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Abstract

The goal of this thesis is to provide an introduction for people new to the Semantic Web,

about the query language SPARQL. The Semantic Web is the Web of meaning, where

information is no longer only displayed by machines, but also understood and processed by

them. The goal of Semantic Web is to have unambiguous information, reusability of data

and distributed knowledge. To realize the Semantic Web goal, data on the Web needs to

be represented in a simple data model that even machines can understand. This model is

the Resource Description Framework (RDF), a graph model written in triples. The RDF

language describes resources. Ontologies are needed to describe concepts that the RDF

data will build upon. Ontologies are designed to create class hierarchies, abstract concepts,

etc. The Web Ontology Language (OWL) is used to create ontologies. With ontologies and

data, RDF datasets are born, existing all over the Web, available for sharing, reusability,

and distribution of information. The RDF data needs to be queried, and therefore a query

language is needed. In the Semantic Web vision, this language is called SPARQL Query

Language for RDF. This thesis analyzes SPARQL, its syntax, its constructs and provides

examples of its use.
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Περίληψη

Ο στόχος της παρούσας πτυχιακής είναι η δημιουργία μιας ολοκληρωμένης εισαγωγής

στη γλώσσα αιτημάτων SPARQL. Στοχεύει σε άτομα που δεν έχουν γνώσεις για

τον Σημασιολογικό Ιστό και τις τεχνολογίες του. Ο Σημασιολογικός Ιστός είναι

επέκταση του Ιστού όπου προσδίδει νόημα στα δεδομένα. Με τον Σημασιολογικό Ιστό

η πληροφορία δεν παρουσιάζεται απλά από τις μηχανές, αλλά μπορεί να κατανοηθεί

και να επεξεργαστεί από αυτές. Ο στόχος του Σημασιολογικού Ιστού είναι η

δημιουργία ξεκάθαρης και σαφής πληροφορίας, η επαναχρησιμοποίηση των δεδομένων

και η εύκολη κατανομή γνώσης. Για να επιτευχθεί ο στόχος του Σημασιολογικού

Ιστού, πρέπει τα δεδομένα που υπάρχουν στον Ιστό να αναπαρασταθούν με τη

μορφή ενός απλού μοντέλου δεδομένων. Με αυτόν τον τρόπο ακόμα και οι μηχανές

μπορούν να κατανοήσουν τα δεδομένα. Το μοντέλο αυτό των δεδομένων ονομάζεται

Resource Description Framework (RDF), και είναι ένα μοντέλο γράφου. Η γλώσσα

RDF είναι μια γλώσσα αναπαράστασης της πληροφορίας σχετικά με πόρους στον

Ιστό. Οντολογίες προσδίδουνε μετα-πληροφορία στα ήδη υπάρχοντα δεδομένα. Οι

οντολογίες σχεδιάστηκαν για την δημιουργία ιεραρχιών κλάσεων, αφηρημένων εννοιών,

κτλ. Οι οντολογίες δημιουργούνται με την γλώσσα Web Ontology Language (OWL). Με

οντολογίες και δεδομένα, τα ΡΔΦ δατασετς δημιουργούνται, τοποθετούνται στον Ιστό,

και είναι έτοιμα για διανομή, κατανομή και επαναχρησιμοποίηση της πληροφορίας.

Τα RDF δεδομένα χρειάζονται μια γλώσσα αιτημάτων. Στον Σημασιολογικό Ιστό,

αυτή η γλώσσα ονομάζεται SPARQL. Η παρούσα πτυχιακή αναλύει την SPARQL, το

συντακτικό της, και παρέχει παραδείγματα για την χρήση της.
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Introduction

The World Wide Web as we know it today is a Web of documents. The machines were

designed to display the data located on the Web to humans, but are not able to understand

the data. Therefore they cannot make use of it. The vision to have machines that process

information developed and so Semantic Web was born. Semantic Web aims to make

information so simple that even machines can understand it. Therefore, complex human

language structures need to be explicitly de�ned in a simple way. This is the role of

the Resource Description Framework (RDF), from which RDF data is created. Abstract

concepts and class hierarchies need to be de�ned. Vocabularies are used for this purpose in

order to describe data using those concepts. These vocabularies are called ontologies, and

one of the possible languages to create them is the Web Ontology Language (OWL). There

is also a need for a tool to query the RDF data, which is called SPARQL query language

for RDF (recursively SPARQL). This thesis introduces the Semantic Web technology and

related concepts. It also analyzes the technologies with examples, in order to show SPARQL

and what it is capable of.

In Chapter 1, we introduce the Semantic Web and present its goals and bene�ts. We

introduce the RDF language, a building block for the Semantic Web. RDF is a language

describing resources in the form of a graph. This graph can represent statements about

facts, real or abstract. Resources are identi�ed on the Web by Uniform Resource Identi�ers),

which are unique and global and do not necessarily locate a website on the Web. In

the same chapter we also describe the syntax for RDF, as well as RDF containers and

collections. Notations are ways to write the RDF graph in a textual format. These are

analyzed and shown with examples. Tools to store RDF data are needed, the so-called

RDF storages. Sesame is an RDF storage that is analyzed with screenshots because it will

be used to demonstrate the SPARQL queries. In Chapter 2, we give an introduction to

ontologies. Ontologies are needed to describe abstract concepts in a domain model, to
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create class hierarchies, de�ne the structure of data, etc. We start with describing features

that exist in RDF Schema, a simple descriptive language for the creation of ontologies.

Furthermore we analyze and give examples for OWL features, since they build upon the

RDF Schema features. OWL language is the language used to create ontologies, and it has

three sublanguages, OWL Lite, OWL DL and OWL Full.

Chapter 3 demonstrates the ontology that was created for this thesis in Protégé. Protégé

is an open-source platform to create ontologies and domain models. This tool can be used

instead of manually writing OWL. First we present the features in the latest stable version

of Protégé, and then we compare the newer with the older stable version. After that we

demonstrate the usage of Protégé with the aid of screenshots.

Chapter 4 reaches the main point of this thesis, SPARQL. SPARQL is the query language

for RDF. In the �rst section of the chapter we provide general information about SPARQL,

from its creation to its di�erent versions. Then we describe the syntax used, how to form

a basic query, add constraints, etc. The examples are used in Sesame, and screenshots

demonstrate the results. In the last section we compare SPARQL to SQL and XQuery.



Chapter 1

Semantic Web

1.1 General

The World Wide Web was created for humans, therefore most of the data on the Web

today is only displayed by machines, not understood by them [RDF]. Developers started to

think of a possible way to make these machines to perform tasks more intelligently. There

are two approaches to this problem.

One way is to make the machines so intelligent that they can understand the complex

human language. Arti�cial Intelligence is trying to solve this problem.

Another way is to simplify the description of the world so much, that even computers

can understand the meaning. This is where Semantic Web steps in. The Semantic Web is

the Web of data [35]. This is a vision for the Web that is being realized currently, in which

data is de�ned and described in a simple way. In Figure 1.1.1, we can see the Semantic

Web stack.

The Semantic Web realizes two goals - unambiguity and full descriptions [21]. One

goal of the Semantic Web is to have unambiguous and context-independent information.

The Resource Description Framework (RDF) was created for this reason, to simplify

the complexity of the human language, structure it and make it unambiguous. The

Universal Resource Identi�ers (URI) exist to create unambiguous global references to

entities. Ontologies create unambiguous concepts. Another goal is to have more meaning

with the same data. By explicitly de�ning concepts and using reasoners on the ontologies,

new data can be inferred. By generating new data from the reasoners we can have more

meaning. Data designed to be used with the Semantic Web technology has to be in a

19
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Figure 1.1.1: The Semantic Web stack [10]

certain format called RDF. RDF is a simple data model designed to describe concepts and

express knowledge in a distributed, decentralized world [39] [40]. The World Wide Web

Consortium (W3C) created the �rst recommendation for RDF in 1999 [28]. RDF is a

general-purpose language to describe resources on the Web. A resource can be a person,

a song, a video, a place, and more. The computers this way no longer process or present

data without understanding what it is about, but with RDF de�ned data, machines can

understand the meaning behind the data. This opens up new possibilities for "intelligent"

applications that process information.

"One bene�t of the RDF property-centric approach is that it allows anyone to extend

the description of existing resources, one of the architectural principles of the Web" [31]

[11].

There is no permission needed to create new concepts in RDF, and RDF applications

can thus connect RDF �les posted on various locations over the Internet and store them

into a single knowledge base. Let us consider that Amazon creates an RDF document with

prices of their books and their corresponding reviews, and BookDepository does the same

using the same vocabulary. An intelligent Semantic Web application can now take the

ontology, the RDF documents, and create a greater knowledge database by posting prices

and reviews of both online sellers for each book, therefore creating a comparison.

Another bene�t is that new information can be inferred from these documents. This is

done by linking documents with their common vocabularies and by allowing each document
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to use any vocabulary needed [13]. These vocabularies are called ontologies, and they will

be discussed further in the thesis. For example if one creates a complete ontology about

humans, there is no need for anyone to create another such ontology again. Whether future

programmers want to create ontologies about books and authors, or athletes and sports,

anything that is related to humans is already de�ned. The only thing needed to do is to use

concepts and properties from the human ontology, referring to them by their URIs (Uniform

Resource Identi�er), also to be explained in section 2.2. Therefore RDF makes it easier to

connect information spread across the Internet in distributed documents, and for knowledge

to be structured and reused.

1.2 RDF

1.2.1 RDF Graph

RDF graph is a collection of RDF triples [26]. The graph shows information in a way

that humans can immediately understand. An RDF graph visualizes one (Figure 1.2.1)

or more (Figure 1.2.2) RDF triples. These graphs are directed and labelled. A triple is a

statement written in RDF in order to describe an entity (real or abstract). It is in the format

of subject-predicate-object. Every triple expresses a fact. The classic Entity-Relationship

diagrams or Class diagrams are very similar as they are all designed to provide visual models

for concepts [53].

f:John
f:hasWife

f:Mary

Figure 1.2.1: RDF graph representing one triple

The above example is an RDF graph representing one statement, stating the fact about a

resource. Below we can see an example of an RDF graph representing multiple statements,

therefore building an RDF dataset. The statements and syntax will be analyzed further

below.

It is important to note that the arrow must always point from the subject to the object

[34]. Using the RDF graph is a simple and easy way to understand and view the whole RDF

document or its subset. Furthermore it makes it easier to see the relationships between
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f:Frances

f:hasMother

f:Woman
rdf:type

f:Madaline

f:hasFirstName

"Madaline"

f:Georgia

f:hasSibling

f:hasChild

f:hasAge

21

rdf:type

Figure 1.2.2: RDF graph representing multiple triples

resources and properties. Every arrow in the RDF graph represents a predicate of a triple.

Every set of the arrow with the two ends on each side represent a statement. In an RDF

document, there should be as many triples as there are arrows in the RDF graph.

1.2.2 URI

The Uniform Resource Identi�er is a form of identi�cation on the Web. Its purpose is to

globally identify resources [39] [13]. URLs (Uniform Resource Locators) are a special type

of URI. In general there is no need for the URI to pinpoint to an actual location to the Web.

One shouldn't assume that it does, because URIs are used in Semantic Web to identify, not

locate (URLs on the other hand have this requirement. There is no special authority that

creates URIs; anyone can create one using any name they desire, using a few guidelines

[12]. The name can be a reference to an actual location on the Web, or it can be an

imaginary one. A URI may take di�erent forms; it is not required to look like a website

address. Even URNs (Uniform Resource Name), a subtype of URIs that identi�es books,

can be used [39]. There is no guarantee that something will exist on the Web, as will be

further discussed below. If it is an actual location, then this means that the full description

and speci�cation of the corresponding resource can be found at that location.

In RDF, URIs are used to identify resources [55]. They contain the main URI and at the

end may optionally have a fragment identi�er. This is separated with the "#" character
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with the rest of the URI. The fragment identi�er is the name of the resource. These URIs

in RDF can have Unicode characters, making it possible for many languages to exist. They

are encoded in US-ASCII.

The URI <http://www.example.com/family#Frances> consists of the main URI <http:

//www.example.com/family> and the fragment identi�er Frances which is the resource. The

fragment identi�ers are always separated by the rest of the URI with the pound sign "#"

. For example, the URI <http://www.w3.org/1999/02/22-rdf-syntax-ns#> contains the

W3C speci�cation for RDF located on the Web. URIs are treated di�erently by RDF and

by Web browsers [29]. RDF uses URIs to identify resources, while Web browsers use URIs

to retrieve resources. RDF many times uses URIs to identify resources that do not exist on

the Web, like abstract concepts of life. When two URIs are di�erent, RDF considers them

to be two di�erent resources (unless otherwise speci�ed) since they are lexically di�erent.

What RDF does not assume about URIs [29]:

• RDF does not assume a URI points to an actual location on the Web and therefore

can be retrieved.

• RDF does not assume that two URIs are the same when their domain URIs are

common.

For example, it is not considered that the following two URIs are describing the same

resource, because of their syntactic di�erences.

<http://www.example.com/family#Soap>

<http://www.example.com/family#Sophia>

Even though they both consist of the URI <http://www.example.com/family>, it is not

assumed that they are about the same resource unless explicitly speci�ed.

In order to simplify the creation of RDF documents as well as sharing and reading them,

it is possible to have abbreviated URIs in a document. There are three di�erent ways to

write a URI:

1. The �rst way is to write the full URI: <http://www.example.com/ontology/family>.

In this case whenever we want to refer to a resource in the ontology, it is done

by writing the complete URI each time, followed by the character "#" and the
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resource identi�er. A URI that identi�es the resource Georgia would look like <http:

//www.example.com/ontology/family#Georgia>.

2. Another way is shown in the following example. We have the BASE URI written once

at the beginning of the document, and when it is needed to refer to it, we just use

<family>. This is a relative URI. An example looks as following:

BASE <http://www.example.com/ontology/>

<family>

3. The third way is to abbreviate URIs by declaraing a namespace. With the @prefix

keyword we assign an arbitrary namespace to the domain URI. Whenever the

namespace appears in the document, the reasoner or query processor will know which

URI link it belongs to. An example of this approach is the following:

@prefix f: <http://www.example.com/ontology/>

f:family

1.2.3 Syntax

The foundation of RDF is a graph model for representing named properties and

property values [28]. This graph, which represents RDF data, follows the model of

subject-predicate-object statements (triples). With these triples we can describe resources

in an easy to understand and structured way. The subject is always the resource in question;

the predicate is the attribute of the said resource, and object is the value of that attribute.

In Figure 1.2.3 we can see a visualization of this.

<subject>
<predicate>

<object>

Figure 1.2.3: Subject - Predicate - Object statement

As mentioned above, the subject represents a resource described by the statement. This

resource can be anything imaginable. For example it could be a webpage, an element of

a webpage, or a whole website. But the extent of what a resource can be is not limited

to the Web. It is possible to semantically describe a song, a person, a place, a book, even



1.2. RDF 25

an abstract meaning such as "like", as in the typical example "John likes Mary". When

describing properties, the subject is the property being described (e.g., hasChild). In RDF

documents these resources must always be expressed in the form of URIs [28].

The predicate can be an attribute, property, state or relationship of the subject. This

must always be a URI as well. The predicate is also known as the property of the triple

[34].

The object can be a URI, or of primitive type. Primitive type means that it is a

non-class type, for example a string, boolean, integer, etc. The object can be anything

from the range of primitive types, from a string to a boolean property. This essentially

means that it can either be a resource or a value, called a literal. These literals have the

option to be accompanied by a URI, but this will be discussed further below.

The following is an example of these two cases, the �rst being a statement with a URI

as an object, and the second is a statement with a literal as an object.

<http://www.example.com/family#Father>

<http://www.example.com/family#hasChild>

<http://www.example.com/family#Child> .

<http://www.example.com/family#Father>

<http://www.example.com/family#firstName> "Peter".

RDF documents that do not have same URIs cannot be matched or related with each other.

When common URIs exist this means that the RDF documents are describing the same

thing. This is how RDF tools can "understand" what is being described and know what it is

about. For example, if one RDF document states the speci�cations of a certain motorcycle,

then someone else could extend this description by using the same URI and simply adding

more information. This is an essential part of Semantic Web vision, the reusability of data,

distributed knowledge and using the Web as a knowledge base.

It is tedious and non-human friendly to write the full URIs every time a resource is

described in an RDF document. For this reason, URIs can be shortened by using the

@pre�x keyword. The domain URIs are written once in the beginning of the document,

and the rest of the document containing RDF triples is used with the appropriate and

corresponding pre�xes, shown in the example below.
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix o: <http://www.example.com/my-ontology/olympic-games#> .

o:Game rdf:type rdfs:Class .

o:Athlete rdf:type rdfs:Class ;

rdfs:subClassOf o:Human .

In the above example we can see that the URI <http://www.w3.org/1999/02/

22-rdf-syntax-ns#> was declared in the beginning of the document with the corresponding

rdf: namespace. Whenever we see in the document a construct beginning with rdf: , this

means that it is a resource belonging to the declared URI. Instead of writing the whole

URI <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> each time the resource is

needed, we shorten it by simply typing rdf:type. Internally, it is always interpreted

as <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, and this is simply a help for

human-readability.

An RDF document may need URIs for the RDF speci�cation, RDFS, OWL, XSD, and

the ontology itself. All these technologies will be explained further in this thesis.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

1.2.3.1 Blank Nodes

A blank node is a concept that represents a resource without a name. There is an in�nite set

of blank nodes, with no limitations as to how many can be used [34]. This makes them very

useful for large knowledge bases, when the name of the resource does not matter. Blank

nodes are also used to describe restrictions in an ontology (to be explained further in the

thesis). Internally, a name is created to identify each blank node. But this generated name

is not permanent and therefore should not be used as an identi�er. The RDF speci�cation

does not mention how the blank nodes should be internally implemented, and therefore it

does not matter. However, it should always be possible to determine if two blank nodes
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are the same or not. The set of blank nodes with the set of all the URIs and the set of

all literals are all disjoint with each other (Figure 1.2.4). This means that a blank node is

neither a URI nor a literal.

set of blank
nodes

set of URIs set of literals

Figure 1.2.4: Pairwise disjointness

Blank nodes are usually written in ontologies in the form of _:node342dcvx . The

label node342dcvx is the blank node's label. Blank nodes can also be written with square

brackets, i.e. "[ ]". This is the abbreviated form. These brackets can be placed also at the

end of the triple without changing the meaning. The following statements are all equivalent

with each other.

[ ] family:hasChild family:Sophia .

[ family:hasChild family:Sophia ] .

_:node54xd3 family:hasChild family:Sophia .

The above statements all state that the individual Sophia has a parent, but we do not

really care who this parent individual is. We can see a visualization of a blank node in

Figure 1.2.5.

1.2.4 RDF Containers

RDF provides a means to encapsulate data. This allows a property value to refer to a single

container as a resource. This has been created because sometimes it is needed to refer to

a group of things as a property value. RDF containers are intended to describe a group of
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Figure 1.2.5: Example of a blank node [37]

objects. For example, in an ontology about a university, one may want to list the students

enrolled in a course, to state that a book has been written by several authors, and many

more use cases. The members of a container may be resources � blank nodes as well � or

literals [23]. Containers are described in RDF with prede�ned types and properties. There

are three prede�ned types of containers: bags, sequences and alternatives. In section 3.2.1

of the thesis we will discuss how to de�ne these RDF containers, whereas this section is a

theoretical introduction to them.

1.2.4.1 Unordered Container, Bag

A Bag is a resource which represents a group of resources or literals. A Bag can therefore be

a value of a property. It is possible for a Bag to contain duplicate members. The member

order does not matter.

1.2.4.2 Ordered Container, Sequence

A Sequence (Seq) is a resource that represents an ordered list of resources or literals. It

is possible for a Sequence to include duplicate members. In Sequences the order of the

members is important. For example, a Sequence might be used to describe a group that

must be maintained in alphabetical order.

1.2.4.3 Container of Alternatives, Alternative

An Alternative (Alt) is a resource that represents a group of resources or literals that are

alternatives to each other, usually for a single value of a property. The user can select only
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one of the members. For example, an Alt might be used to describe alternative language

translations for the title of a book, or to describe a list of alternative Internet sites at which

a resource might be found. An application using a property whose value is an Alt container

should be aware that it can choose any one of the members of the group as appropriate.

1.2.5 RDF Collections

RDF collections describe groups that can contain only the speci�ed members, and none else.

The di�erence is that a container only says that certain identi�ed resources are members;

it does not say that other members do not exist.

1.3 Notations

1.3.1 General

Any RDF data can be transformed and written in textual format, apart from being

displayed as a graph. The textual format can be written in di�erent interchangeable

formats, depending on the preference. The two di�erent views - graphical and textual

- are equivalent. RDF is a data model that can be presented in various textual formats,

including serialization. The syntax and therefore the encoding is di�erent for each format.

These formats will be further analyzed below. There are a few di�erent ways to write an

RDF document in textual format. These are the so-called notations, with small di�erences

between each other. These are RDF/XML, Notation 3 (shortly N3), Turtle, and N-Triples

(Figure 1.3.1). A popular notation is N3 [40]. It is much easier for humans to understand

than RDF/XML. The latter is more often used for serialization and information processing

applications, because XML parsers have already been developed and are well understood

by developers.

1.3.1.1 Conversion between formats

Tools that convert one RDF data interchange format to another usually exist on the Web.

Not every format can be converted, but in general it's easy to �nd a converter between

RDF/XML and N3 or Turtle (e.g. Sswap [4]). In any case, the data encoded in the triples
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Notation3

Turtle

N-Triples RDF/XML

Figure 1.3.1: The relationship between RDF notations

is what matters, not the notation they are written in [5]. Each notation is simply a method

to write the data in a textual format, according to each developer's needs.

1.3.2 Notation 3

Notation 3 or its abbreviated form N3 is the notation that is used often to write RDF

documents. It is more human-readable than RDF/XML. It is designed for RDF graphs to

be written in a compact and natural way [9].

Triples are written in the classical subject-predicate-object format, each element

separated by the other by whitespace. Each triple must be terminated at the end with

a dot "." . The keyword "a" can be used as an alternative to the rdf:type construct, and

it is case-sensitive.

@prefix family: <http://www.example.com/family.owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

family:Sarah a family:Human , family:Female , owl:Thing ;

family:hasAge "19"^^xsd:int ;

family:hasSurname "Connor"^^xsd:string ;

family:firstName "Sarah"^^xsd:string ;

family:hasFriend family:Ange , family:Sarah .
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The ";" symbol is used for triples that have common subjects, and the "," symbol is

used for triples with common subject and predicate. This will be analyzed more in section

4.2.

1.3.3 Turtle

Turtle (TTL) stands for Terse Triple Language and is a subset of N3. Like its superset

N3, Turtle is a natural way to write RDF triples, human-readable and easy to understand.

Turtle is compatible with the other two formats that are used, N-Triples and Notation 3,

as well as the SPARQL query language, mentioned further in this thesis. "Turtle is an

extension of N-Triples carefully taking the most useful and appropriate things added from

Notation 3 while keeping it in the RDF model" [8].

Comments are available for use by adding the character "#". The e�ect of this is valid

till the end of the line [8].

The following do not exist in Turtle, but are included in N3 [7]:

1. { ... }

2. is of

3. paths like :a.:b.:c and :a^:b^:c

4. @keywords

5. => implies

6. = equivalence

7. @forAll

8. @forSome

9. <=

A few di�erences that exist in Turtle, but not in N3 [7]:

1. Decimal arbitrary length literals

2. Boolean literals
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Below we will show an example of the same code as presented for N3, but written in

Turtle:

@prefix family: <http://www.example.com/family.owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

family:Sarah a family:Human , family:Female , owl:Thing ;

family:hasAge "19"^^xsd:int ;

family:hasSurname "Connor"^^xsd:string ;

family:firstName "Sarah"^^xsd:string ;

family:hasFriend family:Ange , family:Sarah .

We can see that in this subgraph of the same example, N3 and Turtle look exactly the

same. The notations in general have small di�erences between each other, but are not

shown in this example.

1.3.4 N-Triples

N-Triples is a line-based format for encoding RDF graphs, written in plain text [32]. The

character encoding is 7-bit US-ASCII, which limits the range of what is available to be used.

N-Triples is a subset of Turtle. N-Triples should not be confused with Notation 3 which is

a superset of Turtle [51]. N-Triples was intended to be a rigid subset of N3. Therefore,

N3 tools are possible to be used to read and process the data written in N-Triples. For

example, CWM (a popular reasoner, see section 2.4.1) can provide an output format of

N-Triples when the tool is invoked using the command "cwm-ntriples" [32]. It is suggested

to store N-Triples formatted data in �les with a ".nt" su�x. This distinguishes the �les

from belonging to the N3 notation. N-Triples is used to state RDF test cases, and to

de�ne the connection between RDF/XML and the RDF abstract syntax. RDF/XML is

recommended for applications to exchange RDF information, whereas N-Triples is more for

human readability.

<http://www.example.com/ontology/family-inferred.owl>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Ontology> .
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<http://www.example.com/family.owl#Sarah>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.example.com/family.owl#Human> .

<http://www.example.com/family.owl#Sarah>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.example.com/family.owl#Female> .

<http://www.example.com/family.owl#Sarah>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Thing> .

<http://www.example.com/family.owl#Sarah>

<http://www.example.com/family.owl#hasAge>

"19"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://www.example.com/family.owl#Sarah>

<http://www.example.com/family.owl#hasSurname>

"Connor"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.example.com/family.owl#Sarah>

<http://www.example.com/family.owl#firstName>

"Sarah"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.example.com/family.owl#Sarah>

<http://www.example.com/family.owl#hasFriend>

<http://www.example.com/family.owl#Ange> .

<http://www.example.com/family.owl#Sarah>

<http://www.example.com/family.owl#hasFriend>

<http://www.example.com/family.owl#Sarah> .

We can clearly see how such a notation di�ers from N3 or Turtle in terms of

human-readability.

1.3.5 RDF/XML

The RDF/XML notation expresses the RDF model using XML. By using XML, RDF

information can easily be exchanged between di�erent types of computers, operating

systems and application languages. Using XML is easy because there are more tools for

XML that have already been developed even before Semantic Web erupted. This does not
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mean that XML is better than other notations. For example there are parsers for N3, but

there are not so many yet. The disadvantage of RDF/XML is that it is not human-readable

like other notations are. An example of the RDF/XML notation is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:family="http://www.example.com/family.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description

rdf:about="http://www.example.com/family.owl#Sarah">

<rdf:type

rdf:resource="http://www.example.com/family.owl#Human"/>

<rdf:type

rdf:resource="http://www.example.com/family.owl#Female"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<family:hasAge rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

19</family:hasAge>

<family:hasSurname rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Connor</family:hasSurname>

<family:firstName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Sarah</family:firstName>

<family:hasFriend rdf:resource="http://www.example.com/family.owl#Ange"/>

<family:hasFriend rdf:resource="http://www.example.com/family.owl#Sarah"/>

</rdf:Description>

1.4 RDF Storages

There are currently some tools for storing RDF data on the Web. These include:

• Jena and Joseki

• Oracle Spatial RDF

• Sesame
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• Virtuoso Universal Server

• RDFLib

1.4.1 Jena

Jena was developed by Hewlett-Packard from the HP Labs Semantic Web Program and

it is widely used. As stated in the Jena website, "Jena is a Java framework for building

Semantic Web applications. It provides a programmatic environment for RDF, RDFS and

OWL, SPARQL and includes a rule-based inference engine." [1]. Joseki is a HTTP engine

allowing Jena storage to be web-accessible with SPARQL [21].

1.4.2 Oracle Spatial RDF

Oracle Spatial is based on the Spatial extension which was initially introduced for managing

geographic data. Oracle Spatial does not support SPARQL, and therefore RDF triples are

mapped to and stored in relational tables [21].

1.4.3 Sesame

Sesame is an open-source project developed by the Dutch software company Aduna [3].

"Sesame is a framework for storage, inferring and querying of RDF data". In many respects

Sesame similar to Jena, but while Jena pays a lot of attention to reasoning, Sesame is

optimized for storage and querying. Sesame is also often used by developers for RDF

storage.

To use Sesame, it is possible to do so through a Console or through its Web application

via Apache Tomcat. In this thesis, the Web application will be used for demonstration, called

Sesame Workbench. Typing http://localhost:8080/openrdf-workbench in the browser

after starting up Tomcat, we can see the following screen (Figure 1.4.1).

There are no user repositories at the moment. First we must create an empty repository.

On the menu located on the left, we click on "New repository". The In Memory Store type

must be chosen, and all we need to do is write an ID and a description for identi�cation.

We can see the procedure of this in Figure 1.4.2 and Figure 1.4.3.
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Figure 1.4.1: Starting screen of Sesame Workbench

Figure 1.4.2: Creating a new repository in Sesame

1.4.3.1 Summary

After clicking on "Create", we see the following screen. We can see that the ID �eld is

needed to identify the repository in Sesame. This screen can be found again if we click on

"Explore->Summary" in the left-hand menu, shown in Figure 1.4.4.

The repository is still empty after creation, which can be easily seen by looking into the

Types link on the menu. Therefore it needs to be �lled with data from the ontology. This is

done by clicking "Modify->Add" and simply uploading the owl �le, in this case family2.owl.

The rest will be automatically �lled by Sesame, as shown in Figure 1.4.5.
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Figure 1.4.3: Persistent storage for our data

Figure 1.4.4: Summary of the new repository

1.4.3.2 Namespaces

Clicking on the link Namespaces we can see the namespaces that currently exist. We can

see this in Figure 1.4.6. If desired, it is possible to add more.

1.4.3.3 Contexts

Contexts existing in the repository could be compared to tables in a relational table. In

essence they are sections of data, divided logically. A repository should be able to support
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Figure 1.4.5: Uploading of RDF data to repository

Figure 1.4.6: Existing namespaces in the repository

several contexts, which in turn are called named graphs. These named graphs can be used

in SPARQL queries, instead of querying one large default graph. In this case we have

only one context in the repository (Figure 1.4.7), and therefore will not analyze the matter

further.

1.4.3.4 Types

By clicking on "Explore→Types", we can see a list of all the available concepts in the

repository, as shown in the �gure below (Figure 1.4.8).

By clicking on a type, we can explore everything that is related to it. For example, if

we click on owl:ObjectProperty, we get the screen shown in Figure 1.4.9.



1.4. RDF STORAGES 39

Figure 1.4.7: Contexts in the repository

Figure 1.4.8: Existing types in the repository

1.4.3.5 Explore

The search keyword to explore a certain construct, class or property is case-sensitive, and it

matches only the complete string. It is not possible to insert a substring in hopes of �nding

the parent string. For example, to search for the blank node label _:node15t2dbpplx2,

we have to insert exactly that string. Inserting only _:node does not yield any results.

In Figure 1.4.10, we can see three datatype properties. These are the currently created

datatype properties in the family ontology.
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Figure 1.4.9: All the object properties

Figure 1.4.10: All the datatype properties

Below, in Figure 1.4.11, we can see the di�erence between an imported ontology with

no inferred axioms, and an imported ontology including the inferred axioms. What has been

added is the owl:topDataProperty construct. For the rest of the thesis the context of the

inferred ontology will be used unless otherwise speci�ed.

In Figure 1.4.12 below, we see a list of all the symmetric properties in the ontology.

1.4.3.6 Query

This is where all the SPARQL queries are performed and the results returned (Figure 1.4.13).

The needed namespaces are already written in the beginning of the query window, but if

we need to use more we can add them to the list. It is possible also to query using SeRQL,
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Figure 1.4.11: Datatype properties of an ontology with inferred axioms

Figure 1.4.12: All the symmetric properties

but this is not the topic of this thesis.

Queries with their results and their corresponding screenshots will be shown in section

4.2.2.

1.4.3.7 Export

By clicking on Export we can save the data as a di�erent notation, like Turtle, N3 (in this

case they are the same), N-Triples, etc (Figure 1.4.14). With this method we can compare

the di�erent notations and use whichever suits us according to the circumstance (Figure

1.4.14).
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Figure 1.4.13: The empty query window in Sesame Workbench

Figure 1.4.14: Choosing the desirable format to export the RDF data

1.5 Epilogue

In this chapter we started by giving an introduction for the Semantic Web, then proceeded

to explain the technology of RDF. RDF is a method of representing resources in the form

of a graph. URIs are used for global identi�cation of resources. We can also create RDF
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containers, such as a Bag, Sequence or Alternative. Notations are ways to write RDF in a

textual format, equivalent to the graph. N3, Turtle, N-Triples and RDF/XML are all data

interchange formats. RDF storages exist to store RDF data, and possibly query the data.

A few popular RDF storages include Jena, Oracle Spatial RDF, and Sesame. The latter is

used in this thesis to demonstrate examples of queries in Chapter 4. Data represented in

RDF needs metadata, and this is what will be discussed in the following Chapter 2.





Chapter 2

Ontologies

2.1 General

An ontology is a core element of the Semantic Web. As stated by W3C, "An ontology

de�nes the terms used to describe and represent an area of knowledge" [47]. Another

de�nition of ontology is that "An ontology is an explicit speci�cation of a conceptualization"

[17]. An ontology describes the meaning of concepts and their relationships, and therefore

is similar to a vocabulary of human language. In addition to de�ning and describing terms,

ontologies also de�ne the structure of knowledge within a certain domain (e.g. �shing

domain, domain of medicine, transportation domain, etc.).

With ontologies, the vision of Semantic Web can be further realized through "intelligent"

applications. These applications can come closer to the level of human conception by using

domain-speci�c ontologies and semantically annotated data. Ontologies are meant to be

used by applications and databases, but they are also used by people that need to de�ne

or share information about a speci�c area of knowledge (domain). They are also being

used more and more by businesses and scienti�c communities in order to process domain

knowledge, as well as share with others and reuse it.

Within the Semantic Web stack (Figure 1.1.1), an ontology is based on RDF. One thing

that confuses Semantic Web newcomers is that an ontology is also an RDF document.

The reasons for developing an ontology include:

• To share a common understanding of the structure of information

• To o�er re-usability of domain knowledge

45
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• To explicitly state assumptions in a domain (e.g. a woman is a female person)

• To analyze the domain knowledge

In many cases, ontologies develop out of the need to de�ne data in a domain for use

in applications. In other words, ontologies are developed more as a means to an end,

as opposed to them being the intended end product. Their use in describing information

on the Web in an unambiguous way is one such example. Software agents, applications

that are domain-independent, and methods used for problem-solving can use ontologies

or knowledge bases as data. A knowledge base is in essence an ontology with its set of

instances [25].

There are di�erent degrees of ontologies and each is dependent on the structures they

represent. For example, there are ontologies to describe metadata schemes (for example

Dublin Core, to be explained further below), simple taxonomies and logical theories.

As such, ontologies need to have a high degree of structure. In order to develop an

ontology, logic-based language is used to provide "detailed, accurate, consistent, sound

and meaningful distinctions can be made among the classes, properties and relations." [47]

Support for decision making, understanding of speech and natural language, knowledge

management, electronic commerce and intelligent databases are all intelligent applications

that can have ontology tools with automated reasoning. This way ontologies are not only

descriptions of knowledge bases, but also good providers for intelligent applications that

aid humans.

2.2 RDFS � RDF Schema

Ontologies are important for applications that aim for cross-communication between various

sources. Up until a few years ago, this was done with XML DTDs and XML Schemas. Even

though they are su�cient for exchanging data with mutually agreed de�nitions, a reliable

outcome cannot be guaranteed due to the lack of semantic assigning to those de�nitions.

This happens even in the natural language, with words having similar meanings, or the

meaning being dependent on the context. RDF Schema tries to solve this problem by

"allowing simple semantics to be associated with identi�ers" [47]. Class hierarchies are

de�ned, and the same with property hierarchies. RDF Schema on its own might not be

su�cient to create a complex ontology. An example of such an ontology is a musical
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ontology, where a state "string quartet has exactly four musicians" is not de�nable by RDF

Schema.

RDF Schemas must not be confused with XML Schemas. Even though both are

Schemas, their usage and role is very di�erent. RDF Schemas are descriptive, whereas

XML Schemas are prescriptive. This essentially means that while XML Schemas provide

strict guidelines and rules of how XML should be written, RDF Schemas simply enhance

already de�ned descriptions. RDF Schema extends RDF semantically [31]. This means

that RDF Schema provides more predicates in order to describe classes and properties in a

more complete way. Classes in RDF Schema are treated like Object-Oriented programming

classes. This essentially means that resources (a class or property) can be instances of

classes, subclasses of other classes, and more.

A property is also an entity, an abstract concept of the real world. This means that

it is not only possible to describe concrete objects, but also properties. Properties need

to be described in order to provide complete information in the ontologies. Properties can

have domains as well. The domain states the class of the property's subject. The range

expresses the class of the property's value. As an example to illustrate this, we can use

a property hasChild. If this property is de�ned as having domain Parent and range Child,

then a statement "Peter hasChild Sophia" is valid only if individual Peter is of type Parent

and at the same time individual Sophia is of type Child.

@prefix family: <http://www.example.com/family#> .

family:Frances family:hasChild family:Sophia .

family:Frances family:firstName "Frances" .

The property range of hasChild is of type Human, and the range of �rstName is of type

String. In both cases the domain is of type Human. All of the resources belong to the same

ontology since they all have the same namespace name family:.

Every predicate that exists in RDF Schema is usually preceded by the namespace name

rdfs:. We can create a di�erent namespace, as long as the pre�x namespace is connected

to the proper URI, <http://www.w3.org/2000/01/rdf-schema#>. For example, if we want

to de�ne a resource as a literal, we will write it as following:

family:Parent rdfs:subClassOf family:Human .
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2.2.1 Classes

In RDF Schema both classes and instances are resources. A class is a set of resources in

RDF. Much like in Object-Oriented programming, a member of a class is called an instance.

It is possible for a class to be an instance of itself. To de�ne a resource as an instance of

a prede�ned class, the property rdf:type is used. An example is shown below:

family:Sophia rdf:type family:Female .

family:Sophia rdf:type family:Wife .

rdfs:Resource This is the class of everything [31]. Everything described with RDF

Schema and therefore, RDF, is a resource. This class is an instance of rdfs:Class.

rdfs:Class The group of RDF classes is a class in itself which is rdfs:Class. rdfs:Class is

an instance of itself.

rdfs:Literal This is the class of all literal values, for example string, date, integer, boolean,

and many more. rdfs:Literal is an instance of rdfs:Class and a subclass of rdfs:Resource.

All literals have a lexical form that is a Unicode string [34]. A literal can be plain, or typed.

Typed literals are those that belong to a speci�c prede�ned type. These can belong to

XML Schema [36]. They are usually written with the namespace "xsd: ", e.g. xsd:string.

Typed literals are accompanied by datatype URI references. Plain literals are strings that

can optionally have a language tag, denoting the natural language of the text. The main

di�erence is that with typed literals the applications know how to interpret and handle the

literals, whereas with plain literals it is not possible.

Typed literal:

family:Sophia family:firstName "Sophia"^^xsd:string .

Plain literal:

family:Sophia family:firstName "Sophia" .

rdfs:Datatype This is the class of datatypes, as the name suggests. Every instance of

rdfs:Datatype is a subclass of rdfs:Literal. The construct rdfs:Datatype is an instance as

well as a subclass of rdfs:Class.
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rdf:XMLLiteral The class of the XML literal values is rdf:XMLLiteral. It is an instance

of rdfs:Datatype, ergo a subclass of rdfs:Literal.

rdf:Property The class rdf:Property is the RDF properties class. It is also an instance

of rdfs:Class.

2.2.2 Properties

rdfs:domain This is an instance of the class rdf:Property. It is used to express that the

domain of a certain property is a certain class. For example, the triple

family:hasChild rdfs:domain family:Parent .

states that whenever we create a statement that uses hasChild as the predicate, the

subject of the statement must be an instance of the class Parent. We can state that

the domain of the rdfs:domain property is the class rdf:Property. Which means that the

resource being annotated with this property will always be an instance of the rdf:Property

class.

rdfs:range The property rdfs:range is also an instance of the class rdf:Property. It is used

to express that the range of a certain property is a certain class. For example, the triple

family:hasChild rdfs:range family:Child .

states that whenever we create a statement that uses hasChild as the predicate, the

object of the statement must be an instance of the class Child. Therefore we can say that

the range of the rdfs:range property is the class rdfs:Class.

rdf:type The property rdf:type is used to declare that a resource is an instance of a class.

This property is also an instance of rdf:Property. For example, the statement

family:Sophia rdf:type family:Human .

means that Human is an instance of rdfs:Class, and that the resource Sophia is an instance

of Human.
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rdfs:subClassOf This property, an instance of rdf:Property, states that all instances of

one class are also instances of another class. The domain and range of this property are

both instances of rdfs:Class. The triple

family:Female rdfs:subClassOf family:Human .

means that family:Female and family:Human are instances of rdfs:Class, and that

f:Female is a subclass of family:Human. The property rdfs:subClassOf is transitive. The

meaning of this will be explained further on in this thesis.

rdfs:subPropertyOf This property declares that all resources that are related by a

property are also related by another property. For example, the statement

family:hasMother rdfs:subPropertyOf family:hasParent .

tells us that family:hasMother and family:hasParent are instances of the rdf:Property

class, and that family:hasMother is a sub-property of family:hasParent. The property

rdfs:subPropertyOf is transitive.

rdfs:label: With the rdfs:label property a label is attached to the resource that is easily

read by humans.

family:PeterD rdfs:label "Peter David" .

The domain of the rdfs:label property is an a resource, and the range is a literal.

rdfs:comment The rdfs:comment property attaches to the resource a comment about

it, possibly describing it for quick recognition by a human.

family:PeterD rdfs:comment "Peter David, tall guy with glasses" .

The domain of the rdfs:comment property is a resource, and the range is a literal.

2.2.3 Container Classes and Properties

RDF containers are resources with the purpose to represent collections. The members in a

container are either resources or literals. A blank node is also considered a member of the

container. RDF has no real understanding of the di�erences of each container. These are
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just intended to indicate the accepted understanding of the purpose of each container, and

it is up to the developer to use them as intended.

rdfs:Container The rdfs:Container class is a superclass of the RDF Container classes.

rdf:Bag The rdf:Bag class is the class of RDF Bag containers. This class is a subclass

of the rdfs:Container class. Syntactically it is not di�erent than rdf:Seq and rdf:Alt. It is

used to show the reader that the container is unordered. To state that a blank node or

a resource with a URI is a container of type rdf:Bag, we use the rdf:type property. The

resource then describes the group as one entity. An example is shown in Figure 2.2.1.

Figure 2.2.1: An RDF container of type rdf:Bag

rdf:Seq This is the class of RDF Sequence containers. It is also a subclass of

rdfs:Container. It is syntactically the same as rdf:Bag and rdf:Alt. The di�erence is that

it is used to show the human user that the numerical order in which the membership

properties of the container is important. These membership properties are explained in the

rdfs:ContainerMembershipProperty subsection.

rdf:Alt The class rdf:Alt is the class of RDF Alternative containers. This is also a subclass

of rdfs:Container. As mentioned above, this class is syntactically also no di�erent than

rdf:Bag and rdf:Seq. The rdf:Alt class signals to the reader that processing will suggest

selecting one of the members of the container. The �rst member of the container is the

default choice. An example of an Alternative is shown in Figure 2.2.2.
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Figure 2.2.2: An example of an Alternative [37]

rdfs:ContainerMembershipProperty To describe the members of a container, we

de�ne a property of type rdfs:ContainerMembershipProperty for each corresponding

member. The rdfs:ContainerMembershipProperty class has instances with names in the

following manner:

rdf:_1, rdf:_2, rdf:_3 , etc.

They are used to declare that a resource is a member of a container (Figure 2.2.1).

Each instance of the rdfs:ContainerMembershipProperty class is a sub-property of the

rdfs:member property. The container resource is the domain of the property, and the

range is the member of the container. It is possible to have other properties that describe

the container resource.

rdfs:member Every container membership property is a sub-property of rdfs:member.

Therefore, rdfs:member is the super-property of all the container membership properties.

The rdfs:member property is an instance of rdf:Property. The domain of rdfs:member is a

resource, and the range is a resource as well. It states that a resource is a member of

2.2.4 RDF Collections

A collection represents a list of items. RDF Schema does not demand only one �rst element

of a list. Nor does it require for a list to have a �rst element [31]. A visual representation

will be shown further in section 2.3.2.3.
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rdf:List This is an instance of rdfs:Class that can be used to build descriptions of lists

and other list-like structures.

rdf:�rst This collection is an instance of rdf:Property that can be used to build

descriptions of lists and other list-like structures. For example, Ardf:firstB declares that

there is a �rst-element relationship between A and B. The domain of rdf:�rst is a list

(rdf:list), and the range is a resource (rdfs:Resource). The resource B is the �rst element

of the list that is represented by the resource A.

rdf:rest The rdf:rest collection is an instance of rdf:Property. It is used to create

descriptions of lists. For example, Ardf:restB states that there is a rest-of-list relationship

between A and B. Both the domain and range are rdf:List. The domain, in this case named

A, is the the resource that represents the list. The range B is the resource that is part of

the list, but not the �rst element.

rdf:nil This is an instance of rdf:List and it is used to represent an empty list-like structure.

For example, Ardf:restrdf:nil states that A is the instance of an rdf:List that contains

only one element, while the rest is an empty list. That one element can be declared with

rdf:�rst.

An example ontology based on the Olympic Games was created for demonstrating RDF

Schema. The subset code is in pure RDF Schema in order to show it syntactic rules and

constraints, as well as its simplicity. The complete ontology can be found in Appendix B.

We can see that it is not possible to distinguish between the di�erent types of properties,

to declare a property as an inverse of another, etc.

@prefix : <http://www.example.com/olympics.owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix protege: <http://protege.stanford.edu/plugins/owl/protege#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

:Game rdf:type rdfs:Class .

:Human rdf:type rdfs:Class .

:Sport rdf:type rdfs:Class .

:Stadium rdf:type rdfs:Class .

:Athlete rdf:type rdfs:Class ; rdfs:subClassOf :Human .
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:hasGender rdf:type rdf:Property ; rdfs:domain :Human

; rdfs:range rdfs:Literal .

:hasLevel rdf:type rdf:Property; rdfs:domain :Game

; rdfs:range rdfs:Literal .

:hasFirstName rdf:type rdf:Property; rdfs:domain :Human

; rdfs:range rdfs:Literal .

:playedIn rdf:type rdf:Property; rdfs:domain :Game

; rdfs:range :Stadium .

:hasStadiumName rdf:type rdf:Property; rdfs:domain :Stadium

; rdfs:range rdfs:Literal .

:inCity rdf:type rdf:Property; rdfs:domain :Stadium

; rdfs:range rdfs:Literal .

2.3 OWL

Ontologies for the Semantic Web can also be written in OWL, which stands for Web

Ontology Language. Currently there are two versions of OWL, namely OWL version 1.0

and OWL version 2.0. OWL 2.0 became a W3C recommendation just recently and there

are not many implementations of it. Therefore, whenever we refer to OWL, we mean

OWL version 1.0, unless explicitly speci�ed otherwise. OWL version 1.0 is a W3C (World

Wide Web Consortium) standard, and became a formal W3C recommendation on February

10, 2004 [52]. OWL is derived from the DAML+OIL Web Ontology Language [6] [20].

DAML+OIL is a language that succeeds the languages DAML and OIL, and it combines

features of both [49]. DAML stands for DARPA Agent Markup Language, and it was

created by the Defence Advanced Research Projects Agency. OIL stands for Ontology

Inference Layer or Ontology Interchange Language. The DAML project was terminated in

2006, with OWL already having taken its place. OWL is the latest development among

the ontology languages, aimed to support and belong to the Semantic Web vision. This

means that with OWL the unambiguous information on the Web is processed by computers.

OWL ontologies can be distributed, as OWL allows ontologies to refer to concepts de�ned

in other ontologies. Because of this, OWL is created for the Semantic Web as knowledge

bases are built and information is structured [19].
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OWL is a stronger and more expressive language than RDF Schema, with greater

machine interpretability. It builds upon RDF Schema and extends its features. With

this, OWL succeeds to add more �exibility and syntactic freedom. This language was

designed to be interpreted by machines. It can be written in XML, since XML has already

cemented the serialization format. This way the information written in OWL (and therefore

XML) can easily be exchanged between di�erent platforms and applications, rendering

it fully versatile and widely-used. OWL has the ability to process machine interpretable

information stored on the Web [44]. Therefore, it is designed for use by applications that

process information and not only present it to humans. OWL extends the vocabulary of

RDF [30] and adds possibilities to describe concepts, to create complex hierarchies and

the relationships between classes and properties, and many more features that will be

analyzed further below. With OWL we can state for example that two classes are disjoint

with each other, meaning that there cannot be an instance belonging to those two classes

simultaneously. Furthermore, we can state that a property is the inverse of another property,

as well as many more capabilities for classes and properties. An important di�erence between

an OWL and an RDF document is that OWL formally describes the semantics of abstract

concepts, whereas RDF documents describe concrete entities based on those prede�ned

concepts.

2.3.1 Introduction to OWL Sub-languages

OWL has three sub-languages - OWL Lite, OWL DL and OWL Full. They are in order of

increasing complexity and decreasing completeness (Figure 2.3.1). Each language will be

further analyzed and discussed below.

All classes are subclasses of owl:Thing, the root class. All classes are subclassed by

owl:Nothing, the empty class. No instances can be members of owl:Nothing. Modellers

use owl:Thing and owl:Nothing to assert facts about all or no instances [23]. A property is

a relation between two entities that speci�es class characteristics. There are two types of

properties in OWL, object properties and datatype properties. For the object property, the

property range is a class (individual to individual relation). A datatype property is when

the range is a data type (individual to datatype relation). The domain in both cases is an

object with a URI. Datatype properties are formulated using owl:DatatypeProperty type,

whereas object properties are formulated using owl:ObjectProperty. Languages in the OWL
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OWL Full

OWL DL

OWL Lite

Figure 2.3.1: OWL sub-languages

family support various operations on classes such as union, intersection and complement.

They also allow class enumeration, cardinality, and disjointness.

2.3.1.1 OWL Datatypes

Datatype properties may have as range RDF literals or simple types that are de�ned

according to the XML Schema datatypes. Most of the built-in XML Schema datatypes

are used in OWL [45]. These XML Schema datatypes, as well as rdfs:Literal, are part of

the built-in OWL datatypes. All OWL reasoners are required to support the xsd:integer and

xsd:string datatypes [45]. There might be a confusion among the datatypes and deciding

which one is correct to use. Assigning a range value, we can see that xsd:int exists, but

xsd:integer does as well. What is the di�erence? The datatype xsd:int represents 32-bit

signed integers and is derived from the Long datatype. On the other hand, xsd:integer

represents unbound signed integers and values may begin with an optional "+" or "-" sign.

The latter is derived from the Decimal datatype.

2.3.2 OWL Lite

OWL Lite is designed to be the simplest of the three, thus having many constraints

concerning classes, cardinality, etc. OWL Lite is easier to support by reasoning software.

Reasoning an OWL Lite document is fast because of its simplicity. Every OWL Lite ontology

is an OWL DL ontology.
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Originally, OWL Lite was created to provide support for people who needed to de�ne

hierarchies of classes and simple constraints. For example, even though it supports

cardinality constraints, the only values allowed are 0 or 1. The reason was to have a

simpler way to provide tool support for documents written in OWL Lite. This in theory

allows easy transformation for taxonomy systems.

The limitations on the syntax in OWL Lite are aimed to create a simple but useful

subset of OWL features. OWL Lite contains at least basic capabilities for the creation

of an ontology, as subclass hierarchy structure, optional or required properties, minimal

cardinality, etc. Being less complex than OWL DL or OWL Full creates the possibility for

e�cient OWL Lite reasoners.

2.3.2.1 Features

First of all, OWL Lite contains also RDF Schema features, which were explained previously

in the thesis. These include: Class, rdfs:subClassOf, rdfs:Property, rdfs:subPropertyOf,

rdfs:domain, rdfs:range, and Individual. OWL Lite extends these features and adds more

functionality. Equality and inequality features, property characteristics and restrictions, as

well as cardinality with its restrictions.

2.3.2.2 Classes

In OWL Lite (and OWL DL) an individual can never be an OWL class as well, and the

inverse is true too. The same applies to properties and data values. The construct owl:class

is a subclass of rdfs:class.

2.3.2.3 Equality - Inequality Features

owl:equivalentClass: Instances can belong to more than one class, when the classes are

stated to be equivalent. This allows the possibility to set synonymous classes. For example,

the class O�spring can be stated to be equivalent to the class Child. From this, we can

safely assume that any instance of O�spring is also an instance of Child, and vice versa.

owl:equivalentProperty It is possible to state two properties to be equivalent. This is

helpful in order to create synonymous properties.
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owl:sameAs This construct is used to state that two individuals are the same. This is

used when we want to create di�erent names for the same individual.

family:Vivian rdf:type owl:Thing , family:Female ;

owl:sameAs family:Vivi .

owl:di�erentFrom Everything in RDF must be explicitly de�ned, therefore we must

also de�ne distinction among instances. With the construct di�erentFrom we can state two

individuals to be di�erent from each other. This helps the reasoner understand that Peter

and PeterD are two di�erent people. It might not otherwise be assumed. This construct

also helps the reasoner to realize contradictions, especially where cardinality restraints are

involved.

owl:AllDi�erent This is used to de�ne a whole group of distinct entities, e.g. a group

of �ve di�erent people. For example, we can state that all the individuals in the family

ontology are distinct with each other. Instead of using the construct di�erentFrom for each

individual with all the rest, we can use the construct AllDi�erent (Figure 2.3.2).

_:node15sb4m6gcx44 a owl:AllDifferent ;

owl:distinctMembers _:node15sb4m6gcx45 .

_:node15sb4m6gcx45 rdf:first family:Sarah ;

rdf:rest _:node15sb4m6gcx46 .

_:node15sb4m6gcx46 rdf:first family:Frances ;

rdf:rest _:node15sb4m6gcx51.

_:node15sb4m6gcx51 rdf:first family:PeterD ;

rdf:rest rdf:nil .

2.3.2.4 Property Characteristics

owl:inverseOf A property X can be stated to be inverse of property Y. This means

that if individuals A and B are connected with X (creating statement A X B), then B will

be connected with A with the Y property (creating statement B Y A). For example, the

property hasParent is the inverse property of hasChild (Figure 2.3.3). This means that if
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Figure 2.3.2: A visualization of the owl:AllDi�erent construct

family:Sophia family:hasChild family:Ange, then the reasoner can assume that family:Ange

family:hasParent family:Sophia .

family:hasChild a owl:ObjectProperty ;

rdfs:range family:Child ;

rdfs:domain family:Parent ;

owl:inverseOf family:hasParent .

Figure 2.3.3: Illustration of the inverseOf construct

owl:TransitiveProperty A property can be stated to be transitive. This means that if

a property X is transitive, then any instances of that property with common entities are

transitive with each other. For example let us take the case where the property hasFriend is

transitive. Then the triple family:George family:hasFriend family:Sarah is an instance of the

transitive property, and family:Sarah family:hasFriend family:Mark is another instance of the

transitive property with common entities. The reasoner can now deduce that family:George

family:hasFriend family:Mark. One important thing to note is that OWL Lite (and OWL DL)

do not allow transitive properties to have maximum cardinality of 1 [44]. Furthermore, OWL

DL requires that no cardinality constraints are declared on the property, its super-properties,

or even on its inverse [46].

family:hasFriend a owl:ObjectProperty , owl:TransitiveProperty ;
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rdfs:domain family:Human ;

rdfs:range family:Human .

owl:SymmetricProperty A property may be stated to be symmetric. If a property X

is symmetric, and the entities A and B form an instance of that property, then B and A

will also be an instance of that property [26]. For example, the property hasSpouse is

set to be symmetric, then we can safely state that if f:Sophiaf:hasSpousef:Peter, then

f:Peterf:hasSpousef:Sophia.

family:hasSpouse a owl:ObjectProperty , owl:SymmetricProperty ;

rdfs:range family:Parent ;

rdfs:domain family:Parent .

owl:FunctionalProperty If a property is functional, this means that it has a unique

value. Every individual can have maximum one unique value. It is not required for it to

have a value however. This is basically saying that the maximum cardinality will be 1, and

the minimum will be 0. For example, hasFather could be a functional property, depending

on the culture. This would mean that an individual may have only one father, but it is not

mandatory. In the following example, hasFather is a functional object property.

family:hasFather a owl:ObjectProperty , owl:FunctionalProperty ;

rdfs:domain family:Child ;

rdfs:range family:Father ;

rdfs:subPropertyOf family:hasParent .

owl:InverseFunctionalProperty This construct is used to state that the inverse of

a functional property is functional as well. We can therefore know that the inverse of

functional property X has maximum cardinality of 1 too. In the following example, we state

that hasHusband is a functional property as well as the inverse of the property hasWife.

family:hasHusband a owl:ObjectProperty , owl:FunctionalProperty

, owl:InverseFunctionalProperty ;

rdfs:range family:Husband ;

rdfs:domain family:Wife ;

rdfs:subPropertyOf family:hasSpouse ;
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owl:inverseOf family:hasWife .

2.3.2.5 Property Restrictions

Apart from the property characteristics, there are also property restrictions which constrain

the usage of properties even more depending on how they are used. These are used

within the owl:Restriction construct. The owl:onProperty construct states that property

being restricted. Most restrictions have a global range, meaning that they apply to

all the instances of the corresponding property. The properties owl:allValuesFrom and

owl:someValuesFrom have a local range as they depend also on the class.

owl:allValuesFrom This construct is used to state that all the values pertaining a speci�c

property must be of a certain class. For example, if we want to say that a resource can

be a Parent if it has human children, we can declare it in the following manner, written in

Turtle:

family:Parent a owl:Class ;

rdfs:subClassOf family:Human , _:node15sb4m6gcx7 .

_:node15sb4m6gcx7 a owl:Restriction ;

owl:onProperty family:hasChild ;

owl:allValuesFrom family:Child .

The above example states that the class Parent is a subclass of the class Human, and

of a blank node that serves as a "virtual class". It is an instance of owl:Restriction, and the

properties of this restriction are owl:onProperty and owl:allValuesFrom. This virtual class

is a class of all the individuals X for which this is true: If there are any statements that

involve individual X as the subject and property hasChild as the predicate (statements of

type X hasChild *), then the object in all of these statements must be of type Child. It does

not mean that there must be statements involving X as the subject and hasChild as the

predicate; there may have none. But if they exist, then the objects in all of them must be

instances of class Child. If the resource belonging to the class Parent is connected to another

resource of class Dog with the hasChild property, this means that there is inconsistency and

the resource cannot be considered a Parent.
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owl:someValuesFrom This restriction is similar to owl:allValuesFrom, but it is used to

declare that only some values pertaining a property must be of a certain class. This is also

a minCardinality = 1 restriction. The property in question must have at least one instance

of a certain class, but not all instances have to be of that class. It is written in Turtle as

follows:

family:Sibling a owl:Class ;

rdfs:subClassOf family:Human , _:node15sb4m6gcx9 .

_:node15sb4m6gcx9 a owl:Restriction ;

owl:onProperty family:hasSibling ;

owl:someValuesFrom family:Sibling .

This means that for a person to be of type Sibling, it must be connected with at least

one other instance of type Sibling with the hasSibling property. If the same person was

connected with an instance of type Baby with the hasSibling property for example, it would

still be considered correct, because it only states that some values from the hasSibling

property must be of type Sibling, not all instances.

2.3.2.6 Restricted Cardinality

As mentioned previously in this thesis, OWL Lite has restricted cardinality, allowing only

values of 0 and 1. These restrictions are known as local restrictions because they apply to

properties of a certain class.

owl:minCardinality This stands for minimum cardinality. If the minimum cardinality on

a property is 0, this just declares that the property is optional for a certain class. If the value

is 1, it states that any instance of a speci�c class will be related to at least one individual

with that property. Therefore, the reasoner can assume that the property must always have

a value for instances of that class. To demonstrate, we can use the typical example of

the property hasChild belonging to the class Parent. The property hasChild should have a

minCardinality of 1, because a human cannot be a parent without having at least one child.

It is not mandatory to be a parent though, so class Human can have a minCardinality of 0

on the hasChild property.
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owl:maxCardinality This also applies to properties concerning a speci�c class. This

restriction stands for maximum cardinality. If the maxCardinality of a property of a certain

class is 1, then this means that any instance of that class will be related to one individual

at most with that property. Stating maximum cardinality does not give any information for

the reasoner about the minimum cardinality. If the maximum cardinality is 0, then instances

of a class must not be related to any individuals by that property.

family:Child a owl:Class ; owl:equivalentClass family:Offspring

; rdfs:subClassOf family:Human , _:node15sb4m6gcx35 .

_:node15sb4m6gcx35 a owl:Restriction; owl:onProperty family:hasMother

; owl:onClass family:Mother

; owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger .

The above example states that there is a cardinality restriction on the class Child

pertaining the hasMother property, with maxCardinality being 1. This means that each

child cannot have more than one mother.

owl:cardinality This is useful when we want to say that minCardinality and

maxCardinality are both of the same value. If a property's cardinality is 1, this means

that the minimum cardinality is 1, and the maximum cardinality is 1. For example, the

class Human has exactly one value for the property hasBirthMother. Knowing this, the

reasoner can infer that if two di�erent instances of class Mother are related to the same

individual with the property hasBirthMother, then there must be a mistake or inconsistency.

2.3.2.7 Extra Restrictions

OWL Lite puts the restriction on the construct owl:intersectionOf that it must be used

only on lists that have more than one member, and these members must be only class

names. For example, stating that a Woman is the intersection of a Female and a Human

with both belonging in a collection, is valid. OWL Lite also requires that the statements

owl:allValuesFrom and owl:someValuesFrom have class names or datatype names as the

object.
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2.3.3 OWL DL

OWL DL extends OWL Lite, and adds maximum functionality and expressiveness of

knowledge. DL stands for Description Logic. "A Description Logic (DL) models concepts,

roles and individuals, and their relationships" [DL]. The goal of OWL DL is to provide

maximum expressiveness but at the same time having completeness of reasoners. OWL DL

has no restrictions on the language constructs, but these constructs have certain restrictions

as to how they can be used. For example, transitive properties are not allowed to have

cardinality restrictions. Every OWL DL ontology is an OWL Full ontology. OWL DL requires

type separation (a class cannot be an individual or property at the same time, a property

cannot also be an individual or class). Furthermore, OWL DL requires that properties are

either object properties or datatype properties. As in OWL Lite, owl:Class is a subclass of

rdfs:Class.

2.3.4 OWL Full

OWL Full provides maximum functionality and expressiveness just like OWL DL, but in the

case of OWL Full there is complete syntactic freedom. It is the most complex language of

the three, but it is the most powerful as well. There are no guarantees that every feature

of OWL Full can be reasoned completely by reasoning software. Plus it takes longer time

for a reasoner to complete its reasoning because of its complexity.

OWL Full is based on di�erent semantics from OWL Lite or OWL DL, and is intended

to be compatible with RDF Schema. For example, in OWL Full a class can be treated

simultaneously as a collection of individuals and as an individual, something not allowed

in OWL DL or OWL Lite. RDF documents are in OWL Full, unless they are speci�cally

constructed to be in OWL DL or Lite. This means that if a person �nds an RDF document,

they can assume that it is written in OWL Full unless speci�ed otherwise. An OWL Full

reasoner can therefore be used safely. Even if the document is stated to be in OWL DL,

an OWL Full reasoner can be used because every legal OWL DL document is an OWL Full

document.

In OWL Full, rdfs:Class and owl:Class are equivalent. Furthermore, object properties

and datatype properties are no longer disjoint with each other as in OWL Lite and OWL

DL, since data values can be treated as individuals.

The possibility to use the following constructs from OWL is added to OWL DL and
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OWL Full, whereas it is forbidden in OWL Lite [46]:

owl:oneOf Classes can be described by enumeration of their individuals. For example, the

class Seasons can be described by enumerating the individuals Spring, Summer, Autumn,

Winter. The reasoner can deduce that the cardinality is 4 because there cannot be any

more or less instances for this class.

owl:unionOf, owl:complementOf, owl:intersectionOf We can state for example

that the class Woman is the intersection of the classes Human and Female.

owl:hasValue A property can have a requirement of having a certain individual as a

value.

owl:disjointWith We can declare disjoint classes, e.g. an individual can never be an

instance of Woman and Man simultaneously, so these classes can be stated as disjoint with

each other.

minCardinality, maxCardinality, cardinality There is also no restriction on cardinality

as in OWL Lite. We can have cardinality restrictions greater than 0 or 1.

2.4 Reasoners

Reasoners or rules engines are software tools that accept axioms or facts and produce logical

consequences [54]. It is basically an inference engine. There are many types of reasoners,

depending on the method of reasoning. Some of these are:

• forward chaining reasoners

• backward chaining reasoners

• description logic reasoners

2.4.1 Forward chaining reasoners

Forward chaining reasoners work as the name suggests, forwards, by starting with the data

that has been given and by inference rules it can extract more data. This process goes
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on until there is some break point or it reaches the end of the data. If there is a speci�c

goal (for example to �nd out certain information), then the reasoner goes through the

data until the goal is reached. Forward chaining is also called data-driven, because the

data determines which rules will be used. One advantage of forward chaining reasoners

compared to backward chaining reasoners is that since forward chaining reasoners start

with data, new inferences can be triggered with the addition of new data. This gives them

an edge for situations where dynamic content is a main aspect [50]. A popular forward

chaining reasoner is CWM.

2.4.2 Backward chaining reasoners

Backward chaining reasoners are the opposite of forward chaining reasoners. They are also

called goal-driven. This is because the reasoner starts with the goal and works backwards

to see if there is data to support the goal, thus the goal determines which rules will be used

[48].

2.4.3 Description Logic reasoners

Description Logic (DL) reasoners are reasoners that are made for OWL-DL documents.

Some popular description logic reasoners include FaCT++, Pellet, RacerPro, CEL, and

more. FaCT++ is based on C++ and is open-source software, whereas Pellet is Java-based

and commercial software. RacerPro and CEL are Lisp-based.

2.5 Epilogue

Ontologies are needed in Semantic Web in order to describe abstract concepts and de�ne

class and property hierarchies. Ontologies are usually written in OWL, which is built on

RDF Schema. RDF Schema semantically assigns de�nitions and is descriptive language

(whereas XML Schema is prescriptive). RDF Schema is probably not su�cient enough

to create a complex ontology, because it is not possible to have property or cardinality

restrictions. OWL uses RDFS features and extends them by adding more functionality and

possibilities. OWL has three sub-languages, OWL Lite, OWL DL, and OWL Full, each

one being more complex than the previous. Reasoners are tools that perform reasoning,

meaning that they infer and produce data using pre-de�ned rules. These ontologies can be
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written in applications that are designed for this purpose. We will analyze one of these in

the following chapter.





Chapter 3

Protégé

3.1 Introduction

Protégé is a free open-source platform developed by Stanford Center for Biomedical

Informatics Research at the Stanford University School of Medicine. It provides tools to

create ontologies and domain models. It is possible with Protégé to create, edit and visualize

ontologies, as well as save them in various formats. Classes and properties in an ontology

can be created, edited and visualized as well. Protégé supports the usage of various plug-ins

as well as Java-based API (Application Programming Interface) [2].

The Stanford University currently supports three versions of Protégé, versions 3.4.5

Release, 4.0.2 Release, and 4.1 Beta. In this thesis the 4.0.2 Release version will be used.

Although the 3.4.5 Release version might seem like a better option at the current moment,

the goal of the thesis is to have a futuristic scope. The 3.4.5 Release version will continue to

be supported for a while longer, but 4.0.2. Release version is the one that will become the

future stable version. For this reason, the screen shots of the developed example ontology

will be in the 4.0.2 Release version.

As stated in the OWL Web Ontology Language Guide [45], "An OWL ontology may

include descriptions of classes, properties and their instances. Given such an ontology,

the OWL formal semantics speci�es how to derive its logical consequences, i.e. facts not

literally present in the ontology, but entailed by the semantics. These entailments may be

based on a single document or multiple distributed documents that have been combined

using de�ned OWL mechanisms".

69
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3.2 Protégé Features

The main features of Protégé 4.0.2, taken from the Protégé Wiki page [27], are :

GUI Framework

• Con�gurable (persistent) layout of components

• Creation, import, and export of user con�gured tabs

• Multiple alternative views of the same ontology

• Tear-o� and cloning of components

• Keyboard shortcuts

• Drag and drop support

• Lazy loading components/plug-ins for improved speed and memory usage

API

• OWL API for OWL 2.0 provides e�cient in-memory model

• Plug-in framework is OSGi compliant Equinox (easily extensible)

• Generic application framework is separated from OWL Editor Kit

Modularization

• Intelligent use of local/global repositories to handle import dependencies

• Loading of multiple ontologies into a single workspace

• Switching between ontologies dynamically

• UI hints for showing in which ontology statements are made

• Refactoring: merging ontologies and removal of redundant imports

• Refactoring: moving axioms between ontologies
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Navigation

• History

• Global/local �nd

• Global usage

• Hyperlinking in editors

Refactoring Tools

• Renaming (including multiple entities)

• Handling disjoints/di�erent

• Quick de�ned class creation

• Various transforms on restrictions (including covering)

• Conversion of IDs to labels

• Moving axioms between ontologies

Reasoning Support

• Inferred axioms show up in most standard views

• DL Query tab for testing arbitrary class expressions

• Direct interface to FaCT++ reasoner

• Direct interface to Pellet reasoner

• Reasoners are plug-ins

OWL Editing

• Consistent rendering of ontology entities, using URI fragments or annotation values

• OWL description parsing (also supports names in annotations)

• Built-in change support allowing compound changes and undo
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• Autocompletion and expression history

• Syntax highlighting

• Auto creation of IDs/labels for new entities

• SWRL rules editing

Plug-ins

• Highly pluggable architecture with support for lots of di�erent types of plugin

including views, menu actions, reasoners, preferences, several manager hooks and

more

• Auto-update for noti�cation of new plugins and new versions

• Many plugins available including reasoners, matrices, scripting, clouds, existential

tree, text mining, explanation, ontology processing, lint test framework, natural

language generation and more

3.3 Comparison of Versions

A beginner may be confused as to which Protégé version should be used. There are

signi�cant di�erences between Protégé 3.4 and Protégé 4.0, thus the developer's choice

should be considered carefully. Below there is an analysis and comparison of the two versions

from di�erent points of view.

Frames Support In Protégé 3.4 the editing of frames is supported through the

Protégé-Frames editor. In version 4.0 there is no support as the Protégé-Frames editor

has not been migrated yet.

OWL Support Version 3.4 supports OWL 1.0, whereas version 4.0 supports OWL 2.0.

The latter version provides a framework purely for OWL language, while version 3.4 provides

support for OWL and RDF Schema. There is no SPARQL support yet in Protégé 4.0, as

well as no support for OWL Full. Protégé 4.0 has direct connection to Pellet, FaCT++

and other DL reasoners for optimum speed.
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Plugins In both Protégé versions a large set of plugins is provided, developed by Stanford

as well as external developers. In version 4.0 the plugin framework has been switched to

OSGi, which allows any type of plugin extension.

User Interface In version 3.4, widgets are used for con�guring the user interface, whereas

in 4.0 version, plugins de�ne all the user interface elements.

Multi-user Support In version 3.4, many users can edit the same ontology

simultaneously via the client-server version of Protégé, whereas it is not possible in Protégé

4.0 yet.

Database Storage Model In Protégé 3.4, one can store ontologies in a database

provided by the JDBC database back-end. This is not possible in version 4.0 as the database

back-end has not been migrated yet.

3.4 Demonstration of Protégé

An example ontology has been created speci�cally to demonstrate Protégé and speci�cally

version 4.0.2. This is based on the domain model known to everyone, for example a

family domain. This ontology was created also to demonstrate property characteristics and

restrictions in OWL, as well as cardinality constraints. The complete OWL document can

be found in Appendix A. The goal of this example is to create a complete ontology. Several

instances are provided in order to show examples of property characteristics and restrictions.

The main screen of Protégé is the Welcome screen, shown in Figure 3.4.1. We open

the family2.owl �le using the "Open OWL Ontology" button.

The �rst screen that opens by default is the "Active Ontology" tab (Figure 3.4.2).

This serves as an overview of the whole ontology. Annotations about the ontology include

information about the creator, language, publisher, contributors, and more. Metrics on the

ontology can also be seen here, as well as axioms of each content (classes, object properties,

and more).

The next tab on the Main menu is the Entities tab (Figure 3.4.3). Here one can navigate

through all the classes, properties and individuals that belong to the ontology. This way

everything is in one place.
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Figure 3.4.1: Protégé 4.0.2 welcome screen

Figure 3.4.2: Active Ontology screen

3.4.1 Classes

One of the �rst things that someone should do when creating an ontology is to create

the classes, therefore de�ne a class hierarchy. This can be done in the Entities section,

but it is possible to be done by clicking on the "Classes" tab located on the Main menu.

This section contrary to the Entities tab contains information only about classes and their

hierarchy. This brings us to the Class window. We can see the list of available classes

and their members. In an empty ontology, only the superclass Thing will exist. To add a
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Figure 3.4.3: Entities tab in the family ontology

new subclass, we click on the "Add Subclass" button located far-left above class "Thing".

From the same row of buttons the right button is for deleting a class. In Figure 3.4.4 we

can see the dialog box that prompts the user to enter a class name. Directly underneath

the textbox, the URI of the class name can be seen, with the fragment identi�er being last.

This is what separates the actual resource name from the rest of the URI, as mentioned

previously.

In Figure 3.4.5 that is following, we can see the list of classes that exist in the Family

ontology that was developed for the purpose of demonstration in the thesis.

Equivalent Classes To set equivalent classes in Protégé, the user must click on the

"Equivalent Classes" setting that is on top at the Description box. Of course the proper

class must be selected, and it must be done in the "Classes" tab. For example, if we want

to set the classes "Child" and "O�spring" to be equivalent, we click on the "Add" button,

and are presented with the screen shown below (Figure 3.4.6).

Cardinality Views In order to set cardinality restrictions in the ontology, the Cardinality

View plug-in should be installed �rst of all. To enable viewing and usage, by clicking on

"View→ Class views→ Cardinality View" we can set the corresponding box to be positioned

anywhere we want in the Classes tab view. To create a new cardinality restriction, we click
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Figure 3.4.4: Adding a subclass

Figure 3.4.5: List of Classes of the family ontology

on "Add Row" which brings up the screen shown in Figure 3.4.7. In this case we are

creating a cardinality restriction for the property hasMother. This ontology was designed

for a family with biological parents, which means that the property hasMother is referring

to the birth mother. Each child has only one biological mother or father, so we can state

that the cardinality restriction for hasMother is exactly one. This is achieved in Protégé by

setting minimum of 1 and maximum of 1.

We can see in Figure 3.4.7 that the classes O�spring and Child are indeed set to be
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Figure 3.4.6: Choosing an equivalent class for the class Child

Figure 3.4.7: Creating cardinality restriction for the hasMother property

equivalent, due to the di�erent circle preceding the class name. The three white lines

indicate the equivalence.

3.4.2 Properties

Object Properties In order to de�ne object properties, we click on the tab "Object

Properties" located on the Main Menu. We can see that the screen is divided again in

di�erent sections. The Characteristics section is for setting special characteristics on the
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properties. Therefore we can de�ne symmetric properties, inverse functional properties,

transitive properties and more. This is done simply by clicking in the appropriate box of the

desirable characteristic. The reasoner can thus deduce certain information that it wouldn't

be able to do otherwise. For example, unless otherwise stated, the reasoner cannot know

that the property hasFriend is symmetric. Everything must be explicitly de�ned in order

to have a complete ontology. Below, in Figure 3.4.8, we can see the screen of the Object

Properties along with the list of properties that the Family ontology contains. Properties

can have sub-properties as it was mentioned previously in the thesis, and this also can be

seen. The reasoner can deduce that sub-properties contain at least the same characteristics

as the super-property. Object properties in Protégé are identi�ed and recognized by their

distinctive blue color.

Figure 3.4.8: List of Object Properties in family ontology

Data Properties The data properties of each ontology can be seen by clicking on the

"Data Properties" tab. Here we can see a similar screen as the "Object Properties" section.

Data properties are de�ned and recognized in the ontology editor with the green color

(Figure 3.4.9). Also, they have only one characteristic which is the functional characteristic.

Sub-properties can also be de�ned here, although in this example there are none. The

�rstName and hasSurname properties can be de�ned as disjoint if we do not want the same

name to be as a �rst name and surname. Decisions like these are arbitrary.
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Figure 3.4.9: List of Data Properties for family ontology

3.4.3 Instances - Individuals

Individuals are class instances created to make the ontology more concrete. They are the

resources. The list of these individuals can be found in the "Individuals" tab on the Main

Menu. To create a new individual, in this case a human part of the family ontology, we

simply click on the "Add individual" located in the Individuals section box. If we want

to delete one, we click on the "Delete individual(s)". The description of each individual

can be seen also in the "Description" section, as well as the "Property assertions" section.

From these two sections we can see the summary of each individual in the ontology, which

classes it belongs to and which properties it is associated with. An example of this is seen

in Figure 3.4.10 about the individual named Sophia.

To assert a new property for an individual, we click on the "Add" button on the

appropriate type of property we desire. For example, to set Sophia's mother, by clicking on

the plus sign in the "Object property assertions" part we are met with the following screen

(Figure 3.4.11).

We can be sure that these are object properties from the blue color.

In large ontologies with many individuals per class, a user may want to view the list of

those individuals grouped by their corresponding classes. This is a quick way to see all the

classes that contain instances, and how many instances each class has. This is done by

clicking on the "Individuals By Class" tab. The result of the currently used family ontology

is shown below in Figure 3.4.12.
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Figure 3.4.10: Individuals Tab with additional information

3.4.4 Refactoring

To change the name of an entity, we click on "Refactor" located on the Title menu and

from there on "Change entity URI". There is an option to change either a speci�c entity

name, or even all the entities with the same URI. If there is a large ontology, there it is

possible to "Change multiple entity URIs". In this case there is no distinction between

separate URIs. This means that if a class and an object property contain the same name,

they will both be changed. For example, the class Sister and the object property hasSister.

3.4.5 Reasoning

Reasoners are integrated into the Protégé environment with plugins. Any reasoner can

be used, each one has its advantages and disadvantages. Pellet is written in Java, and

FaCT++ is written in C++. To enable the reasoner, it simply needs to be clicked on the

drop down menu of "Reasoner". Immediately the reasoner deduces any information that

has not been explicitly de�ned. This can be seen by the di�erently colored background in

the parts that were reasoned, as well as the dotted border. For example, in Figure 3.4.13
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Figure 3.4.11: Object Property assertion for Individual "Sophia"

below, we can see that the reasoner deduced that the domain of the property hasMother

can also be O�spring, and that the range can be a Parent as well.

In the tab "Inferred class hierarchy" located in the Entities or Classes section, we can

see that the reasoner has deduced also that the class Nothing is a subclass of class Thing

(Figure 3.4.14).

3.4.6 OWLViz

The OWLViz tab is for visualizing the hierarchy of classes in the form of a graph (Figure

3.4.15). They can also be incrementally navigated, something very helpful for large

ontologies or ontologies based on complicated domain models. The asserted class hierarchy

and the inferred class hierarchy can be compared this way as well. The graph can easily be

exported and saved as an image �le. This is done by clicking the "Export to Image" button

on the OWLViz toolbar.

It may happen that at �rst errors will occur upon clicking the "OWLViz" tab, it is usually
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Figure 3.4.12: List of Individuals grouped by Class

an occurrence when GraphViz is not installed, or when the GraphViz DOT application is

not found in the path. Simply correcting the path to the application in the preferences �xes

the problem.

3.4.7 Export

To save the ontology, all that is needed is to click on "File-> Save". The extension of the

�le will be .owl. This �le now can be imported into RDF storage, query processor, etc.

However, in order to include also the inferred axioms created by the reasoner, it is needed

to click on "File->Export inferred axioms as ontology". This is done after the reasoner

(e.g. Pellet) has been activated in Protégé. Otherwise, Sesame will not be able to detect

the inferred information during SPARQL queries (more information in Chapter 5).

3.4.8 Plug-Ins

There are some interesting plug-ins available for Protégé, including :

OWL2Query OWL2Query is a conjunctive query and metaquery engine and visualization

plug-in. It facilitates creation of queries using SPARQL or graph-based syntax,
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Figure 3.4.13: Results from the reasoner

Figure 3.4.14: Inferred class hierarchy

and evaluates them using any OWL API-compliant reasoner [22]. This plug-in is

compatible with the 4.1 Beta version.

Annotation Template View A view that can be con�gured to show a set of standard
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Figure 3.4.15: Visualization of the class hierarchy

annotation �elds for every class/property/individual. This makes it quicker to

annotate as they are always in the same order, editable inline and easy to navigate

[14].

Cardinality View An experimental alternative to the conditions widget that shows

restrictions in relation to their cardinality.

Cloud Views This plug-in helps the developer and contributors to visualize the ontology

as a tag cloud, which is a set of related tags.

OWLViz Enables class hierarchies in an OWL ontology to be viewed and incrementally

navigated, allowing comparison of the asserted class hierarchy and the inferred class

hierarchy.

Changes Tab Allows users to track and annotate changes to Protégé ontologies.

3.5 Epilogue

Chapter 3 describes the platform that provides tools to create ontologies and domain

models, Protégé. A comparison of versions is given for those that are not sure where to start

from. A demonstration of the creation of an ontology is also provided using step-by-step

examples and screenshots of the process. In the following chapter, we will talk about the

query language for RDF.



Chapter 4

SPARQL

4.1 General

SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query

Language. As is suggested by the name, SPARQL is both a protocol and an RDF query

language. The SPARQL query language for RDF is a speci�cation for querying RDF data,

done by pattern matching. SPARQL queries RDF data (datasets) which is in the form

of graphs [15]. The SPARQL protocol for RDF is a speci�cation for invoking SPARQL

queries remotely, and receiving the results. "It speci�es a simple interface that can be

supported via HTTP or SOAP that a client can use to issue SPARQL queries against some

endpoint" [15]. SPARQL is considered the query language of Semantic Web and is part

of the Semantic Web vision. There are currently two versions of SPARQL, 1.0 and 1.1.

On 15 January 2008, SPARQL 1.0 became an o�cial W3C Recommendation [41]. For the

rest of this thesis, whenever we refer to SPARQL we mean version 1.0. Furthermore, we

mean the SPARQL query language for RDF and the SPARQL protocol for RDF will not be

analyzed. Both the SPARQL query language for RDF and the SPARQL protocol for RDF

are products of the RDF Data Access Working Group of W3C.

SPARQL 1.0 includes:

1. SPARQL 1.0 Query Language

2. SPARQL 1.0 Protocol

3. SPARQL Results XML Format

SPARQL 1.1 is currently in development, and includes:

85
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1. Updated 1.1 versions of SPARQL Query and SPARQL Protocol

2. SPARQL 1.1 Update

3. SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs

4. SPARQL 1.1 Service Descriptions

5. SPARQL 1.1 Entailments

6. SPARQL 1.1 Basic Federated Query

With SPARQL it is possible to query unknown relationships, transform RDF data from

one ontology to another, query structured as well as semi-structured data, and unite di�erent

databases into a single query [16].

4.2 Syntax

As mentioned previously, SPARQL queries data by matching patterns. This means that

subgraphs of the RDF dataset are de�ned, and if such subgraphs exist (if a substitution for

the variable is found) then they appear in the query result set. The only di�erence is that

the subgraphs in the query may contain variables.

SPARQL query results can return in various formats, i.e. RDF, XML, HTML and JSON.

A SPARQL query may contain [16]:

1. Pre�x declarations, to abbreviate URIs

2. Result clause, to declare what should be returned and shown in the result set

3. Dataset de�nition, to state what RDF graphs are being queried

4. Query pattern, to specify the query

5. Query modi�ers, to modify the query results in quantity and order

An example of a query is the following ('#' means one-line comment):

# prefix declarations

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX f: <http://www.example.com/ontology/family#>
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# result clause

SELECT ?mother

# dataset definition

FROM <http://www.example.com/ontology/family>

# query pattern

WHERE {

?mother rdf:type f:Mother

}

# query modifiers

ORDER BY ...

4.2.1 Basic Query

At a glance, SPARQL is syntactically like SQL. This feature makes it easy for SQL

users to learn how to use SPARQL. Like SQL, SPARQL also consists of two mandatory

clauses (SELECT and WHERE) and one optional (FROM). The SELECT clause de�nes

the variables that should appear in the query results. The FROM clause states the RDF

graphs that will be queried. The WHERE clause declares the query pattern that should

match against the RDF data.

The triple in the following example query is a basic graph pattern, consisting of a triple

pattern with one variable in place of the object. For the following queries of the whole

chapter, we will use the RDF dataset shown in Appendix A. The queries will be written and

shown in Sesame.

RDF data:

family:Wife rdf:type owl:Class .

SPARQL query:

SELECT ?class

WHERE
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{

family:Wife rdf:type ?class .

}

The variable could have any character or name (e.g. ?x). The query returns only one

solution, shown below in Figure 4.2.1. If we want to select all the variables that appear in

a query, we can also write "SELECT * ".

Figure 4.2.1: Query result

The result of the query is called a solution sequence. The sequence depends on the

way of the pattern matching. A query may have none, one or multiple solutions. Each

solution presents an alternative of how the query pattern could match the data. A solution

sequence is a list of solutions, which is not necessarily ordered. This is done by the solution

sequence modi�ers (explained further below in section 4.2.3). In a result set, we can see all

the possible bindings. A binding is a pair matching a variable to an RDF term. This RDF

term can be a URI, a literal, etc. In the result set shown in Figure 4.2.1, the variable Class

is bound to the RDF term owl:Class.
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When there is a literal in the query pattern, the pattern matching varies depending on

the type of literal, further analyzed below.

Language Tags When a literal is accompanied by a language tag, then the query pattern

must contain the language tag as well, otherwise a solution cannot be found. The literal

"Sophia" is not the same as "Sophia"@en.

Numeric Types A typed literal representing a number (e.g. xsd:integer) can be shortened

to only its numeric value. In a query asking who is aged 42 years old, instead of writing:

?person f:hasAge "42"^^xsd:integer .

we can make the query simpler and write:

?person f:hasAge 42 .

The same is possible for a typed literal representing a string (xsd:string). When the

string contains whitespace, it should be enclosed in double quotes.

For arbitrary datatypes, the full URI must be written. A solution will be found if such

exists because of the lexical matching. As stated in the W3C document for SPARQL, "The

query processor does not have to have any understanding of the values in the space of the

datatype" [33].

4.2.1.1 Blank nodes in a query result

A query result may contain blank nodes as well. These are written as "_:" followed by the

corresponding label. The scope of the blank nodes are local to the result set. It does not

mean that the same blank node label will be returned as the existing label in the dataset,

and it should not be expected. We can safely assume that two blank nodes are di�erent if

they have di�erent labels from each other in the result set.

4.2.1.2 Guidelines and syntax

To abbreviate a URI, instead of writing @pre�x which is correct to some notations, we use

the keyword PREFIX: .

For literals, double quotes ( " " ) or single quotes ( ¡' ) may be used with an optional

language tag (e.g., "@en"). If it is a typed literal, then it can be followed by the datatype
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URI, starting with " ^^ ". If there is a need to have quotation marks in the literal itself,

then SPARQL allows this with the usage of three single (or double) quotation marks.

Variables in the query should be preceded by the question mark " ? " or the dollar sign

" $ ". These characters are not part of the variable name and they indicate to the query

processor that the label is a variable. Query variables have a global scope for each query.

Blank nodes in a query are not references to blank nodes in the data. They serve to

pinpoint variables that cannot be distinguished. They can be written with their label (e.g.,

_:54xwd), or with their abbreviated form, "[ ]". We cannot use the same blank node label

in two di�erent graph patterns of the same query. There are two possible ways to write

blank nodes in their abbreviated form:

[ ] f:hasAge "30" .

[ f:hasAge "30" ] .

Both cases are the same as the statement:

_:5e5 f:hasAge "30" .

It is possible to truncate common concepts in a query, for example if a subject is used

more than once in the graph pattern. This is done by using the " ; " symbol and writing

the subject only in the �rst triple. These are called predicate-object lists. For example,

instead of writing:

f:Sarah f:hasFriend f:Ange .

f:Sarah f:hasAge "19" .

It is possible to write:

f:Sarah f:hasFriend f:Ange ;

f:hasAge "19" .

It is possible to have object lists, when multiple triples share the subject and the

predicate. In this case the usage is with the comma "," . For example:

f:Madaline f:hasSibling f:Sophia .

f:Madaline f:hasSibling f:PeterA .
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We can write:

f:Madaline f:hasSibling f:Sophia , f:PeterA .

4.2.2 Graph Patterns

SPARQL deals with graph pattern matching [33]. Simple as well as complex graph patterns

can be used. The various types of graph patterns according to the speci�cation are:

1. Basic Graph Patterns

2. Group Graph Patterns

3. Optional Graph Patterns

4. Alternative Graph Patterns

5. Patterns on Named Graphs

4.2.2.1 Basic Graph Patterns

Basic graph patterns are those that are a set of triple patterns. Using these basic graph

patterns we can group them, add a �lter, etc. The set of triple patterns must match the

query in order for results to show.

4.2.2.2 Group Graph Patterns

Group graph patterns are used with braces , inside which the triple patterns are enclosed.

It is possible to have a group of one main basic graph patterns, or to break up the group

by using an empty group pattern in between the triples patterns. A constraint placed on

the group (keyword FILTER) has a scope on the whole group. It does not matter where

the constraint is placed (whether it is before the triple patterns, in between them or at the

bottom). The keyword FILTER has a variety of functions. The FILTER function regex(

) matches plain literals that are not accompanied by language tags. The format is regex

(string, pattern).

SELECT ?surname

WHERE { ?x family:hasSurname ?surname .

?x family:firstName ?name
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FILTER regex (?name, "Peter")

}

The result is shown in Figure 4.2.2.

Figure 4.2.2: Individuals with their �rst name as "Peter"

The regular expression matching is case-sensitive. To make it case-insensitive, we use

the �ag "i" [18]. The format is regex (string, pattern, �ags). The query below:

SELECT ?surname

WHERE { ?x family:hasSurname ?surname .

?x family:firstName ?name

FILTER regex (?name, "peter" , "i")

}

produces the same result set as in Figure 4.2.2.

FILTER can restrict also numeric values by using arithmetic expressions. The function

regex is not used here. The result of the example below is shown in Figure 4.2.3.

SELECT ?name ?age

WHERE { ?name family:hasAge ?age

FILTER (?age < 30)

}
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Figure 4.2.3: All individuals under the age of 30

Another function used with FILTER is bound( ). The format is bound(?var) and returns

true if the variable is bound to a value. Even if the variable has a value NaN (Not a Number),

it is considered bound. For example, let us query all the people that have an age. The

results are shown in Figure 4.2.4.

SELECT?name ?age

WHERE { ?x family:firstName ?name .

OPTIONAL { ?x family:hasAge ?age } .

FILTER (bound(?age))

}

We can also use Negation to query if a graph pattern is not expressed by asking if the

variable is not bound. The negation of bound( ) is !bound( ). An example is shown below,

showing all the people that do not have an age. The result is shown in Figure 4.2.5.

SELECT ?name ?age

WHERE { ?x family:firstName ?name .

OPTIONAL { ?x family:hasAge ?age } .

FILTER (!bound(?age))

}

It is possible to query if two RDF terms are de�ned as equal. We do this by using

the RDFterm-equal operator. This is expressed with the operator "=" . Logical-or and
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Figure 4.2.4: Results of the bound function

Figure 4.2.5: Results of !bound( )

logical-and can also be used in SPARQL, using the operators "||" and "&&". Using the

isBlank( ) function on FILTER, we can also query if an RDF term is a blank node.

4.2.2.3 Optional Graph Patterns

The patterns that are queried demand that the entire patterns match in order for a solution

to appear in the query result set. As mentioned previously, every variable is bound to an RDF



4.2. SYNTAX 95

term in each solution. However, not all data is structured and complete. SPARQL excels

by querying semi-structured data. This is done by employing the OPTIONAL keyword.

With this keyword, solutions are not eliminated if the optional part does not match. This is

especially helpful when semi-structured data exists with partial information. To demonstrate

this, let us consider the following example.

SELECT ?parent ?child ?friend

WHERE { ?parent family:hasChild ?child .

?child family:hasFriend ?friend

}

The query above consists of a basic graph pattern, which in turn consists of two triple

patterns. The query translates to: "Show me all the parents with their children that have

friends". The solution sequence is shown below in Figure 4.2.6.

Figure 4.2.6: Parents with children and their friends

All the variables are bound to the solutions, because it is a requirement for basic graph

patterns. However, if we add the OPTIONAL keyword:

SELECT ?parent ?child ?friend

WHERE { ?parent family:hasChild ?child .

OPTIONAL { ?child family:hasFriend ?friend }
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}

We get a very di�erent result (Figure 4.2.7):

Figure 4.2.7: Parents with children that could possibly have friends

We can observe in Figure 4.2.7 that not all variables are bound to the solutions, and

therefore even children without friends were included in the results. This query translates

to: "Show me all the parents and their children, and if the children have friends show

them as well". We can also see some cases where a child is a friend of himself. This is

the case because the property f:hasFriend has been set in the ontology to be both inverse

and transitive. Constrains on OPTIONAL Constraints can be placed on an optional graph

pattern as well. For example, we could apply an age �lter on the persons that have age

information about them. This way all the humans will show up in the results, but for those

that are younger than 30 years old (and have an age), their age will show up as well (Figure

4.2.8).

SELECT ?person ?age

WHERE { ?person rdf:type family:Human .

OPTIONAL { ?person family:hasAge ?age . FILTER (?age < 30)

}

}
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Figure 4.2.8: FILTER on OPTIONAL clause e�ect

Among the solutions that don't have the age variable bound, are those that didn't have

any age, along with those than are older than the applied �lter (30 years old).

4.2.2.4 Alternative Graph Patterns

Let us take the case where we would want to see all the people that belong to the Brother

or Sister class. Without UNION, we would do it by querying instances of the Sibling class

only, as shown below in Figure 4.2.9.

SELECT ?sibling

WHERE { ?sibling rdf:type family:Sibling }

This method, however, is not �exible. We cannot know immediately if the person

belongs to the Brother or Sister class, and we cannot use any constraints on those separate

classes. With UNION however, this is possible. Results of the following query are shown in

Figure 4.2.10.

SELECT ?sister ?brother

WHERE { {?sister rdf:type family:Sister } UNION

{ ?brother rdf:type family:Brother } }

Now that we have separated the graph patterns into two alternatives, we can for example

place additional patterns, �lters or constraints depending on what we want. For example
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Figure 4.2.9: People that belong to the Sibling class

Figure 4.2.10: Showing people who belong to the Brother or Sister class

below we ask for: "Show me all the people that belong to the Sister class, all the people

that belong to the Brother class, and for the latter show me their �rst names" (Figure

4.2.11).

SELECT ?sister ?brother ?firstName

WHERE { {?sister rdf:type family:Sister } UNION

{ ?brother rdf:type family:Brother .



4.2. SYNTAX 99

?brother family:firstName ?firstName } }

Figure 4.2.11: Show the �rst names for those that belong in the Brother class

4.2.2.5 Patterns on Named Graphs

An RDF dataset represents a collection of graphs, which in turn contains one default

graph, and optional named graphs. The default graph does not have a name. IRIs

(Internationalized Resource Identi�ers) are used to identify the named graphs. Each FROM

clause is accompanied by an IRI that points to a graph. A di�erence between URIs and

IRIs is that URIs are US-ASCII encoded, whereas IRIs are UTF-8 encoded. An example of

a query with named graphs is shown below.

SELECT ?var

FROM NAMED <urlOfGraphA>

FROM NAMED <urlOfGraphB>

WHERE {

GRAPH <urlOfGraphA> { graph patterns from A }

GRAPH <urlOfGraphB> { graph patterns from B }

}
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If the queried dataset contains the graphs, we do not need to write the FROM NAMED

clause. This happens only when we want to query the named graphs remotely.

4.2.3 Solution Sequence Modi�ers

The solutions that are found in a result set are not ordered. These solutions form a sequence

(collection) and this sequence can be modi�ed according to the our needs and desires of

the outcome. These modi�ers are:

ORDER BY This modi�er is used to put the solutions in order, according to a variable.

Projection A subset of the solution sequence is shown only.

DISTINCT Every solution in the sequence is unique with this modi�er.

REDUCED Permits any solutions that are not unique to be eliminated.

OFFSET It can be declared where the solutions should start from.

LIMIT We limit the number of solutions shown.

These clauses will be further analyzed below.

4.2.3.1 ORDER BY

With the ORDER BY modi�er, we can order the solutions in the solution sequence according

to a variable. Optionally, we can include an order modi�er (ASC( ) or DESC ( ) ), which

will indicate an ascending or descending order. The result set of the following query is

shown in Figure 4.2.12.

SELECT ?name ?age

WHERE { ?name rdf:type family:Male .

?name family:hasAge ?age

}

This solution sequence is ordered automatically by the name, but not the age. If we

were to desire ordering by age, we would do the following (results are shown in Figure

4.2.13):
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Figure 4.2.12: All the male individuals that have age

SELECT ?name ?age

WHERE { ?name rdf:type family:Male .

?name family:hasAge ?age }

ORDER BY ?age

Figure 4.2.13: All the male individuals that have an age, ordered according to their age

Strings and literals are not the only RDF terms that are ordered by this modi�er. URIs

may be ordered as well, by comparing them as plain literals. Numeric values are ordered

with the "<" operator. There is also an order between RDF terms. Unbound results are
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sorted �rst, then blank nodes (blank nodes are not ordered among themselves), URIs, RDF

literals (plain literals are sorted �rst, and typed literals follow).

4.2.3.2 Projection

Projection is possible by using SELECT and giving only the variables that we would like to

see in the solution sequence (only the variables in SELECT will appear).

4.2.3.3 DISTINCT

It is possible that duplicate solutions may be present in the solution sequence, as for example

in Figure 4.2.14.

SELECT ?grandparent

WHERE { ?grandparent family:hasChild ?parent .

?parent family:hasChild ?child .

}

Figure 4.2.14: Show possible grandparents in the dataset

The solution sequence contains non-unique results. This can be changed with the

DISTINCT modi�er. No duplicates will be included in the result set with this keyword

(Figure 4.2.15).

SELECT DISTINCT ?grandparent
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WHERE { ?grandparent family:hasChild ?parent .

?parent family:hasChild ?child .

}

Figure 4.2.15: The results are signi�cantly decreased now, all of them unique

4.2.3.4 REDUCED

With the REDUCED modi�er, non-unique results are simply permitted to be eliminated.

It cannot be predicted as to how many non-unique results will appear. The REDUCED

modi�er produces results that are between the results of DISTINCT, and results when

using no such keyword at all. For example, in the family dataset the same mother appears

more than once in the results. The result set of the following query is shown in Figure

4.2.16.

SELECT ?mother

WHERE { ?child family:hasMother ?mother .

}

Adding the REDUCED modi�er to the query, we get the following results (Figure 4.2.17):

SELECT REDUCED ?mother

WHERE { ?child family:hasMother ?mother .

}
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Figure 4.2.16: All the possible mothers without any modi�er

Figure 4.2.17: All the mothers with the e�ect of the REDUCED modi�er

In this case we see that the e�ect is the same as we had applied DISTINCT. This is

valid. It could have also been possible for the individual Frances to show up two or three

times in the solution sequence.

4.2.3.5 LIMIT

The LIMIT clause limits how many solutions can be present in the results. For example if

we have a large dataset, and want to see only a few results, or if we are interested only
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in the top �ve, etc. If LIMIT is set to zero, then no results are returned. In the following

query we ask for all the people in the dataset that are under 50 years old, and the results

are shown in Figure 4.2.18.

SELECT ?person ?age

WHERE { ?person family:hasAge ?age

FILTER (?age < 50 )

}

ORDER BY ?age

Figure 4.2.18: People in the dataset under age 50

Applying the LIMIT clause, we can show only the �rst three results for example. In the

following query we ask to see the three youngest people out of those who are under 50,

therefore also the youngest in the whole dataset (Figure 4.2.19).

SELECT ?person ?age

WHERE { ?person family:hasAge ?age

FILTER (?age < 50 )

}

ORDER BY ?age

LIMIT 3
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Figure 4.2.19: The three youngest people in the dataset

4.2.3.6 OFFSET

The OFFSET clause prints only those solutions that appear after the speci�ed number of

solutions [33]. If OFFSET should be used with the modi�er LIMIT to specify a certain

subset of the solutions, then also ORDER BY should be used in order for it to be useful.

Following the previous example and using OFFSET, we get as a result the two oldest

individuals that are under 50 (Figure 4.2.20).

SELECT ?person ?age

WHERE { ?person family:hasAge ?age

FILTER (?age < 50 )

}

ORDER BY ?age

LIMIT 3

OFFSET 3

4.2.4 Query Forms

SPARQL consists of query forms that form result sets or RDF graphs depending on the

solutions. These query forms are SELECT, CONSTRUCT, ASK and DESCRIBE. The

SPARQL Query Results XML Format can be used to serialize the results from a SELECT
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Figure 4.2.20: The two oldest individuals that are under 50

query or ASK query [42]. The SELECT query form returns a solution sequence of variable

bindings to RDF terms. The CONSTRUCT query form returns a graph that we specify in

the query. This is done by substituting the triple patterns with the solutions and adding all

the triple patterns together (with UNION) to form a graph. The triples are not ordered,

therefore it is possible to apply a solution modi�er to order the resulting graph. The result

of our following CONSTRUCT is shown in Figure 4.2.21.

CONSTRUCT { ?person family:hasAge ?age }

WHERE { ?person family:hasAge ?age

}

We can see from the previous example that we construct the statement (in the

CONSTRUCT clause), and in the WHERE clause we provide the query pattern. In this

example we just queried all the people that have an age. The result can be downloaded in

any notation desired.

In the following example, we can see a more complex example where we construct a

new object property for the family ontology. This way it is possible to create new data by

combining the existing data, one of the goals of Semantic Web. In this example we create

a new object property family:hasNiece that can be written in any notation (Figure 4.2.22).

CONSTRUCT { ?person family:hasNiece ?niece }
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Figure 4.2.21: The CONTRUCT result set

WHERE { ?person family:hasSibling ?parent.

?parent family:hasChild ?niece.

?niece rdf:type family:Female.

}

Figure 4.2.22: A new hasNiece property constructed

Even though the individual Madaline is a mother to the individual Georgia, the solution

still shows up in the results because the family:hasSibling property is set to be both

symmetric and transitive, and therefore it becomes a re�exive property.

Similar results can be observed for the family:hasNephew property, constructed in the

example below (Figure 4.2.23).

CONSTRUCT { ?person family:hasNephew ?nephew }
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WHERE { ?person family:hasSibling ?parent.

?parent family:hasChild ?nephew.

?nephew rdf:type family:Male.

}

Figure 4.2.23: The family:hasNephew property created by the CONSTRUCT clause

The ASK query form is used to answer a "yes" or "no" question about the query pattern.

If the query pattern has a solution, the result will be "yes". For example, if we query any

siblings for the individual Georgia, we get the following result, shown in Figure 4.2.24:

ASK { ?person family:hasSister family:Georgia }

Let us take an example that will return "yes" (Figure 4.2.25). In this example we query

if the individual Madaline has any child.

ASK { family:Madaline family:hasChild ?x }

The answer given is simply "yes", we cannot know just from this simple query if the

individual Madaline has one child or more. The DESCRIBE query form returns an RDF

graph that contains data about the resource queried. The syntax "DESCRIBE * " is for

querying information about all the variables available in a query. In the following example,
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Figure 4.2.24: The ASK query form returns "no"

Figure 4.2.25: The ASK query form returns "yes"

we query all the information that is concerning the individual that has a �rst name "Ange"

(Figure 4.2.26).

DESCRIBE ?x

WHERE { ?x family:firstName "Ange"}

All the object properties as well as the datatype properties that are in relation with this

individual appear in the results. If instead of "DESCRIBE ?x " we had written "DESCRIBE

* ", we would have gotten the same results because there is only one variable in the query.
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Figure 4.2.26: Results of the DESCRIBE query form

4.3 Comparison with SQL and XQuery

As with any fairly new language, people seek to compare it to other older languages,

especially when similarities appear prominent. SPARQL can be compared to SQL and

XQuery, who perform a similar task but for completely di�erent data. Below are some

advantages and disadvantages of SPARQL [15].

One main advantage is that SPARQL is created purely for the purpose to query RDF

data. SPARQL looks and behaves like RDF, and there is no need for mapping of the RDF

data to perform a query. Furthermore, there is no need to specify relationships between

data that is structured di�erently, because the relationships have a �xed size and all the

data needed in a query is in one graph. Therefore, explicit join syntax is not required in

SPARQL [24]. SPARQL supports querying semi-structured data, with unreliable structure.

There is a possibility to query unknown relationships, and the OPTIONAL keyword can
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be comparable to the SQL left joins. Also, in a single query it can be possible to query

unrelated sources of data with SPARQL. This is possible because RDF represents data as

binary relations, and therefore data can be easily and quickly mapped to RDF. Another

bene�t of SPARQL is that queries can be performed on multiple data sources that exist

on the Web, without a need for one single document. This is possible because of the

URI identi�cation of named graphs. Named graphs with a default graph comprise an RDF

dataset, which is queried with SPARQL.

A drawback for SPARQL is that it is considerably a young language, and therefore there

are not many data storages that support direct querying. SQL for example has comparatively

more. Furthermore, XQuery has the bene�t of an explicit processing model, and SQL is

backed up by many years of optimization research. However, with research, contributions

and implementations, SPARQL is likely to improve. Also, SPARQL does not support an

easy way to query transitive relations within a graph, or hierarchical structures, whereas

XQuery's axes are much more powerful in comparison [15]. Nested queries are not supported

yet by default in SPARQL [38]. Aggregate functions, e.g. COUNT, SUM, MIN, MAX, are

also not supported by default in SPARQL, but there are several implementations created

by developers that extend the features [43]. GROUP BY is also not currently supported by

default, as well as INTERSECT. However, the W3C SPARQL Working Group is continuing

to update and design features for SPARQL, in order to create more possibilities for queries

as in SQL [38].

4.4 Epilogue

SPARQL is a popular query language for RDF, a recursive acronym. On the surface it

looks like SQL, but their philosophies are di�erent. A SPARQL query may contain pre�x

declarations, result clause, possibly dataset de�nition, query pattern, and optionally query

modi�ers. Queries are written and shown in Sesame with appropriate screenshots. At the

end a small comparison is made between SPARQL and SQL.



Conclusion

The Semantic Web vision comprises of distributed, reusable knowledge in a decentralized

world. Furthermore, the data must be unambiguous and context-independent. To achieve

this, we need to represent the data using RDF, reference the resources using URIs, and

describe abstract concepts with ontologies. RDF aims to solve the problem of ambiguity

for complex language structures by using triples to express facts. These triples can be

written in many di�erent formats, equivalent to each other. Some are human-readable,

e.g. N3 and Turtle, and others are designed for easy serialization between applications,

e.g. RDF/XML. URIs provide global identi�cation of resources. Ontologies are needed to

describe concepts, class hierarchies, etc. They give more information about the data and

about how it can be used. RDF Schema is a language that is used to create ontologies, but

it is simple. OWL builds on RDF Schema and provides stronger descriptions and constraints

to the ontology. Tools exist to accommodate the creation of ontologies, one such tool being

Protégé. Ontologies with their data can be stored into data storages. A storage used and

demonstrated for this thesis was Sesame. RDF data can be queried with the SPARQL query

language for RDF. This query language at a glance looks like SQL, but the queries look

and behave like RDF. New data can also be constructed using the CONSTRUCT query

form of SPARQL, and then serialized. "Intelligent" applications can accept queries as input

and provide the resulted information as output. If developers continue to implement the

Semantic Web vision and build upon optimizing its technologies, then the Web in the future

will be much more accommodating, easy to use, and intuitive.
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Appendices

Appendix A: Family ontology

This appendix contains the whole RDF dataset developed for this thesis. Fragments of the

code were used in examples and for the demonstration of OWL, SPARQL, Protégé, etc.

The data is written in Turtle and annotates the family ontology.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .

@prefix family: <http://www.example.com/family.owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://www.example.com/ontology/family-inferred.owl> a owl:Ontology ;

dc:creator "Fotini Bogiatzi"^^xsd:string ;

dc:description "A basic ontology on the concept of family" .

dc:description a owl:AnnotationProperty .

dc:creator a owl:AnnotationProperty .

family:hasBrother a owl:ObjectProperty ;

rdfs:range family:Brother ;

rdfs:domain family:Sibling ;

rdfs:subPropertyOf family:hasSibling .
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family:hasChild a owl:ObjectProperty ;

rdfs:range family:Child ;

rdfs:domain family:Parent ;

rdfs:subPropertyOf owl:topObjectProperty .

family:hasFather a owl:ObjectProperty , owl:FunctionalProperty ;

rdfs:domain family:Child ;

rdfs:range family:Father ;

rdfs:subPropertyOf family:hasParent .

family:hasFriend a owl:ObjectProperty , owl:SymmetricProperty

, owl:TransitiveProperty ;

rdfs:domain family:Human ;

rdfs:range family:Human ;

owl:inverseOf family:hasFriend ;

rdfs:subPropertyOf owl:topObjectProperty .

family:hasHusband a owl:ObjectProperty , owl:AsymmetricProperty

, owl:FunctionalProperty , owl:InverseFunctionalProperty

, owl:IrreflexiveProperty ;

rdfs:range family:Husband ;

rdfs:domain family:Wife ;

rdfs:subPropertyOf family:hasSpouse .

family:hasMother a owl:ObjectProperty , owl:FunctionalProperty ;

rdfs:domain family:Child ;

rdfs:range family:Mother ;

rdfs:subPropertyOf family:hasParent .

family:hasParent a owl:ObjectProperty ;

rdfs:domain family:Child ;

rdfs:range family:Parent ;
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owl:inverseOf family:hasChild ;

rdfs:subPropertyOf owl:topObjectProperty .

family:hasSibling a owl:ObjectProperty , owl:SymmetricProperty

, owl:TransitiveProperty ;

rdfs:range family:Sibling ;

rdfs:domain family:Sibling ;

owl:inverseOf family:hasSibling ;

rdfs:subPropertyOf owl:topObjectProperty .

family:hasSister a owl:ObjectProperty ;

rdfs:domain family:Sibling ;

rdfs:range family:Sister ;

rdfs:subPropertyOf family:hasSibling .

family:hasSpouse a owl:ObjectProperty , owl:FunctionalProperty

, owl:InverseFunctionalProperty , owl:SymmetricProperty ;

rdfs:range family:Parent ;

rdfs:domain family:Parent ;

owl:inverseOf family:hasSpouse ;

rdfs:subPropertyOf owl:topObjectProperty .

family:hasWife a owl:ObjectProperty , owl:AsymmetricProperty

, owl:FunctionalProperty , owl:InverseFunctionalProperty

, owl:IrreflexiveProperty ;

rdfs:domain family:Husband ;

rdfs:range family:Wife ;

owl:inverseOf family:hasHusband ;

rdfs:subPropertyOf family:hasSpouse .

owl:topObjectProperty a owl:ObjectProperty .
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family:firstName a owl:DatatypeProperty ;

rdfs:domain family:Human ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

family:hasAge a owl:DatatypeProperty ;

rdfs:domain family:Human ;

rdfs:range xsd:integer ;

rdfs:subPropertyOf owl:topDataProperty .

family:hasSurname a owl:DatatypeProperty ;

rdfs:domain family:Human ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

owl:topDataProperty a owl:DatatypeProperty .

family:Brother a owl:Class ;

rdfs:subClassOf family:Male ;

owl:disjointWith family:Female , family:Mother

, family:Sister , family:Wife .

family:Child a owl:Class ;

owl:equivalentClass family:Offspring ;

rdfs:subClassOf family:Human , _:node15t8dcc3ax22 .

_:node15t8dcc3ax22 a owl:Restriction ;

owl:onProperty family:hasParent ;

owl:someValuesFrom family:Parent .

family:Child rdfs:subClassOf _:node15t8dcc3ax23 .
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_:node15t8dcc3ax23 a owl:Restriction ;

owl:onProperty family:hasFather ;

owl:someValuesFrom family:Father .

family:Child rdfs:subClassOf _:node15t8dcc3ax24 .

_:node15t8dcc3ax24 a owl:Restriction ;

owl:onProperty family:hasFather ;

owl:onClass family:Father ;

owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger .

family:Child rdfs:subClassOf _:node15t8dcc3ax25 .

_:node15t8dcc3ax25 a owl:Restriction ;

owl:onProperty family:hasMother ;

owl:someValuesFrom family:Mother .

family:Child rdfs:subClassOf _:node15t8dcc3ax26 .

_:node15t8dcc3ax26 a owl:Restriction ;

owl:onProperty family:hasParent ;

owl:onClass family:Parent ;

owl:maxQualifiedCardinality "2"^^xsd:nonNegativeInteger .

family:Child rdfs:subClassOf _:node15t8dcc3ax27 .

_:node15t8dcc3ax27 a owl:Restriction ;

owl:onProperty family:hasMother ;

owl:onClass family:Mother ;

owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger .

family:Father a owl:Class ;
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rdfs:subClassOf family:Male ;

owl:disjointWith family:Female , family:Mother , family:Sister

, family:Wife .

family:Female a owl:Class ;

rdfs:subClassOf family:Human ;

owl:disjointWith family:Husband , family:Male .

family:Human a owl:Class ;

rdfs:subClassOf owl:Thing .

family:Husband a owl:Class ;

rdfs:subClassOf family:Male ;

owl:disjointWith family:Mother , family:Sister , family:Wife .

family:Male a owl:Class ;

rdfs:subClassOf family:Human ;

owl:disjointWith family:Mother , family:Sister , family:Wife .

family:Mother a owl:Class ;

rdfs:subClassOf family:Female .

family:Offspring a owl:Class ;

rdfs:subClassOf family:Human .

family:Parent a owl:Class ;

rdfs:subClassOf family:Human , _:node15t8dcc3ax28 .

_:node15t8dcc3ax28 a owl:Restriction ;

owl:onProperty family:hasChild ;

owl:someValuesFrom family:Child .
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family:Sibling a owl:Class ;

rdfs:subClassOf family:Human , _:node15t8dcc3ax29 .

_:node15t8dcc3ax29 a owl:Restriction ;

owl:onProperty family:hasSibling ;

owl:someValuesFrom family:Sibling .

family:Sister a owl:Class ;

rdfs:subClassOf family:Female .

family:Wife a owl:Class ;

rdfs:subClassOf family:Female .

owl:Thing a owl:Class .

family:Ange a family:Human , family:Brother , family:Child , family:Male

, family:Offspring , family:Sibling , owl:Thing ;

family:hasAge "19"^^xsd:int ;

family:firstName "Ange" ;

family:hasSurname "Kalan" ;

family:hasSibling family:Ange ;

family:hasFriend family:Ange ;

family:hasSibling family:George ;

family:hasBrother family:George ;

family:hasParent family:PeterD ;

family:hasFather family:PeterD ;

family:hasFriend family:Sarah ;

family:hasParent family:Sophia ;

family:hasMother family:Sophia .

family:Frances a family:Mother , family:Female , family:Human

, family:Parent, family:Wife , owl:Thing ;
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family:hasAge "79"^^xsd:int ;

family:hasSurname "Smith" ;

family:firstName "Frances" ;

family:hasChild family:Madaline ;

family:hasHusband family:Peter ;

family:hasSpouse family:Peter ;

family:hasChild family:PeterA , family:Sophia .

family:George a family:Sibling , family:Brother , family:Child

, family:Human , family:Male , family:Offspring , owl:Thing ;

family:hasAge "26"^^xsd:int ;

family:firstName "George" ;

family:hasSurname "Kalan" ;

family:hasSibling family:Ange , family:George ;

family:hasParent family:PeterD ;

family:hasFather family:PeterD ;

family:hasParent family:Sophia ;

family:hasMother family:Sophia .

family:Georgia a owl:Thing , family:Child , family:Female

, family:Human , family:Offspring ;

family:firstName "Georgia"^^xsd:string ;

family:hasFriend family:Georgia ;

family:hasParent family:Madaline ;

family:hasMother family:Madaline ;

family:hasFriend family:Theo , family:Vivi , family:Vivian .

family:Madaline a family:Female , family:Child , family:Human

, family:Mother , family:Offspring , family:Parent

, family:Sibling , family:Sister , owl:Thing ;

family:firstName "Georgia"^^xsd:string ;

family:hasMother family:Frances ;
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family:hasParent family:Frances ;

family:hasChild family:Georgia ;

family:hasSibling family:Madaline ;

family:hasFather family:Peter ;

family:hasParent family:Peter ;

family:hasBrother family:PeterA ;

family:hasSibling family:PeterA , family:Sophia ;

family:hasSister family:Sophia .

family:Peter a family:Human , family:Father , family:Husband

, family:Male , family:Parent , owl:Thing ;

family:hasAge "87"^^xsd:int ;

family:hasSurname "Smith" ;

family:firstName "Peter" ;

family:hasWife family:Frances ;

family:hasSpouse family:Frances ;

family:hasChild family:Madaline , family:Sophia .

family:PeterA a family:Male , family:Brother , family:Child

, family:Human , family:Offspring , family:Sibling , owl:Thing ;

family:hasMother family:Frances ;

family:hasParent family:Frances ;

family:hasSister family:Madaline ;

family:hasSibling family:Madaline , family:PeterA , family:Sophia .

family:PeterD a family:Male , family:Father , family:Human , family:Husband

, family:Parent , owl:Thing ;

family:hasAge "60"^^xsd:int ;

family:firstName "Peter" ;

family:hasSurname "Kalan" ;

family:hasChild family:Ange , family:George ;

family:hasSpouse family:Sophia ;
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family:hasWife family:Sophia .

family:Sarah a family:Human , family:Female , owl:Thing ;

family:hasAge "19"^^xsd:int ;

family:hasSurname "Connor"^^xsd:string ;

family:firstName "Sarah"^^xsd:string ;

family:hasFriend family:Ange , family:Sarah .

family:Sophia a family:Sibling , family:Child , family:Female

, family:Human , family:Mother , family:Offspring

, family:Parent , family:Sister , family:Wife , owl:Thing ;

family:hasAge "57"^^xsd:int ;

family:firstName "Sophia" ;

family:hasSurname "Kalan" ;

family:hasChild family:Ange ;

family:hasMother family:Frances ;

family:hasParent family:Frances ;

family:hasChild family:George ;

family:hasSibling family:Madaline ;

family:hasParent family:Peter ;

family:hasFather family:Peter ;

family:hasSibling family:PeterA ;

family:hasSpouse family:PeterD ;

family:hasHusband family:PeterD ;

family:hasSibling family:Sophia .

family:Theo a family:Human , family:Male , owl:Thing ;

family:firstName "Theo"^^xsd:string ;

family:hasFriend family:Georgia , family:Theo

, family:Vivi , family:Vivian .

family:Vivi a owl:Thing , family:Female , family:Human ;
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family:hasAge "20"^^xsd:int ;

family:firstName "Vivian"^^xsd:string ;

family:hasFriend family:Georgia , family:Theo

, family:Vivi , family:Vivian .

family:Vivian a owl:Thing , family:Female , family:Human ;

family:hasAge "20"^^xsd:int ;

family:firstName "Vivian"^^xsd:string ;

family:hasFriend family:Georgia , family:Theo ;

owl:sameAs family:Vivi ;

family:hasFriend family:Vivi , family:Vivian .

_:node15t8dcc3ax30 a owl:AllDifferent ;

owl:distinctMembers _:node15t8dcc3ax31 .

_:node15t8dcc3ax31 rdf:first family:Sarah ;

rdf:rest _:node15t8dcc3ax32 .

_:node15t8dcc3ax32 rdf:first family:Sophia ;

rdf:rest _:node15t8dcc3ax33 .

_:node15t8dcc3ax33 rdf:first family:Frances ;

rdf:rest _:node15t8dcc3ax34 .

_:node15t8dcc3ax34 rdf:first family:PeterA ;

rdf:rest _:node15t8dcc3ax35 .

_:node15t8dcc3ax35 rdf:first family:Georgia ;

rdf:rest _:node15t8dcc3ax36 .

_:node15t8dcc3ax36 rdf:first family:Madaline ;

rdf:rest _:node15t8dcc3ax37 .
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_:node15t8dcc3ax37 rdf:first family:Ange ;

rdf:rest _:node15t8dcc3ax38 .

_:node15t8dcc3ax38 rdf:first family:George ;

rdf:rest _:node15t8dcc3ax39 .

_:node15t8dcc3ax39 rdf:first family:Vivian ;

rdf:rest _:node15t8dcc3ax40 .

_:node15t8dcc3ax40 rdf:first family:Theo ;

rdf:rest _:node15t8dcc3ax41 .

_:node15t8dcc3ax41 rdf:first family:PeterD ;

rdf:rest _:node15t8dcc3ax42 .

_:node15t8dcc3ax42 rdf:first family:Peter ;

rdf:rest rdf:nil .
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Appendix B: Olympic Games ontology in RDF

Schema

This appendix presents the code for the ontology created on Olympic Games. It is written

in RDF Schema using the N3 notation.

@prefix : <http://www.example.com/olympics.owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

:Game

a rdfs:Class .

:Participation

a rdfs:Class .

:Human

a rdfs:Class .

:FemaleSport

a rdfs:Class ;

rdfs:subClassOf :Sport .

:MaleSport

a rdfs:Class ;

rdfs:subClassOf :Sport .

:Sport

a rdfs:Class .

:Stadium

a rdfs:Class .
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:Athlete

a rdfs:Class ;

rdfs:subClassOf :Human .

:Trainer

a rdfs:Class ;

rdfs:subClassOf :Human .

:participationOfAthlete

a rdf:Property ;

rdfs:domain :Participation ;

rdfs:range :Athlete .

:hasQualification

a rdf:Property ;

rdfs:domain :Participation ;

rdfs:range rdfs:Literal .

:hasBirthdate

a rdf:Property ;

rdfs:domain :Human ;

rdfs:range rdfs:Literal .

:hasGender

a rdf:Property ;

rdfs:domain :Human ;

rdfs:range rdfs:Literal .

:hasSpectatorCapacity

a rdf:Property ;

rdfs:domain :Stadium ;
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rdfs:range rdfs:Literal .

:participatesIn

a rdf:Property ;

rdfs:domain :Athlete ;

rdfs:range :Participation .

:trained_by

a rdf:Property ;

rdfs:domain :Athlete ;

rdfs:range :Trainer .

:originCountry

a rdf:Property ;

rdfs:domain :Human ;

rdfs:range rdfs:Literal .

:hasLevel

a rdf:Property ;

rdfs:domain :Game ;

rdfs:range rdfs:Literal .

:hasScore

a rdf:Property ;

rdfs:domain :Participation ;

rdfs:range rdfs:Literal .

:hasFirstName

a rdf:Property ;

rdfs:domain :Human ;

rdfs:range rdfs:Literal .
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:playedIn

a rdf:Property ;

rdfs:domain :Game ;

rdfs:range :Stadium .

:hasStadiumName

a rdf:Property ;

rdfs:domain :Stadium ;

rdfs:range rdfs:Literal .

:consistsOfParticipation

a rdf:Property ;

rdfs:domain :Game ;

rdfs:range :Participation .

:inCity

a rdf:Property ;

rdfs:domain :Stadium ;

rdfs:range rdfs:Literal .

:inGame

a rdf:Property ;

rdfs:domain :Participation ;

rdfs:range :Game .

:hasSurname

a rdf:Property ;

rdfs:domain :Human ;

rdfs:range rdfs:Literal .
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:trains

a rdf:Property ;

rdfs:domain :Trainer ;

rdfs:range :Athlete .
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Appendix C: Olympic Games ontology in OWL

This appendix presents the code for the ontology created on Olympic Games. It is written

in OWL using the Turtle notation.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .

@prefix olympics: <http://www.example.com/olympics.owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://www.example.com/ontology/olympic-games-inferred.owl> a owl:Ontology ;

rdfs:comment "An example ontology based on a subset of Olympic Games."@en .

olympics:aboutSport a owl:ObjectProperty ;

rdfs:domain olympics:Game ;

rdfs:range olympics:Sport ;

rdfs:subPropertyOf owl:topObjectProperty .

olympics:consistsOfParticipation a owl:ObjectProperty ;

rdfs:domain olympics:Game ;

rdfs:range olympics:Participation ;

rdfs:subPropertyOf owl:topObjectProperty .

olympics:inGame a owl:ObjectProperty ;

rdfs:range olympics:Game ;

rdfs:domain olympics:Participation ;

owl:inverseOf olympics:consistsOfParticipation ;

rdfs:subPropertyOf owl:topObjectProperty .

olympics:participatesIn a owl:ObjectProperty ;

rdfs:domain olympics:Athlete ;
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rdfs:range olympics:Participation ;

owl:inverseOf olympics:participationOfAthlete ;

rdfs:subPropertyOf owl:topObjectProperty .

olympics:participationOfAthlete a owl:ObjectProperty ;

rdfs:range olympics:Athlete ;

rdfs:domain olympics:Participation ;

rdfs:subPropertyOf owl:topObjectProperty .

olympics:playedIn a owl:ObjectProperty ;

rdfs:domain olympics:Game ;

rdfs:range olympics:Stadium ;

rdfs:subPropertyOf owl:topObjectProperty .

olympics:trained_by a owl:ObjectProperty ;

rdfs:domain olympics:Athlete ;

rdfs:range olympics:Trainer ;

owl:inverseOf olympics:trains ;

rdfs:subPropertyOf owl:topObjectProperty .

olympics:trains a owl:ObjectProperty ;

rdfs:range olympics:Athlete ;

rdfs:domain olympics:Trainer ;

rdfs:subPropertyOf owl:topObjectProperty .

owl:topObjectProperty a owl:ObjectProperty .

olympics:hasBirthdate a owl:DatatypeProperty ;

rdfs:domain olympics:Human ;

rdfs:range xsd:date ;

rdfs:subPropertyOf owl:topDataProperty .
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olympics:hasFirstName a owl:DatatypeProperty ;

rdfs:domain olympics:Human ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:hasGender a owl:DatatypeProperty ;

rdfs:domain olympics:Human ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:hasLevel a owl:DatatypeProperty ;

rdfs:domain olympics:Game ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:hasQualification a owl:DatatypeProperty ;

rdfs:domain olympics:Participation ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:hasScore a owl:DatatypeProperty , owl:FunctionalProperty ;

rdfs:domain olympics:Participation ;

rdfs:range xsd:float ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:hasSpectatorCapacity a owl:DatatypeProperty ;

rdfs:domain olympics:Stadium ;

rdfs:range xsd:int ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:hasStadiumName a owl:DatatypeProperty ;

rdfs:domain olympics:Stadium ;
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rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:hasSurname a owl:DatatypeProperty ;

rdfs:domain olympics:Human ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:inCity a owl:DatatypeProperty ;

rdfs:domain olympics:Stadium ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:originCountry a owl:DatatypeProperty ;

rdfs:domain olympics:Human ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

olympics:sportName a owl:DatatypeProperty ;

rdfs:domain olympics:Sport ;

rdfs:range xsd:string ;

rdfs:subPropertyOf owl:topDataProperty .

owl:topDataProperty a owl:DatatypeProperty .

olympics:Athlete a owl:Class ;

rdfs:subClassOf olympics:Human .

olympics:FemaleSport a owl:Class ;

rdfs:subClassOf olympics:Sport .

olympics:Game a owl:Class ;
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rdfs:subClassOf owl:Thing .

olympics:Human a owl:Class ;

rdfs:subClassOf owl:Thing .

olympics:MaleSport a owl:Class ;

rdfs:subClassOf olympics:Sport .

olympics:Participation a owl:Class ;

rdfs:subClassOf owl:Thing .

olympics:Sport a owl:Class ;

rdfs:subClassOf owl:Thing .

olympics:Stadium a owl:Class ;

rdfs:subClassOf owl:Thing .

olympics:Trainer a owl:Class ;

rdfs:subClassOf olympics:Human .

owl:Thing a owl:Class .

olympics:AthleteJan_Zelezny a owl:Thing , olympics:Athlete , olympics:Human ;

olympics:hasBirthdate "1966-07-23"^^xsd:date ;

olympics:originCountry "Czechoslovakia"^^xsd:string ;

olympics:hasFirstName "Jan"^^xsd:string ;

olympics:hasSurname "Zelezny"^^xsd:string ;

olympics:participatesIn olympics:Participation_Zelezny_Olympics ;

olympics:trained_by olympics:TrainerAlexander_Makarov .

olympics:AthleteSavva_Lika a owl:Thing , olympics:Athlete , olympics:Human

, olympics:Participation ;
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olympics:hasBirthdate "1970-06-27"^^xsd:date ;

olympics:hasGender "Female"^^xsd:string ;

olympics:originCountry "Greece"^^xsd:string ;

olympics:hasSurname "Lika"^^xsd:string ;

olympics:hasFirstName "Savva"^^xsd:string ;

olympics:inGame olympics:GameNationals2009 ;

olympics:participatesIn olympics:Participation_Lika_Nationals ;

olympics:trained_by olympics:TrainerYannis_Peristeris .

olympics:GameNationals2009 a owl:Thing , olympics:Game ;

olympics:hasLevel "Semi-Final"^^xsd:string ;

olympics:consistsOfParticipation olympics:AthleteSavva_Lika

, olympics:Participation_Lika_Nationals ;

olympics:aboutSport olympics:SportFemaleJavelin ;

olympics:playedIn olympics:StadiumKaftanzoglio .

olympics:GameOlympics2004 a owl:Thing , olympics:Game ;

olympics:hasLevel "Final"^^xsd:string ;

olympics:consistsOfParticipation olympics:Participation_Zelezny_Olympics ;

olympics:aboutSport olympics:SportMaleJavelin ;

olympics:playedIn olympics:StadiumKaftanzoglio .

olympics:Participation_Lika_Nationals a olympics:Participation , owl:Thing ;

olympics:hasScore "58.44"^^xsd:float ;

olympics:hasQualification "Q"^^xsd:string ;

olympics:participationOfAthlete olympics:AthleteSavva_Lika ;

olympics:inGame olympics:GameNationals2009 .

olympics:Participation_Zelezny_Olympics a olympics:Participation , owl:Thing ;

olympics:hasScore "90.17"^^xsd:float ;

olympics:hasQualification "Q"^^xsd:string ;

olympics:participationOfAthlete olympics:AthleteJan_Zelezny ;
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olympics:inGame olympics:GameOlympics2004 .

olympics:SportFemaleJavelin a owl:Thing , olympics:FemaleSport , olympics:Sport ;

olympics:sportName "Javelin"^^xsd:string .

olympics:SportMaleJavelin a owl:Thing , olympics:MaleSport , olympics:Sport ;

olympics:sportName "Javelin"^^xsd:string .

olympics:StadiumKaftanzoglio a olympics:Stadium , owl:Thing ;

olympics:hasSpectatorCapacity "28200"^^xsd:int ;

olympics:hasStadiumName "Kaftanzoglio Stadium"^^xsd:string ;

olympics:inCity "Thessaloniki"^^xsd:string .

olympics:TrainerAlexander_Makarov a olympics:Trainer , olympics:Human

, owl:Thing ;

olympics:hasBirthdate "1973-03-19"^^xsd:date ;

olympics:hasFirstName "Alexander"^^xsd:string ;

olympics:hasGender "Male"^^xsd:string ;

olympics:originCountry "Russia"^^xsd:string ;

olympics:hasSurname "Zelezny"^^xsd:string ;

olympics:trains olympics:AthleteJan_Zelezny .

olympics:TrainerYannis_Peristeris a owl:Thing , olympics:Human

, olympics:Trainer ;

olympics:hasBirthdate "1977-07-12"^^xsd:date ;

olympics:originCountry "Greece"^^xsd:string ;

olympics:hasGender "Male"^^xsd:string ;

olympics:hasSurname "Peristeris"^^xsd:string ;

olympics:hasFirstName "Yannis"^^xsd:string ;

olympics:trains olympics:AthleteSavva_Lika .


