query
unrelated sources of data with SPARQL. This is possible because RDF represents data as
binary relations, and therefore data can be easily and quickly mapped to RDF. Another
benefit of SPARQL is that queries can be performed on multiple data sources that exist
on the Web, without a need for one single document. This is possible because of the
URI identification of named graphs. Named graphs with a default graph comprise an RDF
dataset, which is queried with SPARQL.

A drawback for SPARQL is that it is considerably a young language, and therefore there
are not many data storages that support direct querying. SQL for example has comparatively
more. Furthermore, XQuery has the benefit of an explicit processing model, and SQL is
backed up by many years of optimization research. However, with research, contributions
and implementations, SPARQL is likely to improve. Also, SPARQL does not support an
easy way to query transitive relations within a graph, or hierarchical structures, whereas
XQuery's axes are much more powerful in comparison [15]. Nested queries are not supported
yet by default in SPARQL [38]. Aggregate functions, e.g. COUNT, SUM, MIN, MAX, are
also not supported by default in SPARQL, but there are several implementations created
by developers that extend the features [43]. GROUP BY is also not currently supported by
default, as well as INTERSECT. However, the W3C SPARQL Working Group is continuing
to update and design features for SPARQL, in order to create more possibilities for queries

as in SQL [38].

4.4 Epilogue

SPARQL is a popular query language for RDF, a recursive acronym. On the surface it
looks like SQL, but their philosophies are different. A SPARQL query may contain prefix
declarations, result clause, possibly dataset definition, query pattern, and optionally query
modifiers. Queries are written and shown in Sesame with appropriate screenshots. At the

end a small comparison is made between SPARQL and SQL.

Conclusion

The Semantic Web vision comprises of distributed, reusable knowledge in a decentralized
world. Furthermore, the data must be unambiguous and context-independent. To achieve
this, we need to represent the data using RDF, reference the resources using URlIs, and
describe abstract concepts with ontologies. RDF aims to solve the problem of ambiguity
for complex language structures by using triples to express facts. These triples can be
written in many different formats, equivalent to each other. Some are human-readable,
e.g. N3 and Turtle, and others are designed for easy serialization between applications,
e.g. RDF/XML. URIs provide global identification of resources. Ontologies are needed to
describe concepts, class hierarchies, etc. They give more information about the data and
about how it can be used. RDF Schema is a language that is used to create ontologies, but
it is simple. OWL builds on RDF Schema and provides stronger descriptions and constraints
to the ontology. Tools exist to accommodate the creation of ontologies, one such tool being
Protégé. Ontologies with their data can be stored into data storages. A storage used and
demonstrated for this thesis was Sesame. RDF data can be queried with the SPARQL query
language for RDF. This query language at a glance looks like SQL, but the queries look
and behave like RDF. New data can also be constructed using the CONSTRUCT query
form of SPARQL, and then serialized. "Intelligent" applications can accept queries as input
and provide the resulted information as output. If developers continue to implement the
Semantic Web vision and build upon optimizing its technologies, then the Web in the future

will be much more accommodating, easy to use, and intuitive.

113

Bibliography

[1]
2]
[3]
[4]
[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Jena - a semantic web framework for java. URL http://jena.sourceforge.net/.
Protege home page. URL http://protege.stanford.edu/.

Openrdf home page. URL http://www.openrdf.org/.

Rdf graph format converter. URL http://sswap.info/format-converter.jsp.

Sparql tutorial - data formats. URL http://jena.sourceforge.net/ARQ/Tutorial/

data.html.

Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT Press,

second edition, 2008.

Dave Beckett. Turtle - terse rdf triple language, December 2006. URL http://www.

dajobe.org/2004/01/turtle/2006-12-04/

David Beckett and Tim Berners-Lee. Turtle - terse rdf triple language: W3c team
submission 28 march 2011. W3c team submission, W3C, March 2011. URL http:

//www.w3.org/TeamSubmission/turtle/.
Tim Berners-Lee. Notation 3, . URL http://www.w3.0rg/DesignIssues/Notation3.

Tim Berners-Lee. World wide web consortium architecture, . URL http://wuw.w3.

org/2000/Talks/1206-xml2k-tbl/s1ide10-0.html.

Tim Berners-Lee. What the semantic web can represent, September 1998. URL

http://www.w3.org/Designlssues/RDFnot.html.

Tim Berners-Lee. Why rdf model is different from the xml model, September 1998.

URL http://www.w3.org/DesignIssues/RDF-XML.html.

115

116

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

BIBLIOGRAPHY

Tim Berners-Lee, Nigel Shadbolt, and Wendy Hall. The semantic web revisited. /EEE
Intelligent Systems, 21(3):96-101, 2006. URL http://eprints.ecs.soton.ac.uk/

12614/1/Semantic_Web_Revisted.pdf.

Nick Drummond and Timothy Redmond. Annotation template view, March 2010.

URL http://protegewiki.stanford.edu/wiki/Annotation_Template_View.

Lee Feigenbaum. Sparql faq, February 2008. URL http://www.thefigtrees.net/lee/

sw/sparql-fagq.

Lee Feigenbaum and Eric Prud’hommeaux. Spargl by example: A tutorial. URL

http://www.cambridgesemantics.com/2008/09/sparql-by-example/.

Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220, 1993. URL http://tomgruber.org/writing/

ontolingua-kaj-1993.pdf.

John Hebeler, Matthew Fisher, Ryan Blace, and Andrew Perez-Lopez. Semantic Web

Programming. Wiley Publishing, Inc., 2009.

Jim Hendler. Frequently asked questions on w3c's web ontology language (owl), May

2008. URL http://www.w3.0rg/2003/08/owlfaq.html.en.

lan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From shiq and rdf
to owl: The making of a web ontology language. Journal of Web Semantics, 2003.
URL http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/

2003/HoPHO3a . pdf.

Artem Katasonov. Storing and querying rdf data, 2009. URL http://users.jyu.fi/

~akataso/itksb44/Lecturel.pdf.

Petr Kremen and Bogdan Kostov. Owl2query, March 2011. URL http://protegewiki.

stanford.edu/wiki/OWL2Query.

Lee W. Lacy. OWL: Representing Information Using the Web Ontology Language.
Trafford Publishing, 2005.

Jim Melton. Sql, xquery, and sparql: What"s wrong with this picture?, March 2006.

URL http://www.w3.0org/2006/Talks/0301-melton-query-langs.pdf.

BIBLIOGRAPHY 117

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Peter V. Mikhalenko. The benefits of the web ontology language in
web applications, August 2003. URL http://www.techrepublic.com/article/

the-benefits-of-the-web-ontology-language-in-web-applications/5060266.
Jeffrey T. Pollock. Semantic Web for Dummies. Wiley Publishing, Inc., March 2009.

Protege Wiki. Protege 4.0 features, June 2009. URL http://protegewiki.stanford.

edu/wiki/Protege4Features.

RDF Core Working Group. Resource description framework (rdf) model and syntax
specification: W3c recommendation 22 february 1999. W3C recommendation, W3C,

February 1999. URL http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

RDF Core Working Group. Rdf primer: W3c recommendation 10 february 2004. W3C

recommendation, W3C, February 2004. URL http://www.w3.org/TR/rdf-primer/.

RDF Core Working Group. Rdf semantics: W3c recommendation 10 february 2004.
W3C recommendation, W3C, February 2004. URL http://www.w3.org/TR/2004/

REC-rdf-mt-20040210/.

RDF Core Working Group. Rdf vocabulary description language 1.0 rdf schema: W3c
recommendation 10 february 2004. W3c recommendation, W3C, February 2004. URL

http://www.w3.org/TR/rdf-schema/.

RDF Core Working Group. Rdf test cases: W3c recommendation 10 february
2004. W3C recommendation, W3C, February 2004. URL http://www.w3.org/TR/

rdf-testcases/.

RDF Data Access Working Group. Sparql query language for rdf: W3c recommendation
15 january 2008. W3c recommendation, W3C, January 2008. URL http://www.w3.

org/TR/rdf-sparql-query/.

RDFcore Working Group. Resource description framework (rdf) concepts and abstract
syntax: W3c recommendation 10 february 2004. W3c recommendation, W3C,

February 2004. URL http://www.w3.org/TR/rdf-concepts/.

Eric Prud’hommeaux Sandro Hawke, Ivan Herman and Ralph Swick. W3c semantic

web activity. URL http://www.w3.0rg/2001/sw/.

118

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

Semantic Web Best Practices and Deployment Working Group. Xml schema datatypes
in rdf and owl: W3c working group note 14 march 2006. W3c working group note,
W3C, March 2006. URL http://www.w3.org/TR/swbp-xsch-datatypes/.

Semantic Web Interest Group. Rdf primer - turtle version: W3c note in development.
W3c working group note, W3C, 2007. URL http://www.w3.0rg/2007/02/turtle/

primer/.

SPARQL Working Group. Spargl new features and rationale: W3c working draft
2 july 2009. W3c working draft, W3C, July 2009. URL http://www.w3.org/TR/

sparql-features/.

Joshua Tauberer. Quick intro to rdf. URL http://www.rdfabout.com/quickintro.

xpd.

Joshua Tauberer. rdf:about, 2005. URL http://www.rdfabout.com/intro/?section=

1.

W3C. Semantic web activity news, January 2008. URL http://www.w3.org/blog/SW/

2008/01/15/sparql_is_a_recommendation.

W3C RDF Data Access Working Group. Sparql query results xml format: W3c
recommendation 15 january 2008. W3C recommendation, W3C, January 2008 2008.

URL http://www.w3.org/TR/rdf-sparql-XMLres/.

W3C Wiki. Sparql/extensions/aggregates, September 2008. URL http://www.w3.

org/wiki/SPARQL/Extensions/Aggregates.

Web Ontology Working Group. Owl web ontology language overview: W3c
recommendation 10 february 2004. W3c recommendation, W3C, February 2004. URL

http://www.w3.org/TR/owl-features/.

Web Ontology Working Group. Owl web ontology language guide: W3c
recommendation 10 february 2004. W3c recommendation, W3C, February 2004. URL

http://www.w3.org/TR/owl-guide/.

Web Ontology Working Group. Owl web ontology language reference: W3c
recommendation 10 february 2004. Technical report, W3C, February 2004. URL

http://www.w3.org/TR/owl-ref/.

BIBLIOGRAPHY 119

[47] Web Ontology Working Group. Owl web ontology language use cases and
requirements: W3c recommendation 10 february 2004. W3C recommendation, W3C,

2004. URL http://www.w3.org/TR/webont-req/.

[48] Wikipedia, the free encyclopedia. Backward chaining, . URL http://en.wikipedia.

org/wiki/Backward_chaining.

[49] Wikipedia, the free encyclopedia. Daml+oil, . URL http://en.wikipedia.org/wiki/

DAMLY2BOIL.

[50] Wikipedia, the free encyclopedia. Forward chaining, . URL http://en.wikipedia.

org/wiki/Forward_chaining.

[51] Wikipedia, the free encyclopedia. N-triples, . URL http://en.wikipedia.org/wiki/

N-Triples.

[62] Wikipedia, the free encyclopedia. Web ontology language, . URL http://en.

wikipedia.org/wiki/Web_Ontology_Language.

[63] Wikipedia, the free encyclopedia. Resource description framework, . URL http:

//en.wikipedia.org/wiki/Resource_Description_Framework.

[54] Wikipedia, the free encyclopedia. Semantic reasoner, . URL http://en.wikipedia.

org/wiki/Semantic_reasoner.

[65] Wikipedia, the free encyclopedia. Uniform resource identifier, . URL http://en.

wikipedia.org/wiki/Uniform_Resource_Identifier.

Appendices

Appendix A: Family ontology

This appendix contains the whole RDF dataset developed for this thesis. Fragments of the
code were used in examples and for the demonstration of OWL, SPARQL, Protégé, etc.

The data is written in Turtle and annotates the family ontology.

Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
Q@prefix owl2xml: <http://www.w3.0rg/2006/12/0wl2-xml#> .
Oprefix family: <http://www.example.com/family.owl#> .
Q@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Q@prefix owl: <http://www.w3.org/2002/07/owl#> .

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://www.example.com/ontology/family-inferred.owl> a owl:0Ontology ;

S A~

dc:creator "Fotini Bogiatzi'~~xsd:string ;

dc:description "A basic ontology on the concept of family"
dc:description a owl:AnnotationProperty .

dc:creator a owl:AnnotationProperty .

family:hasBrother a owl:0bjectProperty ;

rdfs:range family:Brother ;

rdfs:domain family:Sibling ;

rdfs:subProperty0f family:hasSibling .

121

122 BIBLIOGRAPHY

family:hasChild a owl:0bjectProperty ;
rdfs:range family:Child ;
rdfs:domain family:Parent ;

rdfs:subProperty0f owl:topObjectProperty .

family:hasFather a owl:0bjectProperty , owl:FunctionalProperty ;
rdfs:domain family:Child ;
rdfs:range family:Father ;

rdfs:subProperty0f family:hasParent

family:hasFriend a owl:0bjectProperty , owl:SymmetricProperty
, owl:TransitiveProperty ;

rdfs:domain family:Human ;

rdfs:range family:Human ;

owl:inverseOf family:hasFriend ;

rdfs:subProperty0f owl:topObjectProperty .

family:hasHusband a owl:0bjectProperty , owl:AsymmetricProperty
, owl:FunctionalProperty , owl:InverseFunctionalProperty
, owl:IrreflexiveProperty ;

rdfs:range family:Husband ;

rdfs:domain family:Wife ;

rdfs:subProperty0f family:hasSpouse .

family:hasMother a owl:0bjectProperty , owl:FunctionalProperty ;
rdfs:domain family:Child ;
rdfs:range family:Mother ;

rdfs:subProperty0f family:hasParent

family:hasParent a owl:0bjectProperty ;
rdfs:domain family:Child ;

rdfs:range family:Parent ;

BIBLIOGRAPHY

owl:inverseOf family:hasChild ;

rdfs:subProperty0f owl:topObjectProperty .

family:hasSibling a owl:0bjectProperty , owl:SymmetricProperty
, owl:TransitiveProperty ;

rdfs:range family:Sibling ;

rdfs:domain family:Sibling ;

owl:inverse0f family:hasSibling ;

rdfs:subProperty0f owl:topObjectProperty .

family:hasSister a owl:0bjectProperty ;
rdfs:domain family:Sibling ;
rdfs:range family:Sister ;

rdfs:subProperty0f family:hasSibling .

family:hasSpouse a owl:0bjectProperty , owl:FunctionalProperty
, owl:InverseFunctionalProperty , owl:SymmetricProperty ;

rdfs:range family:Parent ;

rdfs:domain family:Parent ;

owl:inverseOf family:hasSpouse ;

rdfs:subProperty0f owl:topObjectProperty .

family:hasWife a owl:0bjectProperty , owl:AsymmetricProperty
, owl:FunctionalProperty , owl:InverseFunctionalProperty
, owl:IrreflexiveProperty ;

rdfs:domain family:Husband ;

rdfs:range family:Wife ;

owl:inverseOf family:hasHusband ;

rdfs:subProperty0f family:hasSpouse .

owl:topObjectProperty a owl:0ObjectProperty .

123

124 BIBLIOGRAPHY

family:firstName a owl:DatatypeProperty ;
rdfs:domain family:Human ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

family:hasAge a owl:DatatypeProperty ;
rdfs:domain family:Human ;
rdfs:range xsd:integer ;

rdfs:subProperty0f owl:topDataProperty .

family:hasSurname a owl:DatatypeProperty ;
rdfs:domain family:Human ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

owl:topDataProperty a owl:DatatypeProperty .

family:Brother a owl:Class ;
rdfs:subClass0f family:Male ;
owl:disjointWith family:Female , family:Mother

, family:Sister , family:Wife .

family:Child a owl:Class ;
owl:equivalentClass family:0ffspring ;

rdfs:subClass0f family:Human , _:nodelbt8dcc3ax22 .
_:nodelbt8dcc3ax22 a owl:Restriction ;
owl:onProperty family:hasParent ;

owl:someValuesFrom family:Parent

family:Child rdfs:subClassOf _:nodelbt8dcc3ax23 .

BIBLIOGRAPHY 125

_:nodelbt8dcc3ax23 a owl:Restriction ;
owl:onProperty family:hasFather ;

owl:someValuesFrom family:Father .

family:Child rdfs:subClass0f _:nodel5t8dcc3ax24 .

_:nodelbt8dcc3ax24 a owl:Restriction ;
owl:onProperty family:hasFather ;
owl:onClass family:Father ;

owl:maxQualifiedCardinality "1"~~xsd:nonNegativelnteger .

family:Child rdfs:subClassOf _:nodel5t8dcc3ax25 .

_:nodelbt8dcc3ax25 a owl:Restriction ;
owl:onProperty family:hasMother ;

owl:someValuesFrom family:Mother .

family:Child rdfs:subClassOf _:nodelbt8dcc3ax26 .

_:nodelbt8dcc3ax26 a owl:Restriction ;
owl:onProperty family:hasParent ;
owl:onClass family:Parent ;

owl:maxQualifiedCardinality "2'"~~xsd:nonNegativeInteger .
family:Child rdfs:subClassOf _:nodelbt8dcc3ax27 .
_:nodelbt8dcc3ax27 a owl:Restriction ;

owl:onProperty family:hasMother ;

owl:onClass family:Mother ;

owl:maxQualifiedCardinality "1'"~~xsd:nonNegativeInteger .

family:Father a owl:Class ;

126 BIBLIOGRAPHY

rdfs:subClass0f family:Male ;
owl:disjointWith family:Female , family:Mother , family:Sister

, family:Wife .

family:Female a owl:Class ;
rdfs:subClass0f family:Human ;

owl:disjointWith family:Husband , family:Male .

family:Human a owl:Class ;

rdfs:subClass0f owl:Thing .

family:Husband a owl:Class ;
rdfs:subClass0f family:Male ;

owl:disjointWith family:Mother , family:Sister , family:Wife

family:Male a owl:Class ;
rdfs:subClass0f family:Human ;

owl:disjointWith family:Mother , family:Sister , family:Wife

family:Mother a owl:Class ;

rdfs:subClass0f family:Female .

family:0ffspring a owl:Class ;

rdfs:subClass0f family:Human .

family:Parent a owl:Class ;

rdfs:subClass0f family:Human , _:nodelbt8dcc3ax28 .

_:nodelb5t8dcc3ax28 a owl:Restriction ;
owl:onProperty family:hasChild ;

owl:someValuesFrom family:Child .

BIBLIOGRAPHY 127

family:Sibling a owl:Class ;

rdfs:subClass0f family:Human , _:nodel5t8dcc3ax29 .

_:nodelbt8dcc3ax29 a owl:Restriction ;
owl:onProperty family:hasSibling ;

owl:someValuesFrom family:Sibling .

family:Sister a owl:Class ;

rdfs:subClass0f family:Female .

family:Wife a owl:Class ;

rdfs:subClass0f family:Female .

owl:Thing a owl:Class

family:Ange a family:Human , family:Brother , family:Child , family:Male
, family:0ffspring , family:Sibling , owl:Thing ;

family:hasAge '"19"~~"xsd:int ;

family:firstName "Ange" ;

family:hasSurname "Kalan" ;

family:hasSibling family:Ange ;

family:hasFriend family:Ange ;

family:hasSibling family:George ;

family:hasBrother family:George ;

family:hasParent family:PeterD ;

family:hasFather family:PeterD ;

family:hasFriend family:Sarah ;

family:hasParent family:Sophia ;

family:hasMother family:Sophia .

family:Frances a family:Mother , family:Female , family:Human

, family:Parent, family:Wife , owl:Thing ;

128 BIBLIOGRAPHY

family:hasAge "79"""xsd:int ;

family:hasSurname "Smith"

b

family:firstName "Frances"

b

family:hasChild family:Madaline ;

family:hasHusband family:Peter ;

family:hasSpouse family:Peter ;

family:hasChild family:PeterA , family:Sophia .

family:George a family:Sibling , family:Brother , family:Child
, family:Human , family:Male , family:0ffspring , owl:Thing ;
family:hasAge '"26"~~"xsd:int ;
family:firstName "George" ;
family:hasSurname "Kalan" ;
family:hasSibling family:Ange , family:George ;

family:hasParent family:PeterD ;

3

family:hasFather family:PeterD ;

b

family:hasParent family:Sophia ;

2

family:hasMother family:Sophia .

family:Georgia a owl:Thing , family:Child , family:Female

, family:Human , family:0ffspring ;

N~

family:firstName "Georgia'"~~"xsd:string ;

family:hasFriend
family:hasParent

family:hasMother

family:Georgia ;
family:Madaline ;

family:Madaline ;

family:hasFriend family:Theo , family:Vivi , family:Vivian .
family:Madaline a family:Female , family:Child , family:Human
, family:Mother , family:0ffspring , family:Parent
, family:Sibling , family:Sister , owl:Thing ;
family:firstName "Georgia'"~~"xsd:string ;

family:hasMother family:Frances ;

BIBLIOGRAPHY 129

family:hasParent family:Frances ;

family:hasChild family:Georgia ;
family:hasSibling family:Madaline ;
family:hasFather family:Peter ;

family:hasParent family:Peter ;

family:hasBrother family:PeterA ;
family:hasSibling family:PeterA , family:Sophia ;

family:hasSister family:Sophia .

family:Peter a family:Human , family:Father , family:Husband
, family:Male , family:Parent , owl:Thing ;

family:hasAge "87"""xsd:int ;

family:hasSurname "Smith" ;

family:firstName '"Peter" ;

family:hasWife family:Frances ;

family:hasSpouse family:Frances ;

family:hasChild family:Madaline , family:Sophia .

family:PeterA a family:Male , family:Brother , family:Child

, family:Human , family:0ffspring , family:Sibling , owl:Thing ;
family:hasMother family:Frances ;

family:hasParent family:Frances ;

family:hasSister family:Madaline ;

family:hasSibling family:Madaline , family:PeterA , family:Sophia .

family:PeterD a family:Male , family:Father , family:Human , family:Husband
, family:Parent , owl:Thing ;

family:hasAge "60"~~xsd:int ;

family:firstName "Peter" ;

family:hasSurname "Kalan" ;

family:hasChild family:Ange , family:George ;

family:hasSpouse family:Sophia ;

130 BIBLIOGRAPHY

family:hasWife family:Sophia .

family:Sarah a family:Human , family:Female , owl:Thing ;
family:hasAge "19"~"~"xsd:int ;

N~

family:hasSurname "Connor"~~xsd:string ;

1~~

family:firstName "Sarah"~~xsd:string ;

family:hasFriend family:Ange , family:Sarah .

family:Sophia a family:Sibling , family:Child , family:Female
, family:Human , family:Mother , family:0ffspring
, family:Parent , family:Sister , family:Wife , owl:Thing ;

family:hasAge "57"""xsd:int ;

family:firstName "Sophia" ;

family:hasSurname "Kalan" ;

family:hasChild family:Ange ;

family:hasMother family:Frances ;

family:hasParent family:Frances ;

family:hasChild family:George ;

family:hasSibling family:Madaline ;

family:hasParent family:Peter ;

family:hasFather family:Peter ;

family:hasSibling family:PeterA ;

family:hasSpouse family:PeterD ;

family:hasHusband family:PeterD ;

family:hasSibling family:Sophia .

family:Theo a family:Human , family:Male , owl:Thing ;
family:firstName "Theo'~~xsd:string ;
family:hasFriend family:Georgia , family:Theo

, family:Vivi , family:Vivian .

family:Vivi a owl:Thing , family:Female , family:Human ;

BIBLIOGRAPHY 131

family:hasAge "20"""xsd:int ;
family:firstName "Vivian'"~~"xsd:string ;
family:hasFriend family:Georgia , family:Theo

, family:Vivi , family:Vivian .

family:Vivian a owl:Thing , family:Female , family:Human ;
family:hasAge "20""~"xsd:int ;

family:firstName "Vivian'"~~"xsd:string ;

family:hasFriend family:Georgia , family:Theo ;

owl:sameAs family:Vivi ;

family:hasFriend family:Vivi , family:Vivian .

_:nodelbt8dcc3ax30 a owl:AllDifferent ;

owl:distinctMembers _:nodelb5t8dcc3ax31

_:nodelbt8dcc3ax3l rdf:first family:Sarah ;

rdf:rest _:nodelb5t8dcc3ax32 .

_:nodelbt8dcc3ax32 rdf:first family:Sophia ;
rdf :rest _:nodelbt8dcc3ax33 .

_:nodelbt8dcc3ax33 rdf:first family:Frances ;

rdf:rest _:nodel5t8dcc3ax34 .

_:nodelb5t8dcc3ax34 rdf:first family:PeterA ;
rdf:rest _:nodelbt8dcc3ax35 .

_:nodelbt8dcc3ax3b rdf:first family:Georgia ;
rdf:rest _:nodelbt8dcc3ax36 .
_:nodelbt8dcc3ax36 rdf:first family:Madaline ;
rdf:rest _:nodelbt8dcc3ax37 .

132

_:nodelb5t8dcc3ax37 rdf:first

rdf:rest _:nodelb5t8dcc3ax38 .

_:nodelb5t8dcc3ax38 rdf:first

rdf:rest _:nodelb5t8dcc3ax39 .

_:nodelb5t8dcc3ax39 rdf:first

rdf:rest _:nodel5t8dcc3ax40 .

_:nodelbt8dcc3ax40 rdf:first
rdf:rest _:nodel5t8dcc3ax41l

_:nodelbt8dcc3ax4l rdf:first

rdf:rest _:nodel5t8dcc3ax4?2 .

_:nodelbt8dcc3ax42 rdf:first

rdf:rest rdf:nil .

family:Ange ;

family:George ;

family:Vivian ;

family:Theo ;

family:PeterD ;

family:Peter ;

BIBLIOGRAPHY

BIBLIOGRAPHY 133

Appendix B: Olympic Games ontology in RDF
Schema

This appendix presents the code for the ontology created on Olympic Games. It is written

in RDF Schema using the N3 notation.

Oprefix : <http://www.example.com/olympics.owl#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
Oprefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
:Game

a rdfs:Class .
:Participation

a rdfs:Class .
:Human

a rdfs:Class .
:FemaleSport

a rdfs:Class ;

rdfs:subClassOf :Sport .

:MaleSport
a rdfs:Class ;

rdfs:subClassOf :Sport .

:Sport

a rdfs:Class .

:Stadium

a rdfs:Class .

134 BIBLIOGRAPHY

:Athlete
a rdfs:Class ;

rdfs:subClassO0f :Human .

:Trainer
a rdfs:Class ;

rdfs:subClassOf :Human .

:participationOfAthlete
a rdf :Property ;
rdfs:domain :Participation ;

rdfs:range :Athlete

:hasQualification
a rdf :Property ;
rdfs:domain :Participation ;

rdfs:range rdfs:Literal .

:hasBirthdate
a rdf :Property ;
rdfs:domain :Human ;

rdfs:range rdfs:Literal .

:hasGender
a rdf :Property ;
rdfs:domain :Human ;

rdfs:range rdfs:Literal .

:hasSpectatorCapacity
a rdf :Property ;

rdfs:domain :Stadium ;

BIBLIOGRAPHY

rdfs:range rdfs:Literal .

:participatesIn
a rdf
rdfs:domain

rdfs:range

:trained_by
a rdf
rdfs:domain

rdfs:range

;originCountry
a rdf

rdfs:domain

:Property ;

:Athlete ;

:Participation .

:Property ;
:Athlete ;

:Trainer .

:Property ;

:Human ;

rdfs:range rdfs:Literal .

:haslevel
a rdf

rdfs:domain

:Property ;

:Game ;

rdfs:range rdfs:Literal .

:hasScore
a rdf

rdfs:domain

:Property ;

:Participatio

[=}

rdfs:range rdfs:Literal .

:hasFirstName
a rdf

rdfs:domain

:Property ;

:Human ;

rdfs:range rdfs:Literal .

135

136

:playedIn
a rdf :Property ;
rdfs:domain :Game ;

rdfs:range :Stadium .

:hasStadiumName
a rdf :Property ;
rdfs:domain :Stadium ;

rdfs:range rdfs:Literal .

:consistsOfParticipation
a rdf :Property ;

rdfs:domain :Game ;

rdfs:range :Participation .

:inCity
a rdf :Property ;
rdfs:domain :Stadium ;

rdfs:range rdfs:Literal .

:inGame
a rdf :Property ;
rdfs:domain :Participatio

rdfs:range :Game

:hasSurname
a rdf :Property ;
rdfs:domain :Human ;

rdfs:range rdfs:Literal .

=}

BIBLIOGRAPHY

BIBLIOGRAPHY 137

:trains
a rdf :Property ;
rdfs:domain :Trainer ;

rdfs:range :Athlete .

138 BIBLIOGRAPHY

Appendix C: Olympic Games ontology in OWL

This appendix presents the code for the ontology created on Olympic Games. It is written

in OWL using the Turtle notation.

Q@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
Q@prefix owl2xml: <http://www.w3.0rg/2006/12/0wl2-xml#> .
O@prefix olympics: <http://www.example.com/olympics.owl#> .
Q@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Q@prefix owl: <http://www.w3.org/2002/07/owl#> .

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://www.example.com/ontology/olympic-games-inferred.owl> a owl:Ontology ;

rdfs:comment "An example ontology based on a subset of Olympic Games."@en .

olympics:aboutSport a owl:0bjectProperty ;
rdfs:domain olympics:Game ;
rdfs:range olympics:Sport ;

rdfs:subProperty0f owl:topObjectProperty .

olympics:consistsOfParticipation a owl:0bjectProperty ;
rdfs:domain olympics:Game ;
rdfs:range olympics:Participation ;

rdfs:subProperty0f owl:topObjectProperty .

olympics:inGame a owl:0bjectProperty ;
rdfs:range olympics:Game ;

rdfs:domain olympics:Participation ;
owl:inverseOf olympics:consistsOfParticipation ;

rdfs:subProperty0f owl:topObjectProperty .

olympics:participatesIn a owl:0bjectProperty ;

rdfs:domain olympics:Athlete ;

BIBLIOGRAPHY 139

rdfs:range olympics:Participation ;
owl:inverseOf olympics:participationOfAthlete ;

rdfs:subProperty0f owl:topObjectProperty .

olympics:participationOfAthlete a owl:0bjectProperty ;
rdfs:range olympics:Athlete ;
rdfs:domain olympics:Participation ;

rdfs:subProperty0f owl:topObjectProperty .

olympics:playedIn a owl:0ObjectProperty ;
rdfs:domain olympics:Game ;
rdfs:range olympics:Stadium ;

rdfs:subProperty0f owl:topObjectProperty .

olympics:trained_by a owl:0bjectProperty ;
rdfs:domain olympics:Athlete ;

rdfs:range olympics:Trainer ;
owl:inverseOf olympics:trains ;

rdfs:subProperty0f owl:topObjectProperty .

olympics:trains a owl:0bjectProperty ;
rdfs:range olympics:Athlete ;
rdfs:domain olympics:Trainer ;

rdfs:subProperty0f owl:topObjectProperty .

owl:topObjectProperty a owl:0bjectProperty .

olympics:hasBirthdate a owl:DatatypeProperty ;
rdfs:domain olympics:Human ;
rdfs:range xsd:date ;

rdfs:subProperty0f owl:topDataProperty .

140 BIBLIOGRAPHY

olympics:hasFirstName a owl:DatatypeProperty ;
rdfs:domain olympics:Human ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

olympics:hasGender a owl:DatatypeProperty ;
rdfs:domain olympics:Human ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

olympics:hasLevel a owl:DatatypeProperty ;
rdfs:domain olympics:Game ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

olympics:hasQualification a owl:DatatypeProperty ;
rdfs:domain olympics:Participation ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

olympics:hasScore a owl:DatatypeProperty , owl:FunctionalProperty ;
rdfs:domain olympics:Participation ;
rdfs:range xsd:float ;

rdfs:subProperty0f owl:topDataProperty .

olympics:hasSpectatorCapacity a owl:DatatypeProperty ;
rdfs:domain olympics:Stadium ;
rdfs:range xsd:int ;

rdfs:subProperty0f owl:topDataProperty .

olympics:hasStadiumName a owl:DatatypeProperty ;

rdfs:domain olympics:Stadium ;

BIBLIOGRAPHY 141

rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

olympics:hasSurname a owl:DatatypeProperty ;
rdfs:domain olympics:Human ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

olympics:inCity a owl:DatatypeProperty ;
rdfs:domain olympics:Stadium ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

olympics:originCountry a owl:DatatypeProperty ;
rdfs:domain olympics:Human ;
rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .
olympics:sportName a owl:DatatypeProperty ;
rdfs:domain olympics:Sport ;

rdfs:range xsd:string ;

rdfs:subProperty0f owl:topDataProperty .

owl:topDataProperty a owl:DatatypeProperty .

olympics:Athlete a owl:Class ;

rdfs:subClass0f olympics:Human .

olympics:FemaleSport a owl:Class ;

rdfs:subClass0Of olympics:Sport

olympics:Game a owl:Class ;

142 BIBLIOGRAPHY

rdfs:subClass0f owl:Thing .

olympics:Human a owl:Class ;

rdfs:subClass0f owl:Thing .

olympics:MaleSport a owl:Class ;

rdfs:subClass0f olympics:Sport

olympics:Participation a owl:Class ;

rdfs:subClass0f owl:Thing .

olympics:Sport a owl:Class ;

rdfs:subClassOf owl:Thing .

olympics:Stadium a owl:Class ;

rdfs:subClass0f owl:Thing .

olympics:Trainer a owl:Class ;

rdfs:subClass0f olympics:Human .

owl:Thing a owl:Class

olympics:AthleteJan_Zelezny a owl:Thing , olympics:Athlete , olympics:Human ;

olympics:hasBirthdate "1966-07-23"""xsd:date ;

| ~~

olympics:originCountry "Czechoslovakia'"~"xsd:string ;

N~~~

olympics:hasFirstName '"Jan"~~“xsd:string ;

N~

olympics:hasSurname "Zelezny"~"xsd:string ;
olympics:participatesIn olympics:Participation_Zelezny_Olympics ;

olympics:trained_by olympics:TrainerAlexander_Makarov .

olympics:AthleteSavva_Lika a owl:Thing , olympics:Athlete , olympics:Human

, olympics:Participation ;

BIBLIOGRAPHY 143

olympics:hasBirthdate '"1970-06-27"~"xsd:date ;

T

olympics:hasGender "Female"~~“xsd:string ;

"o~

olympics:originCountry "Greece'~"xsd:string ;

olympics:hasSurname "Lika"~~"xsd:string ;

N~

olympics:hasFirstName '"Savva"~"xsd:string ;
olympics:inGame olympics:GameNationals2009 ;
olympics:participatesIn olympics:Participation_Lika_Nationals ;

olympics:trained_by olympics:TrainerYannis_Peristeris

olympics:GameNationals2009 a owl:Thing , olympics:Game ;
olympics:hasLevel "Semi-Final"~“xsd:string ;
olympics:consistsOfParticipation olympics:AthleteSavva_Lika
, olympics:Participation_Lika_Nationals ;
olympics:aboutSport olympics:SportFemaleJavelin ;

olympics:playedIn olympics:StadiumKaftanzoglio

olympics:GameOlympics2004 a owl:Thing , olympics:Game ;

olympics:hasLevel "Final"~“xsd:string ;

olympics:consistsOfParticipation olympics:Participation_Zelezny_Olympics ;
olympics:aboutSport olympics:SportMaleJavelin ;

olympics:playedIn olympics:StadiumKaftanzoglio

olympics:Participation_Lika_Nationals a olympics:Participation , owl:Thing ;
olympics:hasScore "b8.44"~"xsd:float ;

olympics:hasQualification "Q"~~xsd:string ;

olympics:participationOfAthlete olympics:AthleteSavva_Lika ;

olympics:inGame olympics:GameNationals2009 .

olympics:Participation_Zelezny_Olympics a olympics:Participation , owl:Thing ;
olympics:hasScore "90.17"~"xsd:float ;
olympics:hasQualification "Q"~~xsd:string ;

olympics:participationOfAthlete olympics:AthleteJan_Zelezny ;

144 BIBLIOGRAPHY

olympics:inGame olympics:GameOlympics2004 .

olympics:SportFemaleJavelin a owl:Thing , olympics:FemaleSport , olympics:Sport ;

"o~

olympics:sportName '"Javelin"~~xsd:string .

olympics:SportMaleJavelin a owl:Thing , olympics:MaleSport , olympics:Sport ;

1o~

olympics:sportName "Javelin"~~xsd:string .

olympics:StadiumKaftanzoglio a olympics:Stadium , owl:Thing ;
olympics:hasSpectatorCapacity "28200"~"xsd:int ;
olympics:hasStadiumName "Kaftanzoglio Stadium"~~xsd:string ;

"~~~

olympics:inCity "Thessaloniki'"~~xsd:string .

olympics:TrainerAlexander_Makarov a olympics:Trainer , olympics:Human
, owl:Thing ;
olympics:hasBirthdate '"1973-03-19"""xsd:date ;

"o~ ~

olympics:hasFirstName "Alexander"~~xsd:string ;

olympics:hasGender "Male'"~“xsd:string ;

"o~

olympics:originCountry "Russia'~~"xsd:string ;

N~~~

olympics:hasSurname '"Zelezny"~"xsd:string ;

olympics:trains olympics:AthleteJan_Zelezny .

olympics:TrainerYannis_Peristeris a owl:Thing , olympics:Human
, olympics:Trainer ;
olympics:hasBirthdate "1977-07-12"""xsd:date ;

e~

olympics:originCountry "Greece'~~"xsd:string ;
olympics:hasGender "Male"~"~"xsd:string ;
olympics:hasSurname "Peristeris"~~xsd:string ;

"N~~~

olympics:hasFirstName "Yannis"~"xsd:string ;

olympics:trains olympics:AthleteSavva_Lika .

