
ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Πτυχιακή εργασία

«Εμπειρικές μελέτες στις ευέλικτες μεθόδους:
βιβλιογραφική έρευνα (μέχρι Φεβρουάριο 2010) για τις

εμπειρικές μελέτες στις ευέλικτες μεθόδους και στον
ακραίο προγραμματισμό.»

Του φοιτητή Επιβλέπων καθηγητής
Μανίκη Μιχάλη Σφέτσος Παναγιώτης
Αρ. Μητρώου: 0117/28

Θεσσαλονίκη 2010

Abstract:
Οι ευέλικτες μέθοδοι και οι πρακτικές τους είναι ένα αμφιλεγόμενο θέμα. Κάποιοι ερευνητές
υποστηρίζουν ότι βοηθάνε τις εταιρίες λογισμικού και κάποιοι άλλοι ισχυρίζονται ότι δεν έχει
κανένα αντίκτυπο ή ακόμα χειρότερα ότι είναι επιζήμιο. Αυτή η βιβλιογραφική έρευνα έχει
ως στόχο να ερευνήσει τη τρέχων κατάσταση των ευέλικτων μεθόδων και να ερευνήσει αν
μπορούν να βοηθήσουν τα έργα λογισμικού ή όχι. Θα ερευνηθεί η υπάρχων βιβλιογραφία
μέχρι το Φεβρουάριο του 2010 και θα προσπαθήσει να απαντήσει μερικές από τις
ερωτήσεις σχετικά με τις ευέλικτες μεθόδους, όπως το αν οι ευέλικτες μέθοδοι βοηθάνε
εταιρίες λογισμικού καθώς και τα έργα τους καθώς επίσης αν μπορούν να βοηθήσουν τα
πανεπιστήμια και τους φοιτητές.

Abstract:
Agile methods and practices are a controversial topic. Some practitioners suggest that it
helps software companies and some claim that it has no effect or even worse it is
damaging. This review will aim to identify the current state of agile methods and
investigate whether they help software projects or not. It will search existing literature until
February 2010 to try and answer some of the questions about agile methodologies, such
as if agile methods help software companies and their projects and if they can also help
universities and students.

Systematic literature review in empirical studies for agile
methods and extreme programming

Manikis Michael

Alexander Technological Educational Institute of Thessaloniki, Greece

February, 2010

Contents
1. Introduction

2. Theory

2.1 Agile Methods

2.2 Pair Programming

2.3 Test-Driven Development

2.4 Agile Criticism

2.5 Review Objectives

3. Review Method

3.1 The Review Protocol

3.2 Research Questions

3.3 Identifying Literature

3.4 Inclusion and Exclusion Criteria

3.5 Quality Assessment

3.6 Data Extraction

3.7 Synthesize the data and conclude

4. Results

4.1 Analysis of primary studies

4.1.1 Experiments

4.1.2 Case / Field Studies

4.1.3 Surveys / Reviews

4.2 Limitations of the Review

5.Discussion

5.1 Experiment Results

5.2 Case / Field Studies Results

5.3 Surveys / Reviews Results

6. Conclusions

7. References

Appendix A. Review Protocol

Appendix B. Quality Assessment Table

Page 1 of 60

1. Introduction

There has been 9 years since 2001, when Agile Manifesto was formed and

there is still much discussion about if agile methods can contribute to better and/or

faster software development. Some are big supporters of agile methodologies and

some think that traditional methods are more suited for software development.

Researchers do experiments and studies to find out if agile methodologies can

help software companies, by gathering statistics from successful and failed agile

projects.

This systematic review aims to search and find empirical data and

experiments, synthesize them and find out the effects that agile methods have on

software projects, and if they can help to raise the probability of success for a

project, as well as to provide a better communication between the developers.

It further aims to provide practitioners an insight view of a number of

experiments that have been done for agile methods and give them information

about the current state of agile methods. It also aims to help software industry by

providing data about the effects that agile methods have on software projects and

if they can effectively and successfully integrate agile methods into their software

projects.

This review is organized in 7 sections. In section 2 there will be a brief theory

of agile methods. In section 3 an analysis of the review method that was followed,

section 4 contains the results for every primary study, section 5 will have a

discussion of results and limitations of this review, section 6 contains the

conclusions and finally section 7 contains the references of this systematic review.

2. Theory

A description of agile methods will be given first and then there will be a

description pair programming and test-driven development which are some of the

Page 2 of 60

core practices of agile methodologies. Also there will be a summary of the main

points of criticism against agile methods. Lastly there will be a description of the

objectives and the research questions of this review.

2.1 Agile Methods

In early 2001, seventeen of the agile proponents met, discussed and formed

the Agile Manifesto. Many representatives from most agile methods, such as

Extreme Programming, SCRUM, DSDM, Crystal, FDD and others attended. They

stated that there is a need to escape from the heavyweight, documentation-driven

software development. The Agile Manifesto [55] reads as this:

• Individuals and Interactions over process and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan.

“That is while there is a value in the items of the right, we value the items on the

left more.”

Agile means [56] “deliver quickly, change quickly, change often”.

There are many agile methods with different characteristics and practices but they

have some common ones, like iterative development, communication, as well as

the reduction of documentation to the absolutely necessary. Those characteristics

help developers adapt to change easier and take decisions faster and respond

quickly. Also documentation reduction helps the project to deliver quicker [57].

Extreme programming is probably one of the most popular agile methods.

The 12 rules of extreme programming are the following:

1) The planning game.

2) Small releases.

3) Metaphor.

4) Simple design.

Page 3 of 60

5) Tests.

6) Refactoring.

7) Pair programming.

8) Continuous integration.

9) Collective ownership.

10) On-site customer.

11) 40-hour weeks.

12) Open workspace.

In order to see the true benefits of Extreme Programming someone should

practice all of its practices [57].

Scrum is the second most popular agile method. Scrum is described [58] as a

process that “accepts that the development process is unpredictable”. Iterations of

scrum are split as follows:

1) Pre-sprint planning

2) Sprint.

3) Post-sprint meeting.

Alistair Cockburn in 1990 wanted a method that would provide better

communication. The result of his work was the Crystal Methods. Cockburn

explains [56] that increased communication can reduce unnecessary

documentation and the more iterative the development is the less you really need

documentation. The most agile crystal method is Crystal Clear, followed by Crystal

Yellow, Crystal Orange, etc. As you move away from crystal clear the rules of the

Crystal Method increase thus the method becomes less agile.

Feature-Driven Development was developed by Jeff DeLuca and Peter Coad.

It all started when DeLuca take on a failing project, the previous contractor had

wrote too much documentation but no delivered version. DeLuca hired Coad and

they both developed it successfully and the resulting method they used was

feature-driven development (FDD) [57].

Page 4 of 60

Lean Development (LD) was developed by Bob Charette, and is based on the

rules and practices of Lean Production found in Toyota in the 1980s [9].

Dynamic Systems Development consists of six stages [59]: Pre-project,

Feasibility Study, Business Study, Functional Model Iteration, Design and Build

Iteration, Implementation, and Post-project.

2.2 Pair Programming

Pair Programming is an agile practice in which two programmers work

together at a single computer. One writes the code (driver) and the other reviews it

(navigator).

Benefits of pair programming include the following [60].

Design quality: Program has fewer bugs as it is tested by two developers and

one is specifically assigned to watch out for possible bugs as the other writes the

code.

Reduced cost of development: Fewer bugs mean less development costs

especially if they are caught early before they are more difficult and costly to fix.

Learning and training: Because programmers work in pairs, knowledge can

easily be shared. One programmer can learn from the other and novice

programmers can quickly catch up with more experienced ones thus offering

better overall software quality.

Overcoming difficult problems: Problems can be more faster and more easily

solved when programmers work and they search for a solution together.

Improved morale: Some programmers report greater satisfaction when they

work together.

Decreased management risk: If one programmer leaves the team, the others

can quickly catch up because they all share and work on the same code.

Increased discipline: When programmers work in pairs they are less likely to

spend time not working and doing something else.

Fewer interruptions: People don't interrupt so much a pair than they interrupt

a single programmer working alone.

Decreased risk of RSI: Risk of physical stress to the programmers by working

too much is reduced since they can switch positions and rest while the other pair

Page 5 of 60

types.

Some drawbacks include [60]:

Work preference: Some people just cant work with others and they prefer to

work alone.

Intimidation: A less skilled programmer can be less confident if he works with

a more skilled developer and he might not contribute to the code and to the pair.

Tutoring: Skilled programmers may find boring to work with a less skilled

programmer because they have to teach him techniques that he doesn't already

know, thus spending time from the actual code writing.

Personality conflicts: The programmer pairs may have difficulty working

together and it may be even worse and less productive than if they worked alone.

There are also some empirical evidence [63] that pair programming can help

with the programming courses in universities in the CS curriculum. Another study

[68] shows that students don't really care about the personality of their

programmer pair as long as they have similar programming experience. Despite

that there are studies [69] that show no significant relation between students

working in pairs and students working solo.

2.3 Test-Driven Development

TDD [60 is an agile practice that focuses on the creation of unit tests to test

the code. The process goes as follows: First the developer adds a test for a future

feature, then produces code to implement the feature and that passes the test and

lastly refactors the new code.

The sequence of TDD as described in [61] is the following:

1) Add a test

A test is added before the new feature is implemented. The test will fail because

the feature doesn't yet exist but it will help the tester refine the requirements before

and not after writing the actual feature.

2) Run all tests and see if the new one fails

All tests are run, including the new one. New test must fails and this guarantees

that it is working properly (since the new feature is not added yet).

Page 6 of 60

3) Write the code

The feature is written in a way that will make the test successful. The new code

might not be very good and may have bugs but this doesn't matter because it will

be improved in later iterations. This new code must be designed to implement that

specific feature and only that.

4) Run the automated tests

All tests are now run, and it is being checked if the code passes all tests. If all tests

pass developers start refactoring.

5) Refactor code

Now the code is being improved and with the use of previous tests programmers

can be assured that their refactoring won't cause more problems and that the

feature implemented before are still working as intended.

This circle continuous as new tests and functionality are being added to the

code.

2.4 Agile Criticism

Despite the fact that there are people that support agile methods, there are

also people that criticize them for being ineffective and damaging for a software

project.

The main points of criticism include the following [9]:

• Agile development exists since 1960 and if it was good it would have shown

its benefits.

• The use of a very small amount of documentation will create a faulty

design.

• No research have proved many of the claims about agile practices.

• XP practices are good in theory but they cant and they never applied

successfully in practice.

• Agile methods might be useful for small teams and projects but for large

scale projects it just cant help.

Page 7 of 60

2.5 Review Objectives

There seems to be much interested by companies on learning about agile

methods and possibly try them. A survey [56] conducted in the USA and Europe on

2000 shows that 14% of companies use agile methods and also 49% of

companies that are aware of agile methods are interested in learning and adopting

them. A more recent survey on 2007 shows that the percent has raised to 69% for

those that use agile methods [70]. A survey conducted on 2008 raised that percent

even more. 95% of companies report that they use at least to some extent an agile

method with a 51% reporting that more than 50% of companies projects use agile

methods [22]. Rajlich [62] describes agile methods as “a new paradigm” and

specifically states that developers were used to old practices and they wouldn't

care for anything else. Now with those new practices there isn't enough research

yet and it is necessary in order to solve some problems.”

Despite the fact that there is much interest in agile methods not many

systematic literature reviews are being published, and its difficult for companies

that do want to adopt agile methods to search for reviews in order to find out if

agile methods will be successful inside their company and for their software

project. With this systematic review there is an aim to give a better insight into the

available empirical data of experiments, case/field studies, and surveys/reviews on

agile methods and to help companies make decisions that will aid them choose

and adopt and agile methodology. Also this review will help researchers as well as

students that are interested in agile methods to stay up to date to the current state

of agile methods.

This systematic review will try to answer the following research questions:

• Can agile methodologies and its practices help software companies

develop software projects more effectively than traditional methods?

• Can agile methodologies help universities with teaching computer science

courses to students?

This review will also try to qualify the primary studies so it can examine the quality

of the answers and the need for possible future reviews on the subject.

Page 8 of 60

3. Review Method
The purpose of a systematic review is to search and find all available

research documents that can help with answering the research questions that

have been stated before. This review followed the steps below to conduct the

research.

1) Identify the review objectives and then establish a review protocol

and lay down the research questions that this review will try to answer.

2) Establish the inclusion and exclusion criteria, the quality assessment

criteria.

3) Search the literature that will help answer those questions.

4) Assess the primary studies in order to qualify them based on the

criteria created.

5) Extract the data from the primary studies along with the quality

assessment of each of them.

6) Synthesize the extracted data, compose the results and conclude.

In the paragraphs that follow there is an analysis of those stages in detail to

provide a better view of the methods and tools used for each one.

3.1 The Review Protocol

The review protocol is the framework of the review. It contains the research

questions that this review will try to answer, the way the search process will be

conducted as well as the quality criteria that the primary studies must pass in order

to be accepted. For the developing of the protocol the guidelines as described in

Kitchenham's study [65] were followed.

3.2 Research Questions

This review will try to explore the success rate of agile methods on

companies that have adopted them and which factors influence this success. The

review will also investigate existing literature to find out what kind of companies

are best suited to adopt agile methodologies successfully, what are the problems

Page 9 of 60

that might emerge and if agile methodologies can be effectively adopted on large

scale projects and companies. Finally it will be investigated the effect that agile

methods have on teaching undergraduate students. What is the response of the

students and if agile methods can help teachers teach students more effectively.

The study will include studies from students and professionals and no

exclusions will be performed based on population type.

The research questions are:

• Can agile methodologies and its practices help software companies

develop software projects more effectively than traditional methods?

• Can agile methodologies help universities with teaching computer science

courses to students?

3.3 Identifying literature

For identifying the studies that will help answer the research questions the

search strings that will be used as a search term on digital libraries were formed

first. The study is focusing on agile methods and also on the two most famous

agile practices, pair programming and test driven development (TDD). Only

empirical data were included and no theoretical studies or expert opinions were

accepted. The search terms that were used were the following:

'test first', 'test driven', 'pair programming', 'agile', 'empirical', 'experiment', 'survey',

'review', 'case study', 'field study'.

Those terms were then combined using AND and OR Boolean operators intot

he following search string:

(test first AND empirical) OR (test first AND experiment) OR (test first AND survey)

OR (test first AND review) OR (test first AND case study) OR (test first AND field

study) OR (test first) OR (agile AND experiment) OR (agile AND survey) OR (agile

AND review) OR (agile AND case study) OR (agile AND field study) OR (agile

AND empirical) OR (agile) OR (test driven AND empirical) OR (test driven AND

experiment) OR (test driven AND survey) OR (test driven AND review) OR (test

driven AND case study) OR (test driven AND field study) OR (test driven) OR (pair

programming AND empirical) OR (pair programming AND experiment) OR (pair

programming AND survey) OR (pair programming AND review) OR (pair

Page 10 of 60

programming AND case study) OR (pair programming AND field study) OR (pair

programming). The review didn't include expert opinions, lessons learned,

theoretical studies, panels, summaries, interviews and it was based entirely on

empirical data, experiments and surveys/reviews.

After the composition of the search strings, the latter were inserted on digital

databases and online journal papers to identify the useful studies for this review.

The list of databases, journals, conferences and digital libraries that were

searched is the following:

Journals and Conferences:

• Information and Software Technology (IST)

• Journal of Systems and Software (JSS)

• IEEE Transactions on Software Engineering (TSE)

• IEEE Software (IEEE SW)

• Communications of the ACM (CACM)

• ACM Computer Surveys (ACM Sur)

• ACM Transactions on Software Engineering Methodologies (TOSEM)

• Software Practice and Experience (SPE)

• Empirical Software Engineering Journal (EMSE)

• IET Software (IET SW)

• Proceedings International Conference on Software Engineering (ICSE)

• Proceedings International Symposium of Software Metrics (Metrics)

• Proceedings International Symposium on Empirical Software Engineering

(ISESE)

Digital Libraries:

• ACM Digital Library (http://portal.acm.org)

• IEEEXplore (http://ieeexplore.ieee.org)

• CiteseerX Library (http://citeseerx.ist.psu.edu)

• ScienceDirect (http://www.sciencedirect.com)

• Wiley InterScience (http://www3.interscience.wiley.com)

Page 11 of 60

http://www3.interscience.wiley.com/
http://www.sciencedirect.com/

• SpringerLink (http://www.springerlink.com)

3.4 Inclusion and Exclusion Criteria

After applying the search strings on the databases, the resulting papers were

evaluated based on their title and abstracts. Papers published until February 2010

were included. This review only focused on reviews, case/field studies, surveys,

and experiments that presented empirical data on the field of agile methods, pair

programming and TDD. Papers that didn't present empirical data such as lessons

learned, panel sessions, summaries, expert opinions that were based on personal

opinion with no empirical data to back it up, as well as papers that discussed and

explained agile methods and its practices in theory, were all excluded from the

search. A problem also encountered in Dybå (2008) [9], was noted here also,

some articles were not clearly stating on their abstracts that they were empirical

studies and some others had misleading titles. All those papers were included for

further quality assessment after evaluating more data on the paper such as its

conclusions, if they presented data that they might be useful. There was no

exclusions on papers based on population type, both student and professional

authors' papers were included as long as they have been published on a well-

known journal or conference. Papers that did present empirical data but were not

published anywhere were excluded from the search. The search process only

identified articles written on english. After this initial quality assessment of papers,

the result was 123 papers. Those papers will then be assessed for their quality

again based on more details. All those

papers were then inserted into

EndNote X3 and they were organized

there. While the quality assessment

continues the papers in EndNote were

grouped and organized depending if

they are useful or not.

Figure 1 shows the type of each of the

final 55 studies after the final quality

assessment.

Page 12 of 60

21

24

10

Study Type

Figure 1

Experiments
Case/Field
Studies
Surveys/Re
view s

http://www.springerlink.com/

Figure 2 shows the number of primary studies after each stage of screening

process.

 Figure 2

The inclusion and exclusion criteria as mentioned in the review protocol are

the following:

Inclusion Criteria

• [Q1] Systematic Literature Reviews, Surveys, Experiments, Case and Field

Studies that are clearly identified as empirical researches containing

empirical data and/or statistical data on the field of agile software

development and its practices.

• Papers of both students and professionals were included as long as they

have been published in a well-known and broadly recognized journal and/or

conference.

• [Q2] Papers that can help with the research on the research questions of

this review.

• Papers that passed the minimum quality criteria (mentioned in Quality

Assessment)

Exclusion Criteria

• Papers that haven't been published in a journal.

• Papers that didn't contain empirical data and were mostly theoretical

researches and/or expert opinions.

• Papers that discuss the agile software development process and its

subcategories in theory.

Page 13 of 60

Number of studies after
search process

532

Number of studies after
evaluation of title

and abstract

123

Number of studies after
final quality assessment

55

3.5 Quality Assessment

Those 123 studies that passed the initial screening process, where then

reevaluated in more detail using the criteria suggested by Critical Appraisal Skills

Progamme (CASP) especially those for qualitative research [66], and by

“principles of good practice for conducting an empirical research in the field of

software engineering” [67]. Those 8 criteria fall into 3 main categories which are

the following:

• Rigour: does the study follow a specific explained approach in the

implementation of the various methods used in the study?

• Credibility: does the author discuss possible bias and findings and are the

findings useful for the purposes of the study?

• Relevance: Are the findings useful for software companies and/or

researchers?

By further analyzing those 3 main categories, the following 5 criteria are identified

firstly for the rigour of each study. Specifically:

• [Q3] The research method that was followed was explained as to why the

specific one was used.

• [Q4] There is a description as to why the specific sample was selected and

with what criteria.

• [Q5] A control group was used to compare the results of the study.

• [Q6] There is a description of the data collection methods, as to how the

data were collected and why this specific method was used.

• [Q7] Data analysis methods were described concerning as to why those

methods were chosen, how the data were selected and if they are enough

to answer the questions of the study.

Following the rigour, the credibility of each research is analyzed and 2 more quality

criteria emerge. Those criteria are:

• [Q8] Does the researcher identified his possible bias and the role he might

have played to the research?

• [Q9] The results were discussed, they were identified if they answer the

Page 14 of 60

research questions and if the authors discuss the strength of their results.

Lastly the relevance of each research is analyzed by using 1 criteria. This criteria

is the following:

• [Q10] Are the findings and results of the study useful and worthy for

companies and/or scientific research?

Quality criteria [Q1] and [Q2], as mentioned in the inclusion criteria, were the

only ones that were able to exclude a study from the research, the other criteria

form the quality of each study and even if some studies don't pass those criteria

([Q3]-[Q10]) they still are included in the study. Those 10 criteria form the quality

assessment of each study (Appendix B) and will ensure that each study that is

included in this literature review will have a valuable contribution and will help

answer the research questions. Depending on the quality of the papers it will also

be identified if there is a need for conducting further research to get better results.

In each of those criteria there were two answers, (yes) or (no). The studies that

answered (yes) get 1 point for that criteria and if they answered (no) they get 0

points. Those points then add up and form the final quality score of each study.

The search process as well as the quality assessment of each paper was

conducted by one person (the author of this review).

3.6 Data Extraction

Data from each of the 55 studies that were selected and passed the quality

criteria were then extracted by using an extraction form. The data that was

extracted were the necessary data to conduct the research and answer the

research questions. Some articles didn't specifically state some of the data that

were needed to complete the extraction form, so some of them were left blank.

All the data that were extracted were organized in OpenOffice Calc. Data

extraction process was also conducted by one person.

3.7 Synthesize the data and conclude

Finally the data that were extracted at the previous stage, were synthesized

Page 15 of 60

and the results from all of the studies were documented. Results from each study

were compared and organized in Calc tables and at the end the conclusions of the

study were drawn. A summary of the extracted data of each study can also be

found in tables throughout this review.

4. Results
After the final application of the quality assessment criteria, the final studies

were chosen that were useful for the purposes of this review. Those studies differ

from university studies to studies performed on companies. The studies cover a

range of topics from agile methods to pair programing and TDD. A presentation of

those study will follow. The presentation of the studies is organized based on their

research type. First there will be an analysis of experiments, next case studies and

field studies will be analyzed and finally surveys and reviews will be presented.

On the section that follows there will be a brief description of all the primary

studies and their characteristics, next there will be a discussion of all the studies

based on their type and finally the conclusions are drawn.

4.1 Analysis of primary studies

4.1.1 Experiments

As mentioned the primary studies will be divided and discussed between 3

groups. Firstly there will be a description of the experiments. Table 1 contains a

summary of the experiments.

Table 1

Page 16 of 60

ID Author Type of Study Research Fie ld Results

3 Experiment XP Professional 75 Students

7 Experiment Agile Methods Professional N/A

17 Experiment Agile Methods Professional N/A

19 Experiment Agile Methods Professional 59 Projects

Research
Environm ent

Population
Size

Syed-Abdullah,
S. et. al.

XP team experienced higher overall w ell being w hen project
requirements w ere uncertain.

Misra, S. et. al.
Customer involvement, quick decision time and corporate

culture, among others, are importnant success factors for
adapting agile methods.

Alshayeb, M. et.
al.

SDI can be used w ith agile methods. New design effort might
cause project instability according to SDI.

Ferreira, C. et.
al.

The more agile methods and practices used the more
stakeholder satisfaction. Stakeholder satisfaction is important

and should be taken into consideration by developers.

Syed-Abdullah et. al. (2006) [3] examined 2 groups of student that worked for

real industrial projects. The purpose of the study was to examine the effect of agile

methods (specifically XP) on the well being of software developers. First team was

the control group using a method previously discussed in the computer courses

(Discovery method), second group was using XP. The experiment examined the

anxiety, contentment, depression and enthusiasm of the software developers

through 3 different software project. Two of the projects were more stable and the

last one was more unpredictable. Results showed that anxiety levels were higher

for the XP team for the stable projects but for the unstable project while XP team

started with higher anxiety, the increase through the life-cycle of the project wasn't

big, while the Discovery team experienced high increase of anxiety especially

towards the end of the project. It should be noted that a possible anxiety factor for

XP teams might have been the responsibility to learn a new developing technique

while Discovery team has already learned the method from previous CS courses.

Page 17 of 60

20 Experiment Agile Methods Professional 2 Projects

23 Experiment Student N/A

26 Experiment Student N/A

27 Experiment Professional 28 Programmers

28 Experiment Mixed N/A

31 Experiment Professional 24 Programmers

32 Experiment Student 70 Students

34 Experiment Student 176 Students

36 Experiment Student N/A

37 Experiment Student 18 Students

39 Experiment Student 42 Projects

41 Experiment Professional N/A

42 Experiment Student 128 Students

43 Experiment Student 38 Students

44 Thomas, L. et. al. Experiment Student 60 Students

49 Experiment Student 83 Students

52 Hanks, B. Experiment Student 30 Students

Alshayeb, M. et.
al.

New design ef fort doesn't cause more error f ix and
refactoring and can be safely applied.

Huang, L. et. al. Test Driven
Development

70% increased prodictivity for test f irst team. No other
signif icant dif ferences.

Madeyski, L.
Test Driven

Development
MSI and BC show ed no dif ference betw een test f irst and

test last.
Canfora, G. et.

al.
Test Driven

Development
More time needed for TDD, possible increased quality. Better

cost estimation w ith TDD.

Janzen, D. et. al. Test Driven
Development

Mature developers are more w illing to use TDD. Most
developers think TDD is useful but it might be dif f icult to

implement.

George, B. et. al. Test Driven
Development

TDD passed 28% more test cases, w hile requiring 18% more
time. 80% f ind TDD effective and lack up-front design doesn't

cause problems.

Sfetsos, P. et. al.
Pair

Programming
Heterogeneus personality groups are more ef fective for pair

programming.
Braught, G. et.

al.
Pair

Programming
Pair programming helps students w ith low er SAT scores

perform better. Instructor dif ferences w ere mitigated.

Madeyski, L. Pair
Programming

No dif ference in BC and MSI scores. Further research might
be necessary.

Müller, M. M. Pair
Programming

Pair design phase is feasible, no increase in cost. Same
number of errors detected.

Müller, M. M. Pair
Programming

Less faulty expression defects for pairs. Pair programming
suitable for complex and challenging problems.

Canfora, G. et.
al.

Pair
Programming

Pair design causes better quality prediction but low er
development time prediction.

Choi, K. S. et. al. Pair
Programming

Diverse MBTI type groups best stuited for pair programming
groups.

Müller, M. M. Pair
Programming

For same level of correctness pair and solo programming
have same cost. For dif ferent level of correctness pair

produces higher quality at the exense of increased cost.

Pair
Programming

Low confident students enjoy pair programming the most.
High conf ident students dont enjoy pair programming and

they prefer to group w ith high conf ident students.

Desai, C. et. al.
Teaching w ith

Test Driven
Development

No increase in product quality. Better learning how to test
code. No increase in instructor effort.

Teaching w ith
Pair

Programming

Pair programmers do make same mistakes as solo
programmers but they are able to solve most of them alone.

Increased student conf idence.

Despite these, no significant difference was found between the 2 teams.

Contentment levels were higher for XP team at the start of the project, both teams

experienced a drop on their contentment levels with XP team experiencing higher

decrease. No significant difference was also reported here. Depression levels for

XP team were higher in the stable projects, but XP team had much lower

depression levels in the unpredictable project. No significant difference was also

reported here. Lastly enthusiasm levels were higher for XP team in all projects

against the Discovery team. Significant statistical difference was reported here.

Syed-Abdullah et. al. also tested if a higher number of XP practices caused a

better well being (including anxiety, contentment, depression, enthusiasm).

Significant difference was reported here. It seems that the more XP practices

used, the better the well being of the developers becomes.

Syed-Abdullah et. al. concludes that the overall well being of the XP team (except

for contentment) was better but only when the requirements of the project are

uncertain.

Misra, S. et. al. (2009) [7] conducted an experiment by questioning a large

number of practitioners using agile practices and belonging in different sectors of

industry. The aim of the survey was to identify some success factors in adopting

agile methods. Greater customer satisfaction, collaboration and commitment,

quicker decision time, better corporate culture relates to agile projects, more

qualitative controls on projects, better personal characteristics of team members,

the more favorable the societal culture is for agile projects, the more the

environment supports continuously learning and informal training, all these factors

lead to a better success of the agile project.

The survey identified some factors that have no effect to the success of the agile

project, such as close location of project teams, smaller team size, more in-

formalized plans, more technically competent team members, more

communication and negotiation. They also found some new possible success

factors for an agile project. Those factors include, learning from failure, timing

issues, other team characteristics and use of tools. Although Misra, S. et. al.

suggest additional research to examine those factors.

Page 18 of 60

Alshayeb, M. et. al. (2005) [17] made an empirical study to test if the System

Design Instability metric (SDI) can be used in an agile environment to re-plan

software projects. SDI is used the determine the instability of the system. It

measures the domain abstraction and design, and if the system is stable then

classes, hierarchy, class names etc wont change much. Their results show that

SDI can be used in an agile environment to estimate and re-plan software

projects. They noticed that traditional methodology projects as well as XP projects

follow the same pattern. New design-effort positively correlates to the SDI thus

showing possible increase in instability of the system. Surprisingly, refactoring and

error-fix were negatively correlated to the SDI. They explain this result by stating

that refactoring and error-fix indicate a stable design at the domain abstraction

level which is the level that SDI measures.

Ferreira, C. et. al. (2008) [19] conducted an empirical study of 59 south

African software projects to explore the connection of agile methods and

stakeholder satisfaction. All of their hypothesis were confirmed. In detail, iterative

development keeps developers on the right direction and satisfies stakeholders.

Continuous integration, TDD and collective code ownership are also important and

successful execution can lead to a better system. Regular feedback also helps

recognize requirements which in the end will satisfy stakeholder. They also note

that the more satisfied the stakeholders are during the development process, the

more satisfied they will be with the end product when it will be released. Any

stakeholder dissatisfaction needs to be taken seriously by the developers because

it might lead to problems for system acceptance. In conclusion they propose

especially small companies to adopt those agile methodologies and to balance

traditional and agile practices, leading to a positive effect on the overall project.

Alshayeb, M. et. al. (2006) [20] in their study investigated a possible

connection between the new design effort of XP and error-fix and refactoring.

Particularly, the more new-design effort that was performed in the system, the less

refactoring and error-fix was needed. They also found that error-fix is related to the

Page 19 of 60

number of days spent on a story. The more days spent, the more error-fix will be

performed. However new-design effort and refactoring doesn't seem to relate with

the number of days spent on a story. The study shows that new-design can be

safely applied to the system and it wont cause too much error-fix and refactoring

efforts.

Huang, L. et. al. (2009) [23] performed an experiment to test the differences

between 2 groups of students composed of different teams. First group was using

test first approach and second group was using test last approach (traditional

approach). Results show that Test First group spent more time on testing than Test

Last group. But the experiment found no significant statistical difference between

the 2 groups in terms of software quality. Also Test First group wasn't more

productive than Test Last group although on average Test First group productivity

was 70% higher. Test First teams had more varied productivity than Test Last

teams that were more linear. Experiment concludes that further research,

especially in industry area, is needed to verify those results because there were

some limitations.

Madeyski, L. et. al. (2010) [26] examines the impact of Test First (TF) on

branch coverage and mutation score indicator. Branch coverage tests if the unit

tests examine a large portion of the code rather than a small amount. Mutation

score indicator injects mutants in the code to examine the effectiveness of

discovering them by the unit tests used. The authors didn't find a significant

difference between TF teams and Test Last (TL) teams concerning branch

coverage and mutation score. They state that they are unable to explain why those

tests don't show the positive effects of TF because it is the first time that mutation

score indicator is examined using TF approach and further research may be

necessary, although they suggest that if more professional developers were used

results may have been different.

Canfora, G. et. al. (2006) [27] presents the results of an experiment

conducted in a company to compare TDD and TAC (Testing After Coding). The

Page 20 of 60

result shows that TDD requires more time spent than TAC although this might be

compensate by the possible increased code quality. Unit tests of TDD, agreeing

with [26], don't seem to be more accurate and precise than TAC unit tests. Finally

TDD provides better predictability which in turn leads to better cost estimation,

something that some companies might find useful.

Janzen, D. et. al. (2007) [28] reports on an experiment for the purpose of

comparing the acceptance of TDD. The sample included two groups, beginner

programmers and mature programmers. Survey results show that mature

programmers choose TDD much more than beginner programmers. Among the

beginner programmers those that have actually tried TDD are more willing to

accept it. Same trend appears on mature programmers. Its interesting that TDD

benefits appear to be recognized by more participants than those that actually

choose TDD, and comments on the surveys show that many participants do

recognize TDD benefits but perceive TDD as more difficult and different than what

they are used to.

George, B. et. al. (2004) [31] conducted an experiment between 2 groups of

24 professional pair programmers. First was using TDD and second group was

using waterfall-like approach. TDD group yielded better code quality, TDD program

passed 18% more test cases. Additionally as previous studies state, TDD

programmers spent 18% more time than control group programmers. Although the

authors note here that control group programmers skipped some of their tests and

this might lead that waterfall-like approaches don't encourage testing. Also survey

results showed that 80% of the programmers consider TDD as an effective

approach and they don't think that lack of up-front design is a problem because

TDD facilitates simpler design.

Sfetsos, P. et. al. (2009) [32] presents an experiment conducted between 70

undergraduate students in order to investigate the effect of pair personalities on

pair effectiveness and pair collaboration-viability. Specifically they compared pair

programming groups with homogeneous personalities and heterogeneous

Page 21 of 60

personalities. Results showed that heterogeneous personality groups had better

performance and collaboration validity. Communication, design code correctness

and design velocity were much better for heterogeneous personality groups. Pair

communication for heterogeneous pairs was also better that homogeneous pairs

and that led to higher design and code correctness. They conclude that further

investigation might be necessary to support those findings.

Braught, G. et. al. (2008) [34] reports on an experiment to investigate the

effect of pair programming on programming skill. The authors used students from

Dickinson college to see if pair programming helps students with lower

programming skills. Results indicate that pair programming does help students

with lower SAT scores to achieve better scores. Pair programming was also helpful

for all kinds of students to assist them in order to complete the courses

successfully. Pair programming also helped to mitigate the differences between

different instructors.

Madeyski, L. et. al. (2008) [36] examined the effect of pair programming in

thoroughness and fault detection effectiveness on unit tests. Using branch

coverage (BC) and mutation score indicator (MSI) metrics they examined 2 groups

of students at the Wroclaw University of Technology. One group was using pair

programming and the other solo programming. The results indicate that the BC

and MSI scores didn't have significant difference between the 2 groups. After

doing a more selective analysis by removing a number of projects the authors

again didn't find significant difference on the scores between the different groups.

The authors conclude that further research is necessary especially research that

will focus on larger more complex projects that have more chance to benefit from

pair programming.

Müller, M. et. al. (2006) [37] performs an experiment to examine the cost of

pair design phase on pair programming and solo programming. The authors split

the pair programming phase into 2 different phases, pair design phase and pair

implementation or solo implementation. Pairs are created for pair design phase

Page 22 of 60

and they either split for solo implementation or continue for pair implementation

phase. Results show that if programs of similar correctness level have to be

developed then the costs are the same for solo or pair programming. Also the

authors couldn't reject the hypothesis concerning the number of errors of both

groups. Both groups had similar number of errors, and only different kind of errors,

although the authors state that this might be affected by the small data set.

Authors conclude that pair design phase might be an alternative to the pair

programming process.

Müller, M. et. al. (2007) [39] in their experiment examine 42 programs

developed by students consisted of both pairs and solo programmers to identify if

pair programmers make different kind of mistakes than solo programmers. The

results indicate that pair and solo programmers make the same algorithmic

mistakes but pair programmers make less faulty expression defects. Also it seems

that for complex and challenging problems, such as a technological problem

where the solution is easy to be identified then a pair of programmers might be a

better choice, offering reduced probability of failure and not necessarily doubles

the personnel cost.

Canfora, G. et. al. (2007) [41] presents an experiment performed with

professional software developers in a Spanish company. The authors investigated

the effects of pairs when they are applied not in the coding phase but in the

designing phase. Pair designing was found out that it improves quality but it slows

down the task. It seems that pair designing is less efficient that pair programming.

In conclusion with pair designing it is more easy to predict the quality but it

becomes more difficult to predict the development time.

Choi, K. S. et. al. (2008) [42] explores, in an experiment, the impact of

personality on pair programming. The authors used a group of 68 undergraduate

students and 60 master's degree students and split them into 3 groups based in

their Myers–Briggs Type Indicator (MBTI) type. One group had students who were

alike in MBTI, in the second group students were opposite, and in the third group

Page 23 of 60

students were diverse (partially alike and partially opposite). Results show that the

productivity level was much higher for the group of students that had a diverse

type of MBTI. Their differences provide a “checks and balances” system that helps

them stay on track and find solutions more easily and faster. While their similarities

help them hide their differences and gives them a greater sense of compatibility.

Completely opposite MBTI type group may yield a better end product but it had

lower productivity than diverse group although still much better than completely

alike group, which it seems that is not suitable for pair programming as completely

alike personalities lose too much productivity.

Müller, M. et. al. (2005) [43] conducted an experiment between 38 students

at the University of Karlsruhe. The authors investigated the difference, especially

in development cost, between pair programming and solo programming with the

added factor of peer review. Results indicate that both techniques end up having

the same development cost if the same level of correctness is needed for the

project. If different level of correctness is taken into account then pair

programming produces programs of better quality at the expense of higher costs

than solo programming. Authors conclude that further research is necessary, firstly

by using professional programmers and not students and secondly by using a

larger test group to obtain statistic significant results.

Thomas, L. et. al. (2003) [44] examined the effect of attitude on pair

programming. 60 students were divided into pairs and then further divided into

attitude groups. The authors noted here that the ending groups were too small and

statistical significance was not easily achieved. The attitude difference was a scale

between code-warriors (very confident students about their programming skills)

and code-a-phobes (not at all confident students about their programming skills).

Results showed that, overall, students enjoyed pair programming and believed

that it helped them. Further analyzing the results shows that less confident

students enjoy pair programming the most and very confident students like pair

programming the least of all. Very confident students like pair programming even

less if they are grouped with different attitude students and if they have to pair they

Page 24 of 60

prefer pairing with same attitude level (confident) students.

Desai, C. et. al. (2009) [49] reports on an experiment that was taken at a

University using students of CS1/CS2 classes along with a control group. The

authors concluded that TDD didn't greatly affect student's product quality but it

does help them to learn how to test their code. On the other hand instructor's effort

didn't increase by the extra introduction of TDD into the curriculum.

Hanks, B. et. al. (2008) [52] examined students at Fort Lewis College to find

out if solo programmers make the same mistakes as pair programmers. Results

were positive, pair programmers do make the same mistakes as solo

programmers, with the difference that pair programmers are able to solve most of

those problems, especially low-level problems, alone and thus not requiring

assistance. This ends up increasing student confidence.

4.1.2 Case / Field Studies

In the following paragraphs there will be a description of the case and field

studies. Table 2 shows a summary of the details of those studies.

Table 2

Page 25 of 60

ID Author Type of Study Research Fie ld Results

1 Tolfo, C. et. al. Case/Field Study Agile Methods Professional 3 Companies

2 Tolfo, C. et. al. Case/Field Study XP Professional 6 Companies

5 Case/Field Study Agile Methods Professional N/A

6 Case/Field Study Scrum Professional 16 Programmers

8 Case/Field Study Scrum Professional N/A

10 Case/Field Study XP Professional N/A

11 Case/Field Study XP Professional N/A

15 Case/Field Study Agile Methods Professional 80 Employees

16 Case/Field Study XP Student N/A No signif icant ef fort dif ference.

18 Case/Field Study Agile Methods Professional N/A

21 Lan, C. Case/Field Study XP Professional 22 Programmers

24 Laurie, W. Case/Field Study Professional N/A

25 Case/Field Study Professional N/A 50% low er defect rate. No productivity decrease.

Research
Environm ent

Population
Size

1 of 3 Companies adapted succesfully. Organizational
culture problems.

Organizational culture should be taken into account w hen
adapting XP.

Petersen, K. et.
al.

Agile methods have positive as w ell as negative ef fects that
need to be considered w hen adapting.

Moe, N. et. al.
Scrum adaption had problems w ith shared leadership. Agile

methods need to give advices on shared leadership.

Lee, S. et. al. Distributed agile projects are feasible. 30% improvement in
productivity af ter adapting Scrum.

Layman, L. et. al. Low er defect density pre- and post-release. Productivity
w as same.

Layman, L. et. al. Distributed agile project w as successful. Communication is
critical in such a project.

Hanssen, G. et.
al.

Customer engagement very important. Visibility of project
increased.

Germain, É. et.
al.

Fogelström, N.
et. al.

Overall agile methods cant be used w ith MDPD projects, but
certain practices can be used.

Agile practices can benefit large scale projects w ith a few
changes. Up-front should be used despite being discouraged

in agile.
Test Driven

Development
40% low er defect density. Less time debugging. Risk

minimized. No producitivity decrase due to testing.
Maximilien, E. et.

al.
Test Driven

Development

C. Tolfo et al. (2009) [1] investigates 3 companies to identify the effect that

organizational culture has on the implementation of agile methods. Only 1 of the 3

companies reported successful adaptation of the agile method. The other 2

companies weren't fully adopted agile methods and their organizational culture

was conflicting. He found out that by representing and visualizing the different

cultural levels of the organization it makes it easier to adopt an agile method

successfully. Those levels have to be understood because sometimes companies

misunderstood them and don't fully adopt the agile method. So if a company faces

problems adopting an agile method, it must be looked up if the culture of the

company hinders the adoption. C. Tolfo et al. also states that organizational culture

doesn't involve only the operational and tactical context but also the strategical.

This strategical context includes investors, managers and even customers. All

those entities can affect the adoption of the agile method, so before attempting to

adopt one, it must be discussed extensively because the strategical context can

act as a barrier to the agile method adoption. The first step for adopting and agile

method should be the identification of the company's cultural levels. These cultural

level exist for large as well as small and new companies.

Page 26 of 60

29 Case/Field Study Professional N/A

30 Case/Field Study Professional 2 Projects

35 Case/Field Study Student 100 Students

38 Case/Field Study Professional 4 Projects

45 Laurie, W. Case/Field Study Student 41 Students

46 Case/Field Study Simulation 4 Projects

47 Case/Field Study Professional 2 Companies

48 Proulx, V. K. Case/Field Study Student N/A

50 Case/Field Study Student 13 Students

51 Case/Field Study Student 140 Students

54 Case/Field Study Student 554 Students

Bhat, T. et. al. Test Driven
Development

TDD requires more time but produces code w ith better
quality.

Damm, L.-O. et.
al.

Test Driven
Development

Project cost measured by ROI w as 5-6% less. Fault cost
measured by AFC w as 30% less. Lead time decreased.

Possibility for more positive effects.

Bipp, T. et. al. Pair
Programming

Pairs used time more eff iciantly requiring less time than solo.
More code know ledge, higher quality code. Minor loss in

eff iciency.

Hulkko, H. et. al. Pair
Programming

Same defect number for solo and pair programming. Pair
programming more suitable for f inding mistakes on small or

complex code.
Pair

Programming
Higher quality code in less time for pairs. Pair pressure has a

positive ef fect.

Melis, M. et. al.

Test Driven
Development /

Pair
Programming

Pair programming and test driven development overall
decrease defects, KLOCs and increase w orkload. Same

quality w ithout PP and TDD increases w orkload very much.

Chong, J. et. al. Pair
Programming

Pairs more effective w hen they sw itched 'driver' and
'navigator' positions. Same skilled programmers more

ef fective for pairing. Early pair sw itching is recommended
but not later.

Teaching w ith
Test Driven

Development

Better performance and low er chance for failure. More
appreciation f rom companies.

Simon, B. et. al.
Teaching w ith

Pair
Programming

Solo programming w as found to be more lonely and stressful
w hen encountered dif f iculties. Faster problem solution for

pairs. Pair scheduling w as a problem.

Janzen, D. et. al.
Teaching w ith

Test Driven
Development

Test f irst students scored higher grades and learned better
how to test.

McDow ell, C. et.
al.

Teaching w ith
Pair

Programming

More conf ident and prof icient students. Higher grades for all
pairs suggest no 'easy ride' for low skilled students. Female

programmers benefit f rom pair programming.

C. Tolfo et al. (2009) [2] on another study about the influence of

organizational culture on the adoption of Extreme Programming (XP), investigated

6 companies. The results were that there is a relation between successful

adaptation of XP and company's culture, as mentioned in [1]. It is important for

companies to evaluate their culture before moving to the adoption of an agile

method. In this process questionnaires can help but they can't be used alone

because they don't always yield valid results. Interviews can also be used, as well

as an observer. All those cultural conflicts can be the cause of companies unable

to adopt XP throughout, and they remain only to the adoption of a specific XP

practice and while some practices encounter positive culture, some other

encounter negative.

Petersen, K. et. al. (2009) [5] conducted a study to compare issues and

advantages of existing empirical results on agile methods with an industrial study

in a large-scale project. Results show that when adopting agile methods in large-

scale projects many advantages occur on one side of the project but on the same

time new issues arise on some other side. For example Petersen, K. et. al. state

that using small teams increases control over the project but raises issues on the

management level where the coordination of the projects has to take place. The

study identified almost no new advantages of agile methods but new issues that

haven't been mentioned in previous literature were found. The study states that

software companies need to choose agile practices carefully because often only

the advantages are taken into consideration and not the possible drawbacks that

those practices might have.

Moe et. al. (2010) [6] conducted a nine month field study in a professional

software development team by introducing them to the Scrum model. Results

show that the team had difficulties adopting Scrum. One of the reasons was the

difficulty to implement self-managing teams, as agile software development

proposes. There was a lack of trust between the Scrum master and the members

of the team as well as lack of a shared mental model. Scrum and agile methods

Page 27 of 60

offer no advices on how shared leadership should be implemented. Also highly

specialized skills and a corresponding division of work were factors that hindered

effective teamwork.

Lee, S. et. al. (2009) [8] presents a study of distributed agile project

management. Specifically it examines the My Yahoo! 'Zorro' and My Yahoo!

'Chameleon' projects. 'Zorro' was a project using non-agile methods that was

launched internationally and had many problems including localization problems

and much time consumption. With 'Chameleon' the My Yahoo! team implemented

Scrum. The launch was more successful with up to 30% improvement in the

product quality and more customer satisfaction. Lee, S. et. al. suggest that

international Scrum masters should be replaced by regional Scrum masters, and

become regional representatives. Furthermore they state that mutual respect is

the key to build trust in a distributed environment and teams need to build trust

and respect of cultural differences. They conclude and suggest to other companies

to implement distributed agile as they will find that their project quality and

productivity will increase.

Layman, L. et. al. (2006) [10] explains a study that was undertaken to

examine the adoption of Extreme Programming (XP) to Sabre Airline Solutions

software company. The authors noticed that among all the XP practices, stand-up

meetings and continuous integration were the most popular and the ones that had

positive opinions. Testing techniques, such as unit tests and TDD, weren't used

too much. Developers said that due to the large amount of legacy code that

existed before adopting XP, unit tests were difficult to perform as they would

require considerable effort. Developers also didn't write tests in order to meet the

deadlines and because they thought that testing the whole legacy code wasn't cost

effective. Pair programming was only used in complex situations and was

abandoned again in order to meet deadlines. Collective code ownership had a

positive opinion but because the project was large some specific developers had

specialized knowledge of some parts of the code. A drawback on collective code

ownership was observed where developers had decreased amount of

Page 28 of 60

responsibility for poorly written code because they weren't the only ones

responsible for that part of code. They conclude that Sabre team showed similar

pre-release defect number and lower defect removal efficiency. Also Sabre team

released the project with lower number of defects, and in total (post-release and

pre-release) defects were lower than industry averages, although they state that

the results might need further investigation.

Layman, L. et. al. (2006) [11] conducted an industrial case study to examine

a distributed team in USA and Czech Republic using Extreme Programming (XP),

and how they managed to create a successful project. Their findings agree with

Lee, S. et. al. (2009) [8] that distributed software teams can successfully adopt

agile methods. Specifically he points out some recommendations that make a

distributed agile team to create successful software products. Distributed agile

teams should define a person to play the role of the customer immediately after

the project is started. The customer must make decisions upon the project and

guide the developers, as well as having a big interest in the project. Furthermore it

is suggested that when the project management teams and the development

teams are separated someone should take up the role of communicating daily with

both of those teams and can speak all the languages involved. Also when face-to-

face communication is not possible the teams can use e-mail listserv to increase

communication and provide quick responses. Finally they suggest the use of a

globally available project management tool (such as XPlanner) to monitor the

project at all times. According to the authors all those recommendations are

essential for a distributed team to implement agile methodologies and create a

communication-rich environment.

Hanssen, G. et. al. (2006) [15] in a case study examined the effect of

customer engagement in an agile project. The study involved a company that

changed their development process to an agile one. Agreeing with other studies

he mentions that customer cooperation with the project is very important and

motivated the developers. Also developer's confidence increases as a result of the

continuous settlement of objectives. Visibility of the project was also increased

Page 29 of 60

after the adoption of agile methods. Furthermore they state that there was an

increase in cost for running the agile customer engagement practices. They also

state that short iterations might expose the company to a risk, and that its better if

a large number of customers is used so developers can capture effectively the all

possible needs.

In a case study performed among six groups of students, Germain, É. et. al.

(2005) [16] investigated the effect of effort between 2 software development

methods. From the traditional methods area they used UPEDU and from the agile

methods area they used XP. Results didn't show a significant difference between

the effort required for the stages of each process. One process required more

effort on one area while the other on another area. But the overall effort was

independent from the process that was used. They also noticed no significant

productivity reduction to the UPEDU team for constructing explicit artifacts

although the students didn't really realize the need for those artifacts. They state

that the project was small and that might affected that result.

Another article of Fogelström, N. et. al. (2009) [18] investigates if agile

principles can be adopted in a market driven software product development

(MDPD). MDPD doesn't focus on one customer (as agile methodologies propose),

instead it focuses on a mass market. The study was conducted at Ericsson.

Ericsson was using traditional methodologies and they moved to an agile

environment. Results were negative. A misalignment of the properties of agile

development and MDPD was observed. 'Evolving release scope', 'feature

orientation' and 'reactive development', all contradict with the principles of MDPD.

Agile methodologies having build with a focus to the project, lack support for a

long-term product development focus. They conclude that agile methodologies can

hinder product development if they are applied to a MDPD focused project, but

certain practices might be able to be used by MDPD projects for example

practices that minimize time spent on analyzing pre-project decisions.

Lan, C. (2004) [21] examines an organization that adopted agile practices in

Page 30 of 60

a large scale project. Results show that with a few changes to the agile principles,

agile methodologies can be adopted to large scale projects. Specifically up-front

design despite being discouraged in agile principles, is necessary for large scale

projects. Also it is better for companies with large scale projects to implement short

releases with a layered approach. Short release cycle will not have fixed duration

but it will depend on the layers and tasks. Pair programing can also be used but

only in some specific situations like unit testing and test-case development. In

conclusion agile principles can benefit large scale projects and offer them faster

software development and they can be effectively adopted to large scale projects

but some changes need to happen to the agile principles in order for the project to

be successful.

Laurie, W. et. al. (2003) [24] explains a case study that was conducted at IBM

that compared 2 teams developing a legacy product using traditional approaches

and a new product using TDD approach. They noticed a significant reduction in

defect rate for the TDD team. Specifically the TDD team had almost 40% lower

defect rate than the legacy team. In the meantime TDD team developers despite

spending more time testing, they spent less time debugging. Productivity was also

same between the 2 teams. They conclude their study stating that TDD had

helped them minimize risk because problems appeared much earlier.

In another study at IBM, Maximilien, E. et. al. (2003) [25] reports same

results. Product defect rate by using TDD was reduced by 50%. Meanwhile

productivity didn't decrease by the time spent for testing.

Bhat, T. et. al. (2006) [29] presents a case study that was taken place in

Microsoft in two divisions, Windows and MSN. The case study aimed to investigate

the effect of TDD on program code and quality. Results show that projects using

TDD required more time. This is to be expected because extra tests are being

performed. Also TDD projects resulted in a better code quality by at least 2 times.

The authors conclude that further investigation is needed especially to investigate

the cost between requiring more time and producing better code.

Page 31 of 60

Damm, L. et. al. (2006) [30] conducted a case study that aimed to test TDD

on component level instead of class/method level. They used 2 projects at

Ericsson AB. to compare them to their similar predecessors that weren't using

TDD approach. The authors measured Affordable Fault Cost (AFC) and Return on

Investment (ROI). They state that especially with ROI despite being positive with

the TDD approach that “the real benefits come in subsequent releases”. Results of

the case study showed that the TDD investment had a significant ROI from the

decreased fault costs. And since the decreased fault costs were noticed due to

decreased fault slipping through the stages of the project, it is likely that the overall

end project quality was increased due to lower number of errors. Lead time of

each process was also decreased since test leaders stated that bug fix deliveries

were the most important factor for lead time. Decreased error rate and the overall

TDD approach also increased the delivery precision, but the authors state that

concerning delivery precision results may not be 100% correct because there are

many factors that affect delivery precision. The total fault cost, measured using

AFC, of the project was 30% less that with the traditional approach and the total

project cost, measured using ROI, became 5-6% less. The authors conclude that

by using TDD there might be more beneficial factors that are hard to measure, like

increased company maturity and increased developer motivation.

Bipp, T. et. al. (2008) [35] presents an extensive case study that was taken

place at the University of Dortmund, Germany. 13 software development teams

with approximately 100 students were examined. Teams were divided into two

groups, one that used pair programming teams, and the other that used solo

programmers. Conclusions of the study show that pairs gained more knowledge

about the project and used their time more efficiently and that led them to not

require more time than solo programmers. Furthermore testing and bug fixing is

much easier for pair programmers, they produce higher quality code and less

experienced programmers can be more easily integrated in pairs. The only

disadvantage that was noticed was a minor loss in efficiency.

Page 32 of 60

Hulkko, H. et. al. (2005) [38] conducted a case study to investigate the effect

of pair programming on the overall product quality of a project. They examined 4

industry software projects and the results were the following. Pair programming

was found especially useful during the first phases of the project and during the

last phase. Overall productivity wasn't found to be significantly different than solo

programming. Furthermore pair programming seems to be more suitable for

implementing complex tasks, for learning and for finding mistakes on simple code

than solo. Coding standard adherence had higher deviation for pair programming

and comment ratio was higher for pair programming. In conclusion, pair

programming, except on one case study, wasn't found to produce lower defects,

and that results contradicts to many literature data. The authors believe that pair

programming overall doesn't provide extensive quality benefits than solo

programming. Although more studies may be needed especially to distinguish

defect's severity between the 2 methods.

Laurie, W. et. al. (2000) [45] reports on a case study conducted at the

University of Utah between 2 groups of students, using pair programming and solo

programming. Results show that pairs produced higher quality code with fewer

errors and faster than solo programmers. This is important for industry because

delivering a product faster and a product that will need fewer maintenance

outweighs the minimal cost of using 2 programmers for the same task.

Furthermore another positive impact that was seen was the pair-pressure. Pairs

put pressure on each other and are less likely to spend their time doing something

else other than coding. Lastly most programmers that worked with pair

programming report that they enjoyed it and that they enjoyed their work more.

The only problems with pair programming exist when someone pairs with another

one of excess ego (he wants to do everything his way), or too less ego (he doesn't

contribute to the group at all).

Melis, M. et. al. (2006) [46] presents a case study performed by using a

simulator process based on 4 projects. They measured the KLOCs, the working

days, the defects and the user stories on different situations based on the use of

Page 33 of 60

pair programming (PP) and test-driven development (TDD). Results indicate that

by using PP the resulting defect density is reduced by 28%. and LOCs are

reduced by 35%. Overall, the use of PP increased working hours but decreased

defect density and produced a better design by reducing the LOCs. On the other

hand by using TDD defect density reduces by 65% and there was a 9% increase

in LOCs. TDD increases working hours (less than PP) and the needed test cases

increase the LOCs, but the resulting defect density is decreased (more than PP).

By using both PP and TDD, the working time increased by 32%, but the resulting

project source size decreased by 19% and the resulting defect density was cut to

half. If we try to achieve the same quality that is achieved with PP and TDD but

without using those techniques then the needed working hours increase by 145%.

Chong, J. et. al. (2007) [47] reports on a case study that involved 2 software

development teams in San Francisco Bear Area. Through their observations on

the 2 teams they conclude on the factors that companies should consider when

adopting pair programming. First they suggest that the usual recommendation of

'driver' and 'navigator' in the literature should not be so rigid. The pairs appeared to

be more effective when they switched between those 2 positions. They also felt

more engaged in their tasks when they used a keyboard or when they had the

opportunity to use it soon. This approach should be considered by the developers

of tools for pair programming. Those tools should help the transition between the

'driver' and 'navigator' role. Furthermore skill differences between pair

programmers should be taken into account. Most pair programmers don't like to

pair with different skilled programmers. There seems to be an exception when the

lower skilled programmer is new to the company. Lastly pairs can change at the

first stages of the project and when the tasks are small because it helps to spread

code knowledge between the team, but at later stages it should be avoided

because it can break up an effective pair and introduce a programmer new in the

task.

Proulx, V. et. al. (2009) [48] presents a case study that explores the effects of

TDD (test driven development) when it is introduced in a university curriculum.

Page 34 of 60

Students after taking the curriculum had better performance and had lower chance

for failure. Also students who had taken TDD curriculum had more chances to co-

op with professional programmers and companies found them to be more skilled

than master's degree students. Overall the students understood better the whole

programming language and its details.

Simon, B. et. al. (2008) [50] performed a case study that consisted of

students of 2 institutions that pair programmed in CS1 class and then continued to

work alone in CS2. Students stated that it was more easier to understand some

aspects of programming when working in pairs. They find solo programming as

'lonely' and 'stressful' when they encounter difficulties and they can more easily

solve those difficulties when they work in pairs. Furthermore they can find more

solutions to their problems when working in pairs. Depending on the time

necessary to complete the task, student's responses varied. It seems that the

good students can finish their tasks faster when they program solo. Here emerged

a problem with pair programming that was the scheduling. Students had problems

to schedule hours that they should meet and program together. Also students that

program solo find it more exciting when they complete the tasks alone. On the

other hand pair program is noted as more social and an opportunity to meet other

students. Lastly many solo programming students confessed that when they had

problems they contacted a fellow student to help them.

Janzen, D. et. al. (2008) [51] conducted a case study on students to test the

effects of TDL (test driven learning). They used 2 groups of students, one that was

using test-first and one that was using test-last. The authors concluded that test-

first helped students write more unit tests and it also helped them write more tests

even when they changed back to test-last. Test-first students also scored higher

grades and required less time than test-last students.

McDowell, C. et. al. (2006) [54] conducted a case study to investigate the

effect of pair programming on 554 students at the University of California-Santa

Cruz. The authors concluded that pair programming produces more confident and

Page 35 of 60

proficient programmers. Paired students also had higher grades and more

success course completion rate and that result suggests that students don't “use”

their pair just to pass the courses. Pairs produce more quality code and are more

confident, agreeing with previous studies. Lastly women seem to benefit from pair

programming especially in a field that has low women representation, specifically

who work in pairs have higher retention rates that solo programming women.

4.1.3 Surveys / Reviews

Following the research of case / field studies, this review will now investigate

surveys and reviews and provide an analysis of the papers below. Table 3 has the

summary of those papers.
Table 3

Salo et al. (2008) [4] made a survey concerning 13 industrial organizations in

35 different European countries. He examined both companies that have adopted

agile methods as well as companies that haven't. 54% of the companies that have

adopted agile methods are applying XP practices. The most used practices were

found to be: open office space (66%), coding standards (61%), 40h week (59%),

continuous integration (44%) and collective ownership (42%). The least used

practices were: TDD (41%), pair-programming (33%), collective code ownership

and on-site customer (30%), simple design and planning game (28%). From the

Page 36 of 60

4 Survey/Review Agile Methods Professional 13 Companies

9 Survey/Review Agile Methods Literature 33 Articles

12 Survey/Review Agile Methods Professional

13 Survey/Review XP Professional 27 Programmers

14 Survey/Review Agile Methods Professional

22 Survey/Review Agile Methods Professional

33 Begel, A. et. al. Survey/Review Professional

40 Survey/Review Literature 18 Articles

53 Survey/Review Literature Student 18 Articles Student code had few er defects. Productivity increased.

70 Scott W. Ambler Survey/Review Agile Methods Professional

Salo, O. et. al. 54% applied XP, 27% applied Scrum. Most companies that
applied Agile methods w ere satisf ied.

Dybå, T. et. al. XP most used. Companies and customers satisf ied. On-site
customer and pair programing reported as exhaustive.

Hansson, C. et.
al.

900+
Programmers

Most companies had agile characteristics despite not using
agile methods. Examples include changing requirements and

customer relationship.
Bow ers, A. et.

al.
Metaphor, acceptance tests, on-site customer least used. All

practices should be used for successful adaption.

Chow , T. et. al. 109 Agile
Projects

High caliber team, proper agile techniques practice, agile
delivery strategy the success factors for adaption.

VersionOne 2391
Programmers

Fast delivery and changing requirements most praised agile
benef its. Up front planning is bigest concern. Scrum most
used. Organizational culture is biggest barrier. Increase in

agile use from 2007.
Pair

Programming
487

Respondents
More than 60% of developers believe that pair programing

w orks w ell and that it produces high quality code.

Hannay, J. E. et.
al.

Pair
Programming

Increased quality for complex tasks at the expense of
increased ef fort. Novice programmers achieve higher

correctness w ith pair programming.
Desai, C. et. al.

781
Respondents

69% use agile methods. 77% of projects w ere 75-100%
successful. Co-located teams are the most successful. Small

team and 2 w eek iterations are most used.

applied practices nearly 90% were rating them as useful and a 5,8% were rating

them as harmful. Concerning Scrum 27% stated that they apply Scrum practices

often. Product Backlog is the most favored practice with a 24%. The rest Scrum

practices weren't used that much. 77% were satisfied from the Scrum practices

and 11% were negative towards them. Salo et. al. also noted that the experienced

usefulness of XP and Scrum was much higher than the expected usefulness. In

companies that haven't applied XP 57% were positive (against 90%) and 28%

were negative (against 5,8%). For Scrum the positive side was 28% (against

77%). Also there seems to be a fairly low knowledge of Scrum practices (20% of

respondents answered 'I don't know' on the questionnaires). Salo et. al. concludes

that despite the various limitations of the survey, a positive result was observed

after the adoption of XP and Scrum practices in the software companies.

Dybå, T. et. al. (2008) [9] presents the results of a systematic review on

empirical studies of agile development. XP was the method used by almost all the

companies in the primary studies of this review. They mention that XP is more

suitable for small companies rather than large-scale projects. They report that

most agile practices are easy to adopt and work well. A benefit of XP was that it

flourished on many diverse company environments. Customers are satisfied with

agile methods although on-site customer can sometimes be stressful. Companies

and developers are also satisfied with agile methods although some find pair

programming to be an exhaustive practice. Lastly agile methods seem to yield

better code quality although the authors state that this result might be biased.

They conclude that their strength of evidence wasn't not enough and that further

research might be necessary.

Hansson, C. et. al. (2006) [12] describes a survey made between various

professional software developers with the purpose to examine if existing industrial

development processes have agile characteristics. They found out that industries

have more agile practices than they are aware of. Despite traditional practices

stating that requirements should not change in the middle of the development

process, all companies tested, accept new requirements or change already

Page 37 of 60

accepted ones. Iterative development was also observed. Although only one

company implements this approach, the other companies release more or less

frequent updates. Most companies also had long-term relationship with the

customer, a characteristic that is not part of the traditional software engineering.

They also found that innovativeness on projects has more agile characteristics

than traditional methods, which relate more to project size and criticality. Hansson,

C. et. al. finalizes their results by stating that it all depends on the characteristics of

not only the company but of the individual projects also.

Bowers, A. et. al. (2007) [13] presents a survey that was taken. The survey

was conducted between 27 developers on different software companies. Results

show that among the least used agile practices was the metaphor. They attempt to

explain that by saying that metaphor is probably abstract and that different skilled

developers cant easily recognize a single metaphor. They continue by stating that

despite unit testing and TDD was popular, acceptance tests weren't that much. But

lack of acceptance tests can reduce developer confidence for refactoring. Another

practice that wasn't used much was, by surprise, on-site customer. On-site

customer is one of the most important practices of agile and the absence of it can

greatly hinder agility of the project. And worst of all developers may end up taking

the role of customers. Bowers, A. et. al. conclude that in agile methodologies all

their practices should be used because they complement each other and their

weaknesses. If that is not possible then the developers need to understand the

intent of each practice very well so they can find alternative ways to overcome the

weakness that will arise from the absence of that practice.

On another survey study Chow, T. et. al. (2008) [14] presents a survey study

that gathered data from 109 agile projects across 25 countries. They found out

that many success factors that exists in the existing literature are not correct. Only

10 out of their 48 hypothesis were confirmed. Specifically they found that the

success factors for an agile project are, a) having a high caliber team, b) proper

practice of agile development techniques, c) and a correct agile-style delivery

strategy. 3 more factors were identified that may contribute to success in some

Page 38 of 60

cases. Those include, a) agile-friendly environment, b) good agile project

management process, c) strong involvement of the customer. They finalize their

report by stating that as long as those 3 factors are followed then the agile project

will probably be a success and no more unnecessary factors need to be

considered.

A survey conducted by VersionOne (2008) [22] shows some interesting

results. The survey conducted between 2391 participants of 80 countries. The first

interesting result shows that 57% of the participants use a distributed agile

approach. This agrees with some articles that we mentioned before that distributed

agile approach can and is used by companies. The most important factors that

companies considered for adapting agile methodologies was the fast software

delivery and the increased ability to respond to changing requirements, followed

by increased productivity and software quality. Up front planning seems to be the

biggest concern of software companies before adapting agile principles. Scrum

and Scrum/XP hybrid are the most used agile methodologies. Especially Scrum

was chosen by almost half of the companies tested. Organizational culture and

resistance to change are the biggest barriers for companies to further increase

their agile adoption. Iteration planning, unit testing, daily standup meetings and

release planning are the most used agile practices. Despite that all the agile

practices had an increase in usage compared to a similar 2007 survey. 76% of

companies report that 75%-100% of their agile projects were successful.

Begel, A. et. al. (2008) [33] explains a survey that was taken place in

Microsoft between a random 10% of the developers. Survey findings indicate that

64.4% of the respondents believe that pair programming works well with them.

That result lowers if the question moves up to the team and organization level.

65.4% of the respondents believe that pair programming produces higher quality

code. Time taken for pair programming is divided between respondents believing

that it takes less time than solo programming and respondents believe that it takes

more. Overall the first benefit that most respondents find in pair programming is

better code quality, followed by fewer bugs. The problems of pair programming

Page 39 of 60

include cost efficiency, scheduling issues and personality conflicts. Lastly survey

shows that most programmers would like to pair with people that have

complementary skills.

Hannay, J. et. al. (2009) [40] presents a meta-analysis of studies on pair

programming to investigate the effect it has on software projects. Pair

programming is suggested that it has positive effect and it helps achieving

correctness on highly complex programming tasks, also mentioned in Hulkko, H.

et. al. (2005) [38]. But this increased quality seems that it has the cost of higher

effort. Also pair programming is more suitable for simple tasks as it provides a time

gain. Programmers are able to achieve and complete tasks in pairs that would be

more difficult if they worked alone. Furthermore novice programmers when they

work in pairs are better able to achieve the same correctness level as senior

programmers. The authors conclude that if a company doesn't know the skill level

of its programmers but it does know the complexity level of the projects and its

tasks then they may implement pair programming when tasks are simple and time

is important, or when tasks are complex and quality is important.

Desai, C. et. al. (2008) [53] reports on a survey among studies that explored

the effect of TDD on students. Most studies report that students using TDD were

more confident, their code had fewer defects and generally their productivity

increased. There were some studies were TDD had no significant impact but the

majority of studies suggests that TDD does help students greatly, and introduces

them to program testing.

Ambler, W. S. (2007) [55] presents a survey that involved 781 participants in

software industry. From the results, 69% of participants use agile methods. Of

those that don't use it only a 12% says that they will never try it. 77% of projects

were between the range of 75%-100% successful, while projects that are co-

located seem to be the more promising for success. On the other hand off-shoring

projects have the least chance for success. 2 weeks, followed by 4 weeks are the

most used iteration lengths. 1-10 people are the most used team sizes in agile

Page 40 of 60

projects. Most companies have more than one agile project so it wasn't the first

time they used agile.

4.2 Limitations of the Review

The first limitation of this review lies in the selection of the studies and in the

process of data extraction. There is a chance that the search strings were not

sufficient enough to find all the available and important studies for the purpose of

this review. Also during the data extraction process, it was noted that some studies

lack sufficient description of some of their characteristics. For some articles it was

difficult to determine, for example, the clear description of the methods used.

Lastly this review included only studies with empirical and/or statistical data, so if

more studies were included instead of rejected, due to quality criteria, then results

might have been different.

5. Discussion
The discussion will be split into 3 categories. First the experiments and their

results will be discussed. Secondly the case and field studies and finally the

surveys and the reviews.

5.1 Experiments

A total of 21 experiments were included. Overall most reports from

experiments indicate a positive impact from agile methods. Teams that use agile

methods experience an overall better well being [3]. When adapting agile methods

customer and companies culture are very important [7]. Stakeholders enjoy agile

methods and the more agile methods that are used the more the stakeholders are

satisfied so this proves that even 'outside' people other than programmers can see

the benefit from agile methods [19]. A experiment [17] showed that System Design

Instability metric (SDI) can be effectively used with agile methods although it warns

that new design-effort can increase instability of project, but it should be noted that

it doesn't increase error fix and refactoring as some might think [20] and if the

Page 41 of 60

instability is taken into account then it might be safely applied [20]. Considering

pair programming (PP), one of the popular and maybe controversia20l agile

practices, the pairs should be different personality groups. Same personality

groups doesn't seem to work very well with PP. Specifically heterogeneous [32]

and diverse Myers–Briggs Type Indicator (MBTI) type groups [42] are the most

suitable. An experiment to students [44] showed that low level confident people

enjoy more PP because they have a partner to talk and solve the problems with so

this is a sign of suitable people to work in pairs. If it is difficult to implement PP as

a whole, it is also possible to split pair programming and only adapt a pair design

phase. Experiments show that pair design phase results in no increase in cost

[37], it also benefits companies as it causes better quality prediction although it

lowers the development time prediction [41]. Furthermore PP results in better

quality [39] [43], and it can greatly help with complex problems [39]. It is worth

mentioning that to achieve the quality of PP with solo programming the cost must

increase very much [43]. A recent study though found no significant difference in

error fixing capability (branch coverage (BC) and mutation score indicator (MSI)

scores) for solo and pair programming [36]. PP is also very useful for teaching CS

courses as it helps students with low grades [34] and it provides them with a

framework to solve their problems alone without needing teaching assistance [52].

Another practice of agile methods, test driven development (TDD), also showed

positive results. Experiments show that TDD increases productivity [23] and quality

[27] [31], but it needs more time in order to run the tests [27] [31]. Most developers

find TDD useful but some find it difficult to implement [28]. Same study that was

run for PP also shows no significant difference in BC and MSI scores for TDD [26]

and that is surprising as someone can expect better error fix coverage when

adapting TDD.

5.2 Case/Field Studies

24 Case and/or Field studies were included in the review. One important

factor when adapting agile methods is organizational culture [1] [2] and it should

be examined before adapting agile methods to see if it is compatible. Another

consideration for companies that want to adapt agile methods is that while some

Page 42 of 60

agile practices have benefits there is a chance that they will also have negative

effects [5] and this should be considered to not overlook them. Customer is also

very important for agile methods [15] and he should participate in the development

process for the project to be successful. While agile methods propose close

communication and face to face interaction with customers, distributed agile

projects have been found to be successful [8] [11], but communication is a very

important factor for those projects and measures should be taken to implement it

even from remote locations, and with some changes to the agile practices even

large scale projects can adapt agile methods [21]. Defect rate when using agile

methods decreases [10], especially if test driven development is also implemented

[24] [25] [29], although it raises time requirements as mentioned also in

experiments [29], at the same time effort doesn't increase for agile methods [16].

On the other hand market driven software product development (MDPD) projects

should not adapt agile methods but maybe some specific practices only can help

them [18]. Pair programming implemented through the use of agile methods also

results in better quality [35] [45] [46], although some found no difference in quality

[38]. Agile practices also benefit students when they implemented in universities.

They increase student's grades [51] [54] and they help students achieve better

performance [48]. One problem here is pair scheduling for student pairs [50] and it

should be taken into consideration or the pair wont experience the benefits.

5.3 Surveys/Reviews

Lastly 10 surveys and reviews were chosen. Results show that agile use

have increased through the years [4] [22] [70]. More and more companies find

agile methods and practices useful, particularly they praise fast delivery and

changing requirements [22]. On site customer seems to be the least used [13] and

is found difficult to implement [9] followed by pair programming [9], metaphor and

acceptance tests [13], but on the other hand some companies had successfully

adapted pair programming without problems [33] and here emerges again the

problem of organizational culture [22] that might affect proper adaption. It should

be noted here that the proper use of agile practices [14] and the correct

implementation of all [13] is an important factor for success. Despite some

Page 43 of 60

practices being hard to use, and this greatly depends on the organizational culture

also [22], companies should try to implement them when they try to go agile. Agile

methods and specifically pair programming if they are adapted successfully they

improve overall quality, as mentioned in previous studies. Lastly it is worth

mentioning that companies that haven't adapted agile methods, already have agile

characteristics and use agile practices without noticing it and even skip some of

the rules of their traditional methods to implement agile characteristics that can

benefit them more [12].

6. Conclusions
Results from experiments case studies and surveys seem to complement each

other. Agile practices have a benefit to the projects and they help improve overall

quality and cost of software projects [10] [23] [24] [25] [29] [27] [31] [35] [39] [41]

[43] [45] [46]. Success rate has been increased through the years and a recent

study [22] shows a 76% of companies reporting that 75%-100% of their agile

projects were successful. Both surveys, experiments and case studies agree in

one factor for success, and that is organizational culture [1] [2] [7] [22]. If culture is

not in line with agile characteristics it can greatly hinder adaption and even lead

the project to failure. Experiments and case studies also report customer

engagement [15] to be very important and surveys suggest that generally the more

agile practices a company adapts successfully the more chance the project has for

success [13]. The experiments that were included, report that agile methods are

very useful for small companies. Meanwhile case studies and surveys conclude

that even large scale projects can use agile practices (with some changes) and

benefit from them [21]. Distributed projects can also effectively use agile methods

but good communication should be achieved [8] [11]. Agile methods generally help

projects and very few studies reported no significant benefit [16] [26] [36].

Productivity is also improved in some cases [8] [23] [53], but time effort will most

likely increase [27] [29] [31] [40] [41] [46]. Most experiments report less defects by

using agile methods and practices such as pair programming (PP) and test driven

development (TDD) [20] [27] [31] [39] [43]. There were however some experiments

Page 44 of 60

[26] [36] [49] that report no difference. Case/Field studies follow the same line

with experiments, stating an overall 30-40% lower defect rate and a 30-70%

increased productivity [8] [10] [24] [25] [29] [30] [35] [45] [46] [48]. From surveys,

results show that developers agree with those findings reporting that they find

agile methods and practices to produce better quality code [4] [9] [22] [33] [70],

although some report difficulty adapting them [9]. Results from experiments show

that PP seems to be most effective when pairs have a diverse personality type [32]

[42]. Experiments show that in order to reach same quality with traditional methods

the cost and time raise too much [43]. Agile methods and practices can also

greatly benefit students and all the studies agree in that. Both experiments and

case studies conclude that student grades are improved after the introduction of

agile practices, such as PP, in the classroom [34] [48] [49] [50] [51] [52] [54].

Students more easily pass their classes, and require less assistance from

teachers as they can better solve problems on their own. A small percent of

students especially high skilled and high confident students didn't like pair

programming [44].

To conclude, agile methods since their first inception have increased in use

and most projects report success, especially with small teams, but even different

type of teams can benefit from them with some changes. This review hopes to

provide some guidelines for companies about some factors that should be taken

into consideration when adapting agile and also report on the current state of agile

practices. Further reviews are necessary especially by including even more

studies especially professional studies to further solidify the results of this review.

7. References
[1] Tolfo, C., R. S. Wazlawick, et al. (2009). "Agile methods and organizational

culture: reflections about cultural levels." Software Process: Improvement and

Practice 9999(9999): n/a.

[2] Tolfo, C. and R. S. Wazlawick (2008). "The influence of organizational culture

Page 45 of 60

on the adoption of extreme programming." Journal of Systems and Software

81(11): 1955-1967.

[3] Syed-Abdullah, S., M. Holcombe, et al. (2006). "The Impact of an Agile

Methodology on the Well Being of Development Teams." Empirical Software

Engineering 11(1): 143-167.

[4] Salo, O. and P. Abrahamsson (2008). "Agile methods in European embedded

software development organisations: a survey on the actual use and usefulness of

Extreme Programming and Scrum." IET Software 2(1): 58-64.

[5] Petersen, K. and C. Wohlin (2009). "A comparison of issues and advantages

in agile and incremental development between state of the art and an industrial

case." Journal of Systems and Software 82(9): 1479-1490.

[6] Moe, N. B., T. Dingsøyr, et al. "A teamwork model for understanding an agile

team: A case study of a Scrum project." Information and Software Technology In

Press, Corrected Proof.

[7] Misra, S. C., V. Kumar, et al. (2009). "Identifying some important success

factors in adopting agile software development practices." Journal of Systems and

Software 82(11): 1869-1890.

[8] Lee, S. and H.-S. Yong (2009). "Distributed agile: project management in a

global environment." Empirical Software Engineering.

[9] Dybå, T. and T. Dingsøyr (2008). "Empirical studies of agile software

development: A systematic review." Information and Software Technology 50(9-

10): 833-859.

[10] Layman, L., L. Williams, et al. (2006). "Motivations and measurements in an

agile case study." Journal of Systems Architecture 52(11): 654-667.

Page 46 of 60

[11] Layman, L., L. Williams, et al. (2006). "Essential communication practices for

Extreme Programming in a global software development team." Information and

Software Technology 48(9): 781-794.

[12] Hansson, C., Y. Dittrich, et al. (2006). "How agile are industrial software

development practices?" Journal of Systems and Software 79(9): 1295-1311.

[13] Bowers, A. N., R. S. Sangwan, et al. (2007). "Adoption of XP practices in the

industry - A survey." Software Process: Improvement and Practice 12(3): 283-294.

[14] Chow, T. and D.-B. Cao (2008). "A survey study of critical success factors in

agile software projects." Journal of Systems and Software 81(6): 961-971.

[15] Hanssen, G. K., T. E. F\, et al. (2006). Agile customer engagement: a

longitudinal qualitative case study. Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering. Rio de Janeiro, Brazil,

ACM: 164-173.

[16] Germain, É. and P. N. Robillard (2005). "Engineering-based processes and

agile methodologies for software development: a comparative case study." Journal

of Systems and Software 75(1-2): 17-27.

[17] Alshayeb, M. and W. Li (2005). "An empirical study of system design

instability metric and design evolution in an agile software process." Journal of

Systems and Software 74(3): 269-274.

[18] Fogelström, N. D., T. Gorschek, et al. (2009). "The impact of agile principles

on market-driven software product development." Software Process: Improvement

and Practice 9999(9999): n/a.

[19] Ferreira, C. and J. Cohen (2008). Agile systems development and

Page 47 of 60

stakeholder satisfaction: a South African empirical study. Proceedings of the 2008

annual research conference of the South African Institute of Computer Scientists

and Information Technologists on IT research in developing countries: riding the

wave of technology. Wilderness, South Africa, ACM: 48-55.

[20] Alshayeb, M. and W. Li (2006). "An empirical study of relationships among

extreme programming engineering activities." Information and Software

Technology 48(11): 1068-1072.

[21] Lan, C. (2004). How Extreme Does Extreme Programming Have to Be?

Adapting XP Practices to Large-Scale Projects. Hawaii International Conference

on System Sciences.

[22] VersionOne, (2008), 3rd Annual Survey 2008 “The State of Agile

Development”, Available at:

“http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf”.

[23] Huang, L. and M. Holcombe (2009). "Empirical investigation towards the

effectiveness of Test First programming." Information and Software Technology

51(1): 182-194.

[24] Laurie, W. (2003). “Test-Driven Development as a Defect-Reduction

Practice.”

[25] Maximilien, E. M. and L. Williams (2003). Assessing test-driven development

at IBM. Proceedings of the 25th International Conference on Software

Engineering. Portland, Oregon, IEEE Computer Society: 564-569.

[26] Madeyski, L. (2010). "The impact of Test-First programming on branch

coverage and mutation score indicator of unit tests: An experiment." Information

and Software Technology 52(2): 169-184.

Page 48 of 60

[27] Canfora, G., A. Cimitile, et al. (2006). Evaluating advantages of test driven

development: a controlled experiment with professionals. Proceedings of the 2006

ACM/IEEE international symposium on Empirical software engineering. Rio de

Janeiro, Brazil, ACM: 364-371.

[28] Janzen, D. S. and H. Saiedian (2007). A Leveled Examination of Test-Driven

Development Acceptance. Proceedings of the 29th international conference on

Software Engineering, IEEE Computer Society: 719-722.

[29] Bhat, T. and N. Nagappan (2006). Evaluating the efficacy of test-driven

development: industrial case studies. Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering. Rio de Janeiro, Brazil,

ACM: 356-363.

[30] Damm, L.-O. and L. Lundberg (2006). "Results from introducing component-

level test automation and Test-Driven Development." Journal of Systems and

Software 79(7): 1001-1014.

[31] George, B. and L. Williams (2004). "A structured experiment of test-driven

development." Information and Software Technology 46(5): 337-342.

[32] Sfetsos, P., I. Stamelos, et al. (2009). "An experimental investigation of

personality types impact on pair effectiveness in pair programming." Empirical

Software Engineering 14(2): 187-226.

[33] Begel, A. and N. Nagappan (2008). Pair programming: what's in it for me?

Proceedings of the Second ACM-IEEE international symposium on Empirical

software engineering and measurement. Kaiserslautern, Germany, ACM: 120-128.

[34] Braught, G., L. M. Eby, et al. (2008). The effects of pair-programming on

individual programming skill. Proceedings of the 39th SIGCSE technical

symposium on Computer science education. Portland, OR, USA, ACM: 200-204.

Page 49 of 60

[35] Bipp, T., A. Lepper, et al. (2008). "Pair programming in software development

teams - An empirical study of its benefits." Information and Software Technology

50(3): 231-240.

[36] Madeyski, L. (2008). "Impact of pair programming on thoroughness and fault

detection effectiveness of unit test suites." Software Process: Improvement and

Practice 13(3): 281-295.

[37] Müller, M. M. (2006). "A preliminary study on the impact of a pair design

phase on pair programming and solo programming." Information and Software

Technology 48(5): 335-344.

[38] Hulkko, H. and P. Abrahamsson (2005). A multiple case study on the impact

of pair programming on product quality. Proceedings of the 27th international

conference on Software engineering. St. Louis, MO, USA, ACM: 495-504.

[39] Müller, M. M. (2007). "Do programmer pairs make different mistakes than

solo programmers?" Journal of Systems and Software 80(9): 1460-1471.

[40] Hannay, J. E., T. Dybå, et al. (2009). "The effectiveness of pair programming:

A meta-analysis." Information and Software Technology 51(7): 1110-1122.

[41] Canfora, G., A. Cimitile, et al. (2007). "Evaluating performances of pair

designing in industry." Journal of Systems and Software 80(8): 1317-1327.

[42] Choi, K. S., F. P. Deek, et al. (2008). "Exploring the underlying aspects of

pair programming: The impact of personality." Information and Software

Technology 50(11): 1114-1126.

[43] Müller, M. M. (2005). "Two controlled experiments concerning the

comparison of pair programming to peer review." Journal of Systems and Software

Page 50 of 60

78(2): 166-179.

[44] Thomas, L., M. Ratcliffe, et al. (2003). Code warriors and code-a-phobes: a

study in attitude and pair programming. Proceedings of the 34th SIGCSE technical

symposium on Computer science education. Reno, Navada, USA, ACM: 363-367.

[45] Laurie, W. (2000). Strengthening the Case for Pair Programming. IEEE

Software. R. K. Robert, C. Ward and J. Ron. 17: 19-25.

[46] Melis, M., I. Turnu, et al. (2006). "Evaluating the impact of test-first

programming and pair programming through software process simulation."

Software Process: Improvement and Practice 11(4): 345-360.

[47] Chong, J. and T. Hurlbutt (2007). The Social Dynamics of Pair Programming.

Proceedings of the 29th international conference on Software Engineering, IEEE

Computer Society: 354-363.

[48] Proulx, V. K. (2009). Test-driven design for introductory OO programming.

Proceedings of the 40th ACM technical symposium on Computer science

education. Chattanooga, TN, USA, ACM: 138-142.

[49] Desai, C., D. S. Janzen, et al. (2009). Implications of integrating test-driven

development into CS1/CS2 curricula. Proceedings of the 40th ACM technical

symposium on Computer science education. Chattanooga, TN, USA, ACM: 148-

152.

[50] Simon, B. and B. Hanks (2008). "First-year students' impressions of pair

programming in CS1." J. Educ. Resour. Comput. 7(4): 1-28.

[51] Janzen, D. and H. Saiedian (2008). Test-driven learning in early

programming courses. Proceedings of the 39th SIGCSE technical symposium on

Computer science education. Portland, OR, USA, ACM: 532-536.

Page 51 of 60

[52] Hanks, B. (2008). "Problems encountered by novice pair programmers." J.

Educ. Resour. Comput. 7(4): 1-13.

[53] Desai, C., D. Janzen, et al. (2008). "A survey of evidence for test-driven

development in academia." SIGCSE Bull. 40(2): 97-101.

[54] McDowell, C., L. Werner, et al. (2006). "Pair programming improves student

retention, confidence, and program quality." Commun. ACM 49(8): 90-95.

[55] Beck K., Cockburn A., Jeffries R., Highsmith J., (2001) “Agile manifesto”,

http://www.agilemanifesto.org, 2-2010.

[56] Highsmith J., Orr K., Cockburn A., (2000) “Extreme programming in E-

Business Application Delivery”, http://www.cutter.com/freestuff/ead0002.pdf, 2-

2010.

[57] Cohen D., Lindvall M., Costa P., “An Introduction to Agile Methods”.

[58] Schwaber K., (2002) “Controlled chaos: living on the edge”,

http://www.agilealliance.org/

articles/articles/ap.pdf, 2-2010.

[59] DSDM Consortium, http://www.dsdm.org, 2-2010.

[60] Wikipedia, (2010), “Pair Programming”

http://en.wikipedia.org/wiki/Pair_programming, 2-2010.

[61] Beck K., (2003), “Test-Driven Development by Example”, Addison Wesley.

[62] Rajlich V., (2006) “Changing the paradigm of software engineering”,

Communications of the ACM 49 (8) 67–70.

Page 52 of 60

[63] D.C. Cliburn, (2003), “Experiences with pair programming at a small college”,

Journal of Computing Sciences in Colleges, 19(1).

[64] Salleh N., ”A Systematic Review of Pair Programming Research – Initial

Results”.

[65] B.A. Kitchenham, (2007) “Guidelines for performing Systematic Literature

Reviews in Software Engineering”, EBSE Technical Report, Software Engineering

Group.

[66] Greenhalgh T., (2001), “How to Read a Paper”, second ed., BMJ Publishing

Group.

[67] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K.

El Emam, J. Rosenberg, (2002), “Preliminary guidelines for empirical research in

software engineering”, IEEE Transactions on Software Engineering 28 (8) 721–

734.

[68] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik, and E. Gehringer, (2004),

“On understanding Compatibility of Student Pair Programmers”, Proceedings of

the 35th SIGCSE technical symposium on Computer Science Education.

[69] S. F. Freeman, Jaeger B. K., J.C. Brougham, (2003), “Pair programming:

More learning and less anxiety in a first programming course”, ASEE Annual

Conference Proceedings.

[70] Ambler, W. S. (2007), “Agile Adoption Survey 2007”, Ambysoft, Available at:

“http://www.ambysoft.com/surveys/agileMarch2007.html”.

Appendix A. Review Protocol

Page 53 of 60

Research Questions

The research questions that this review will address are the following:

• Can agile methodologies and its practices help software companies

develop software projects more effectively than traditional methods?

• Can agile methodologies help universities with teaching computer science

courses to students?

Search Process

The search process was a manual search of documents through a list of digital

libraries, conference proceedings and journals. The following list identifies those:

Journals and Conferences:

• Information and Software Technology (IST)

• Journal of Systems and Software (JSS)

• IEEE Transactions on Software Engineering (TSE)

• IEEE Software (IEEE SW)

• Communications of the ACM (CACM)

• ACM Computer Surveys (ACM Sur)

• ACM Transactions on Software Engineering Methodologies (TOSEM)

• Software Practice and Experience (SPE)

• Empirical Software Engineering Journal (EMSE)

• IET Software (IET SW)

• Proceedings International Conference on Software Engineering (ICSE)

• Proceedings International Symposium of Software Metrics (Metrics)

• Proceedings International Symposium on Empirical Software Engineering

(ISESE)

Digital Libraries:

Page 54 of 60

• ACM Digital Library (http://portal.acm.org)

• IEEEXplore (http://ieeexplore.ieee.org)

• CiteseerX Library (http://citeseerx.ist.psu.edu)

• ScienceDirect (http://www.sciencedirect.com)

• Wiley InterScience (http://www3.interscience.wiley.com)

• SpringerLink (http://www.springerlink.com)

Inclusion Criteria

Articles published until February 2010 were searched. Those articles should pass

the following inclusion criteria to be included.

• [Q1] Systematic Literature Reviews, Surveys, Experiments, Case and Field

Studies that are clearly identified as empirical researches containing

empirical data and/or experiments on the field of agile software

development and its practices.

• Papers of both students and professionals were included as long as they

have been published in a well-known and broadly recognized journal and/or

conference.

• [Q2] Papers that can help with the research on the research questions of

this review.

• Papers that passed the minimum quality criteria (mentioned in Quality

Assessment)

Exclusion Criteria

The following list contains the criteria with which some articles were excluded.

• Papers that haven't been published in a journal.

• Papers that didn't contain empirical data and were mostly theoretical

Page 55 of 60

http://www.springerlink.com/
http://www3.interscience.wiley.com/
http://www.sciencedirect.com/

researches and/or expert opinions.

• Papers that discuss the agile software development process and its

subcategories.

Primary Study Selection

Primaries studies will be selected by a single researcher and a list of the papers

that have been accepted as well as a list of the papers that have been rejected will

be kept.

Quality Assessment

Each paper will be assessed using the Critical Appraisal Skills Programme [66]

and by the principles of good practices for conducting an empirical research in

software engineering [67].

• Rigour: does the study follow a specific explained approach in the

implementation of the various methods used in the study?

• Credibility: does the author discuss possible bias and findings and are the

findings useful for the purposes of the study?

• Relevance: Are the findings useful for software companies and/or

researchers?

Rigour:

• [Q3] The research method that was followed was explained as to why the

specific one was used.

• [Q4] There is a description as to why the specific sample was selected and

with what criteria.

• [Q5] A control group was used to compare the results of the study.

• [Q6] There is a description of the data collection methods, as to how the

data were collected and why this specific method was used.

• [Q7] Data analysis methods were described concerning as to why those

methods were chosen, how the data were selected and if they are enough

Page 56 of 60

to answer the questions of the study.

Credibility:

• [Q8] Does the researcher identified his possible bias and the role he might

have played to the research?

• [Q9] The results were discussed, they were identified if they answer the

research questions and if the authors discuss the strength of their results.

Relevance:

• [Q10] Are the findings and results of the study useful and worthy for

companies and/or scientific research?

Data Collection

Study Descritpion

• Study identifier: unique id for the study

• Date of data extraction

• Bibliographic reference: author, year, title, source

• Type of article: journal article, conference paper, workshop paper, book

section

• Study aims: what were the aims of the study?

• Objectives: what were the objectives?

• Design of study: qualitative, quantitative (experiment, survey, case study,

action research)

• Definition of agile software development given in study

• Sample description: size, students, professionals (age, education,

experience)

• Setting of study: studies environment

• Data collection: how was the data obtained? (questionnaires, interviews,

forms)

• Data analysis: how was the data analyzed? (qualitative, quantitative)

Page 57 of 60

Study findings

• Findings and conclusions: what were the findings and conclusions?

(verbatim from the study)

• Validity Limitations: threats to validity

• Relevance: research, practice

The data will be extracted by one researcher.

Data Analysis

The data will be concentrated and categorized alphabetically in tables by study

type and author name, containing their basic information.

All the studies will be reviewed in order to answer the research questions

mentioned above.

• Can agile methodologies and its practices help software companies

develop software projects more effectively than traditional methods?

The papers that contain empirical data of companies that have adapted

agile methodologies will be reviewed. The success rate will be reviewed (if

any) and if it depends on any factors. Also projects (if any) that haven't

adapted agile methodologies successfully will be identified and the possible

reasons behind that.

• Can agile methodologies help universities with teaching computer science

courses to students?

This review will try to identify studies that contain data that show the

possible usefulness of agile methodologies to teaching computer courses to

students. The opinion of those students will be checked and if agile

methodologies can help for a better teaching experience.

Page 58 of 60

Appendix B. Quality Assessment Table

Page 59 of 60

ID Sam pling Total

1 1 0 0 0 1 0 1 1 4
2 1 0 0 0 1 0 1 1 4
3 1 1 1 1 1 0 1 1 7
4 1 1 0 1 1 0 1 1 6
5 1 0 0 1 1 0 1 1 5
6 1 0 0 1 1 1 1 1 6
7 1 1 0 1 1 1 1 1 7
8 1 1 1 1 1 0 1 1 7
9 1 1 0 1 1 0 1 1 6
10 1 1 1 1 1 0 0 0 5
11 1 1 0 1 1 1 1 1 7
12 1 0 0 1 1 0 1 1 5
13 1 1 0 1 1 0 1 0 5
14 1 0 0 1 1 0 1 1 5
15 1 0 0 1 1 0 1 1 5
16 1 0 1 1 1 1 1 0 6
17 1 0 1 0 1 0 1 0 4
18 1 1 0 1 1 0 1 1 6
19 1 0 0 1 1 0 1 1 5
20 1 0 0 1 1 0 1 1 5
21 1 1 0 0 0 0 1 1 4
22 1 0 0 0 0 0 0 0 1
23 1 0 1 1 1 1 1 0 6
24 1 1 0 1 0 0 1 1 5
25 1 1 0 1 0 0 1 1 5
26 1 1 1 1 1 1 1 1 8
27 1 1 1 1 1 0 1 1 7
28 1 0 1 1 1 0 1 1 6
29 1 1 1 0 1 1 1 1 7
30 1 0 1 1 1 1 1 0 6
31 1 0 1 0 1 0 1 1 5
32 1 1 1 1 1 1 1 1 8
33 1 0 0 1 1 1 1 1 6
34 1 1 1 1 1 0 0 1 6
35 1 0 1 1 1 0 1 1 6
36 1 1 1 1 1 1 1 1 8
37 1 0 1 1 1 0 1 1 6
38 1 0 0 1 1 0 1 1 5
39 1 0 1 1 1 1 1 1 7
40 1 1 0 1 1 0 1 1 6
41 1 1 1 0 1 0 1 1 6
42 1 1 1 1 1 0 1 1 7

Research
Design

Control
Group

Data
Collection
Methods

Data
Analysis
methods

Relations
hip

Findinds
Discussion

Valuable
Research

Page 60 of 60

43 1 1 1 1 1 0 1 1 7
44 1 0 0 1 1 0 1 1 5
45 1 0 1 0 0 0 1 1 4
46 1 1 1 1 1 0 1 1 7
47 1 0 0 1 1 0 1 1 5
48 1 0 0 0 0 0 1 0 2
49 1 0 1 1 1 0 1 0 5
50 1 0 0 1 1 1 1 1 6
51 1 0 1 1 1 0 1 1 6
52 1 0 1 0 1 0 1 0 4
53 1 0 0 0 0 0 1 1 3
54 1 0 1 1 1 0 1 1 6
70 0 0 0 0 0 0 0 0 0

Sum 54 23 27 42 47 13 51 44

	EKSOFYLO
	Abstract_ELLHNIKA
	Abstract
	PTYXIAKI

