
ALEXANDER TECHNOLOGICAL INSTITUTE OF THESSALONIKI

Development of an Embedded
GOOSE Router According to IEC

61850-90-5

Author:
Konstantinos AVRAMIDIS

Advisor:
Albert RUIZ

Supervisor:
Periklis CHATZIMISIOS

Thessaloniki, June 2014



Development of an Embedded GOOSE Router According to IEC 61850-90-5 1/57

Contents

1 Introduction 6

2 Purpose of the Project 8

3 PMUs Overview 10

3.1 Introduction to PMUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 IEC 61850 and GOOSE Messages 12

4.1 Introduction to IEC 61850 . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Benefits of IEC 61850 . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Communication Protocols used in IEC 61850 . . . . . . . . . . . . . . 14

4.3 GOOSE Protocol and IEC 61850-90-5 . . . . . . . . . . . . . . . . . . 15

5 GOOSE Router Prototype 17

5.1 Hardware components . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Mbed LPC 1768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 ARM Cortex-M3 architecture . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 WIZnet W5100 board . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Software Development Tools 21

6.1 First steps: Assembly development . . . . . . . . . . . . . . . . . . . . 21

6.1.1 GNU toolchain for ARM architecture . . . . . . . . . . . . . . . 21

6.2 NXP LPCXpresso IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 CMSIS code layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3.1 Background of CMSIS . . . . . . . . . . . . . . . . . . . . . . . 24



Development of an Embedded GOOSE Router According to IEC 61850-90-5 2/57

6.3.2 Areas of standardization . . . . . . . . . . . . . . . . . . . . . . 24

6.3.3 Organization of CMSIS . . . . . . . . . . . . . . . . . . . . . . 25

6.3.4 Using CMSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.5 Benefits of CMSIS . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4 Mbed online environment . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Software Development and Partial Tests 30

7.1 GPIO programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2 SPI programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2.1 Introduction to SPI . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2.2 SPI for the mbed board . . . . . . . . . . . . . . . . . . . . . . 34

7.2.3 Learning and testing SPI for W5100 chip . . . . . . . . . . . . 35

7.2.4 W5100 configuration . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 Ethernet programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Final Application and Results 47

8.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2 Final software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.3 Final result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Conclusions 51

Annex A Learning Applications and Testing 52

A.1 GPIO programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1.1 Developed with Assembly . . . . . . . . . . . . . . . . . . . . . 52

A.1.2 Developed with C . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.1.3 Developed with the online Environment . . . . . . . . . . . . . 54

A.2 SPI MCP2210 SPI Terminal . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Final Test with GOOSE Server . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 57



Development of an Embedded GOOSE Router According to IEC 61850-90-5 3/57

List of Figures

2.1 Scheme of the GOOSE router within the communication module . . . 8

3.1 General layout of a PMU . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Schweizer Engineering Laboratories PMU SEL-487E . . . . . . . . . . 11

4.1 Present automation system in the electricity sector . . . . . . . . . . . 13

4.2 Desired automation system using IEC 61850 . . . . . . . . . . . . . . 13

4.3 Illustration of protocol stack of general data . . . . . . . . . . . . . . . 14

4.4 General overview of the mapping of Synchrophasor Services . . . . . 16

5.1 Objective of the application prototype . . . . . . . . . . . . . . . . . . 17

5.2 Components of the application prototype . . . . . . . . . . . . . . . . . 17

5.3 1. Base Board, 2. Mbed LPC 1768, 3. WIZnet W5100 . . . . . . . . . 18

5.4 Pinout of the mbed board . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5 WIZnet W5100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1 LPCXpresso interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 CMSIS Struture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 CMSIS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 Online mbed environment running in Google Chrome . . . . . . . . . 29

7.1 LED 1 is turned on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 SPI bus: single master and single slave . . . . . . . . . . . . . . . . . 32

7.3 SPI bus: single master and multiple slaves . . . . . . . . . . . . . . . 32

7.4 Timing diagram showing clock polarity and phase . . . . . . . . . . . . 33

7.5 MCP2210 USB-to-SPI Protocol Converter . . . . . . . . . . . . . . . . 36



Development of an Embedded GOOSE Router According to IEC 61850-90-5 4/57

7.6 Testboard 1.W5100 chip, 2.MCP2210 USB-to-SPI Protocol Converter 36

7.7 Write operation example . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.8 Example of write operation in oscilloscope . . . . . . . . . . . . . . . . 37

7.9 Connection between the mbed board, the W5100 chip and the oscil-
loscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.10 Pinging with the W5100 chip . . . . . . . . . . . . . . . . . . . . . . . 42

7.11 Ethernet testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.12 Board-to-Board Ethernet Communication . . . . . . . . . . . . . . . . 46

7.13 Wireshark result with message. . . . . . . . . . . . . . . . . . . . . . . 46

8.1 Functionality of the GOOSE router . . . . . . . . . . . . . . . . . . . . 47

8.2 1.DK61 GOOSE sender, 2.Mbed board, 3.W5100, 4.GOOSE+UDP/IP
receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.3 UML activity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.4 WireShark capture with GOOSE message generated by the GOOSE
sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.5 WireShark capture with UDP message containing the GOOSE message 50

A.1 LED1 on with online environment . . . . . . . . . . . . . . . . . . . . . 54

A.2 Read operation, SPI Terminal . . . . . . . . . . . . . . . . . . . . . . . 55

A.3 Example of read operation in oscilloscope . . . . . . . . . . . . . . . . 55

A.4 Status of the switches . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.5 WireShark capture of GOOSE message with the status of each switch 56



Development of an Embedded GOOSE Router According to IEC 61850-90-5 5/57

List of Tables

4.1 GOOSE PDU fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7.1 Settings for turning on LED 1 . . . . . . . . . . . . . . . . . . . . . . . 30

7.2 SPCR Register bit values and explanation, bits 0,1 are not used . . . 35

7.3 SPI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4 Basic Settings for the W5100 . . . . . . . . . . . . . . . . . . . . . . . 39



Development of an Embedded GOOSE Router According to IEC 61850-90-5 6/57

1 Introduction

Few words about the SmartGrid
The consumption of electric power has increased as industry has developed. Envi-
ronmental problems originating in the use of fuel to provide energy have exacerbated
the need to develop new, renewable energy sources, such as wind and solar power.
These factors increase the complexity of power networks and make it more difficult
for power operators to manage power networks reliably.

Hence, new concepts of power-network management technology, such as the Smart
grid, and intelligent devices, such as Intelligent Electrical Devices (IEDs), have been
developed for various facilities and to create new applications [1].

The Smart Grid is somewhat intangible in definition and relevant scope. It is a term
which embraces an enhancement of the power grid - not just a traditional upgrade
of the grid, but a long-term vision for a future power system.

The Smart Grid is a modernization of the hole electricity system so that it mon-
itors, protects and automatically optimizes the operation of its interconnected el-
ements - from the central and distributed generator through the HV transmission
network, to industrial users, buildings, energy storage installations, electric vehicles,
thermostats and other household devices. It will have to face challenges such as
integration of renewable generation and storage devices, increase of consumer par-
ticipation, communications and computational ability [2].

Few words about IEC 61850
IEC 61850 is an important new international standard for substation automation
and communication. IEC 61850 was developed by the International Electrotechnical
Commission’s (IEC) Technical Committee 57 (TC57) architecture for electric power
systems. It was designed to achieve interoperability between different vendors. As
exposed in [3], IEC 61850 is an innovative approach that requires a new way of
thinking about substation automation that will result in very significant improvements
in Smart Grid communications.

Although IEC 61850 was developed for system interfaces between power facilities
for the automation of substations, its application field is expanding rapidly. Currently,
almost all power systems can be interfaced with other devices by using the IEC
61850 standard. Thus, interface devices with IEC 61850 are desirable. The IEC



Development of an Embedded GOOSE Router According to IEC 61850-90-5 7/57

61850 standard for the PMU interface has also developed as IEC 61850-90-5 [1].

Few words about PMUs
Phasor Measurement Units (PMUs) are devices which measure the phase of volt-
age and current in power systems, using a common time source for synchroniza-
tion. Time synchronization allows synchronized real-time measurements of multiple
remote measurement points on the grid. PMUs are also commonly referred to as
synchrophasors. They are considered the most important measuring devices in the
future Smart Grid [4].
The IEC 61850-90-5 is an extension for PMU communication and defines how to
use IEC 61850 services for PMU data transfer.

Brief Purpose
According to IEC 61850-90-5, PMU data shall be exchanged with Generic Object
Oriented Substation Event (GOOSE) messages and Sampled Values (SV) mes-
sages. These two are communication protocols defined in IEC 61850-8.1 and IEC
61850-9.1 respectively. They are not connection-oriented and are used only for
point-to-point streaming. This is the reason, GOOSE and SV messages run directly
over Ethernet.

The purpose of this project is to develop a device with proper firmware which roots
GOOSE frames to the internet. This project is a part of a bigger one and focuses
only in routing GOOSE messages. By routing these frames, the user can obtain real
time information about an electrical power system or maybe just a single IED.

Chapters 3 and 4 expose extended information about PMUs and the IEC 61850
Standard respectively. They are more detailed approaches to these topics.

Chapter 5 and 6 define the tools used, including hardware and software.

Chapter 7 describes the software development and partial tests made to reach the
final application code, which is specified in chapter 8.

Finally, chapter 9 include the conclusions of the project.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 8/57

2 Purpose of the Project

PMU

Voltage Current

GPSO(forOtimeOsynch.)

CommunicationOModule

lowOlevel

protocol GOOSE/SV
generator GOOSEOoverO

Ethernet

GOOSE/SV
router

GOOSEOoverOUDP/IP

Figure 2.1: Scheme of the GOOSE router within the communication module

IEC 61850-90-5 covers PMU communications and proposes to use GOOSE and SV
protocols to exchange data.

A PMU measures the phasor of voltage and current and it is synchronized by the
Global Positioning System (GPS). It exchanges these measurements with a com-
munication module. This communication module, at first, generates a GOOSE/SV
message with PMU measurements. This message runs directly over Ethernet for
point-to-point communication (between devices).

The purpose of the project is to implement a device that routes GOOSE messages to
the internet (the black box in figure 2.1). The implementation of a GOOSE messages
routing device could solve the routing issue, according to IEC 61850-90-5.

For this project some initial constraints were settled:

• Fast data processing. PMUs are expected to generate high data traffic. For
this reason, the GOOSE router shall be able to forward incoming GOOSE
messages at a high rate.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 9/57

• The GOOSE router prototype should be designed as an industrial solution.
This means that it should be based on manufactured components.

• For the implementation only open source tools should be used.

• Low price. The price of the whole prototype should as low as possible. The
components used were the most adequate, for the needs of the project.

Finally, the development of this project should help the author to acquire skills for
embedded software development.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 10/57

3 PMUs Overview

3.1 Introduction to PMUs

Voltage Current

PMU

Acquisition
module Filter

Digital
Signal

Processor

Timestamped phasors

Figure 3.1: General layout of a PMU

One of the main challenges of the Smart Grid is to increase the reliability of power
grids. This is in part motivated by the high costs derived from large blackouts.
Roughly speaking, a large blackout occurs as a result of a cascading series of fail-
ures in the grid. An example of a large blackout is the one experienced in North
America in August 2003, which caused losses on the order of billions of dollars.
These situations occur due to the high interconnection and interdependence of the
elements of the grid and the lack of wide-area situational awareness in today’s power
grid [5].

Wide-area situational awareness refers to the monitoring of the grid across large
geographical areas aimed at obtaining a detailed and accurate picture of the overall
grid performance. To that end, a PMU provides voltage and current phasor measure-
ments of the power line. These measurements are time-stamped with an accurate
global reference clock-by means of Global Positioning System (GPS). By exploiting



Development of an Embedded GOOSE Router According to IEC 61850-90-5 11/57

Figure 3.2: Schweizer Engineering Laboratories PMU SEL-487E

https://www.selinc.com/SEL-487E/

time synchronization, measurements taken by different PMUs can provide a snap-
shot of the state of the grid for each time instant.

Figure 3.1 presents a general layout of a PMU. As depicted in the figure, PMUs rely
on a GPS time signal for extremely accurate time-stamping of phasor measurement.

A GPS satellite receiver provides a precise timing pulse, which is correlated with
sampled voltage and current inputs - typically the three phase voltages of a substa-
tion and the currents in lines, transformers, and loads terminating at the substation.
From these data samples, positive-sequence voltages and currents are calculated
and timestamped so that the exact microsecond when the phasor measurement is
taken is permanently attached to it. The device assembles a message from the
time stamp and the phasor data in a format defined in IEEE C37.118, which can
then be transmitted to a remote site over any available communication link. Positive-
sequence phasor data from all substations equipped with such devices are collected
at an appropriate central site using a data concentrator or exchanged between local
units for protection/control applications [4].

https://www.selinc.com/SEL-487E/


Development of an Embedded GOOSE Router According to IEC 61850-90-5 12/57

4 IEC 61850 and GOOSE Messages

4.1 Introduction to IEC 61850

IEC 61850 has been elaborated by the ad-hoc group ”Substation Control and Pro-
tection Interfaces” of IEC Technical Committee 57 ”Power systems management and
associated information exchange”.

This standard was first designed for the standardisation of communication in Sub-
station Automation Systems (SAS). However, just a few years after the start of IEC
61850 project (in 1995), utility and vendor experts of non-substation related applica-
tion domains began to realise both the benefits of a single international standard for
the electrical energy supply system and the powerful approach and content of IEC
61850. [6]

The objective of IEC 61850 is to specify requirements and to provide a framework to
achieve interoperability among Intelligent Electronic Devices (IEDs). This framework
specifies the manner that devices should organize information, so it is consistent
across all types of devices.

4.1.1 Benefits of IEC 61850

IEC 61850 and its features deliver substantial benefits to users that understand and
take advantage of them. Rather than simply approaching an IEC 61850 based sys-
tem in the same way as any other system, a user that understands and takes advan-
tage of the unique capabilities will realize significant benefits that are not available
using legacy approaches.

The most significant benefit of IEC 61850 is the interoperability with different ven-
dors. This means that different devices from different manufacturers can actually
communicate and exchange data seamlessly. Figure 4.1 presents the present situ-
ation in automation in the electric power system - multiple communication protocols:
DNP, MODBUS, LON etc. On the other hand, figure 4.2 shows an automation sys-
tem with true seamless interoperability.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 13/57

Figure 4.1: Present automation system in the electricity sector

Figure 4.2: Desired automation system using IEC 61850



Development of an Embedded GOOSE Router According to IEC 61850-90-5 14/57

Some extra benefits derived from interoperability of IEC 61850:

• Lower Installation Cost: IEC 61850 enables devices to quickly exchange
data without having to wire separate links for each device.

• Lower Transducer Costs: With IEC 61850 protocol ”translators” are not re-
quired.

• Lower Commissioning Costs: The cost to configure and commission de-
vices is drastically reduced because IEC 61850 devices don’t require as much
manual configuration.

• Lower Equipment Migration Costs: Because IEC 61850 defines more of the
externally visible aspects of the devices besides just the encoding of data on
the wire, the cost for equipment migrations is minimized.

• Lower Extension Costs: Because IEC 61850 devices do not have to be con-
figured to expose data, new extensions are easily added without having to
reconfigure devices.

• Lower Integration Costs: IEC 61850 networks are capable of delivering data
without separate communications front-ends or reconfiguring devices.

• Implement New Capabilities: The advanced services and unique features
of IEC 61850 enables new capabilities that are simply not possible with most
legacy protocols.

4.2 Communication Protocols used in IEC 61850

Appli-

cations

Network

Data
Link

IECd61850

GOOSE

IECd61850
Sampled
Values

61850

MMS

TCP/IP

EthernetdLogicaldLinkd
ControldgLLC(

EthernetdMediadAccessd
ControldgMAC(

Figure 4.3: Illustration of protocol stack of general data

IEC 61850-7-2 proposes some abstract communication services to [7]:



Development of an Embedded GOOSE Router According to IEC 61850-90-5 15/57

• Connect and disconnect

• Read data

• Write data

• Manage reports

• Manage alarms

• Send sampled values

• Time synchronization

• File transfer

Protocols IEC 61850-8-1 [8], IEC 61850-9-1 [9] and IEC 61850-9-2 [10] define how
this services are mapped into real protocols.

Current mappings in the standard are to Manufacturing Message Specification(MMS),
GOOSE and SV. As shown in figure 4.3, SV and GOOSE applications run directly
over Ethernet data frame, thereby eliminating processing of any middle layers; the
MMS operates over TCP/IP. [3]

4.3 GOOSE Protocol and IEC 61850-90-5

IEC 61850 proposes a fast and reliable communication system, between IEDs in a
substation, which is not connection-oriented. Furthermore, it is only for point-to-point
streaming and is based on light weight messages. One of the protocols associated
with this system is the GOOSE protocol. As mentioned also before, GOOSE runs
directly over Ethernet.

Table 4.1 presents fields that can be found at the GOOSE PDU and their value types.

IEC 61850-90-5 is a new (2012) extension of IEC 61850 for PMU data transfer. This
chapter specifies GOOSE and SV broadcast over UDP protocol (figure 4.4).



Development of an Embedded GOOSE Router According to IEC 61850-90-5 16/57

Table 4.1: GOOSE PDU fields

Field name No Value type

gocdRef [0] IMPLICIT VISIBLE-STRING

timeAllowedtoLive [1] IMPLICIT INTEGER

datSet [2] IMPLICIT VISIBLE-STRING

goID [3] IMPLICIT VISIBLE-STRING OPTIONAL

t [4] IMPLICIT UtcTime

stNum [5] IMPLICIT INTEGER

sqNum [6] IMPLICIT INTEGER

test [7] IMPLICIT BOOLEAN DEFAULT FALSE

confRev [8] IMPLICIT INTEGER

ndsCom [9] IMPLICIT BOOLEAN DEFAULT FALSE

numDatSetEntries [10] IMPLICIT INTEGER

allData [11] IMPLICIT SEQUENCE OF Data

security [12] ANY OPTIONAL

Figure 4.4: General overview of the mapping of Synchrophasor Services



Development of an Embedded GOOSE Router According to IEC 61850-90-5 17/57

5 GOOSE Router Prototype

In this project it has been implemented a GOOSE message router prototype. This
chapter describes the hardware that has been used.

5.1 Hardware components

Figure 5.1 shows the objective of the project. The GOOSE message received from a
local network is forwarded to a public network (internet). This requires two Ethernet
ports, one for input and another for output.

The prototype has been implemented with an ARM Cortex-M3 platform and an exter-
nal Ethernet controller. Both components are connected via SPI connection (Figure
5.2).

GOOSE 

GOOSE 

+ UDP/IP

Ethernet Ethernet

Local Network Public Network

Figure 5.1: Objective of the application prototype

ARM Cortex 

M3  μC
WIZnet

SPIGOOSE 

GOOSE 

+ UDP/IP

Ethernet Ethernet

Figure 5.2: Components of the application prototype

The choice of the hardware was based on requirements exposed in chapter 2. The
components of the prototype are (see figure 5.3):



Development of an Embedded GOOSE Router According to IEC 61850-90-5 18/57

• Mbed LPC 1768 platform (on base board)

• WIZnet W5100 Ethernet controller.

Figure 5.3: 1. Base Board, 2. Mbed LPC 1768, 3. WIZnet W5100

5.2 Mbed LPC 1768

Mbed LPC 1768 is an ARM micro-controller development board designed for rapid
prototyping. It contains a 32-bit ARM Cortex-M3 core running at 96MHz. It includes
lots of interfaces including built-in Ethernet, USB Host and Device, CAN, SPI, I2C,
ADC, DAC, PWM and other I/O interfaces. Figure 5.4 shows the commonly used in-
terfaces and their locations (source http://www.mbed.org/platforms/mbed-LPC1768/).
The peripheral complement of the LPC 1768 includes (among other blocks):

• 512 kB of flash memory

• 64 kB of data memory

• Ethernet MAC

• 4 UARTs

• SPI interface

• Four general purpose timers

http://www.mbed.org/platforms/mbed-LPC1768/


Development of an Embedded GOOSE Router According to IEC 61850-90-5 19/57

Figure 5.4: Pinout of the mbed board

• Real-Time Clock (RTC)

• 70 general purpose I/O pins

5.3 ARM Cortex-M3 architecture

The ARM Cortex-M3 is a series of general purpose 32-bit microprocessors, which
offer high performance and very low power consumption. The Cortex-M3 offer many
new features, including a Thumb-2 instruction set, low interrupt latency, hardware
divide, interruptible/continuable multiple load and store instructions, automatic state
save and restore for interrupts, tightly integrated interrupt controller with Wakeup
Interrupt Controller, and multiple core buses capable of simultaneous accesses (see
http://www.arm.com/products/processors/cortex-m/index.php).

Pipeline techniques are employed so that all parts of the processing and memory
systems can operate continuously. Typically, while one instruction is being executed,
its successor is being decoded, and a third instruction is being fetched from memory
[11].

The Cortex-M addresses the requirements for the 32-bit processor in the following
ways:

• Greater performance efficiency: allowing more work to be done without in-
creasing the frequency or power requirements.

• Low power consumption: enabling longer battery life, especially critical in
portable products including wireless networking applications.

http://www.arm.com/products/processors/cortex-m/index.php


Development of an Embedded GOOSE Router According to IEC 61850-90-5 20/57

• Enhanced determinism: guaranteeing that critical tasks and interrupts are ser-
viced as quickly as possible and in a known number of cycles.

• Improved code density: ensuring that code fits in even the smallest memory
footprints

• Ease of use: providing easier programmability and debugging for the growing
number of 8-bit and 16-bit users migrating to 32 bits.

• Lower cost solutions: reducing 32-bit-based system costs close to those of
legacy 8-bit and 16-bit devices and enabling low-end, 32-bit microcontrollers
to be priced at less than 1 US dollar for the first time.

• Wide choice of development tools: from low-cost or free compilers to full-
featured development suites from many development tool vendors.

5.4 WIZnet W5100 board

The W5100 is a full-featured, single-chip Internet-enabled 10/100 Ethernet controller
designed for embedded applications where ease of integration, stability, perfor-
mance, area and system cost control are required. The W5100 has been designed
to facilitate easy implementation of Internet connectivity without OS. The W5100 is
IEEE 802.3 10BASE-T and 802.3u 100BASE-TX compliant.

The W5100 includes fully hardwired integrated Ethernet MAC and PHY, TCP, UDP,
IPv4, ICMP, ARP, IGMP and PPPoE. It includes 16Kbytes internal buffer for data
transmission. The w5100 offers 4 sockets, programmable through SPI. For easy
integration, three different interfaces like memory access way, called direct, indirect
bus and SPI, are supported on the MCU side [12].

Figure 5.5: WIZnet W5100



Development of an Embedded GOOSE Router According to IEC 61850-90-5 21/57

6 Software Development Tools

This chapter exposes what software tools were used for the development of the
application.

6.1 First steps: Assembly development

The philosophy of the low-level language Assembly helps developers to figure out
how and which registers are needed to be configured and also be as close to hard-
ware as one can be. For this reason the author was proposed to develop a small
program using a simple editor and GNU toolchain for ARM architecture, as an exer-
cise. In annex A there is an example to turn on a led.

6.1.1 GNU toolchain for ARM architecture

The GNU toolchain is a blanket term for a collection of programming tools produced
by the GNU Project. It can be used for programming applications for different archi-
tectures, including ARM Cortex-M3.

Projects included in the GNU toolchain are:

• GNU make: Automation tool for compilation and build. GNU Compiler Collec-
tion (GCC): Suite of compilers for several programming languages.

• GNU Binutils: Suite of tools including linker, assembler and other tools.

• GNU Bison: Parser generator.

• GNU m4: m4 macro processor.

• GNU Debugger (GDB): Code debugging tool.

• GNU build system (autotools).



Development of an Embedded GOOSE Router According to IEC 61850-90-5 22/57

The GNU Compiler Collection (GCC) is a compiler system produced by the GNU
Project supporting various programming languages. GCC is a key component of
the GNU toolchain. The Free Software Foundation (FSF) distributes GCC under
the GNU General Public License (GNU GPL). GCC has played an important role in
the growth of free software, as both a tool and an example (see also http://en.

wikipedia.org/wiki/GNU_Compiler_Collection).

GNU toolchain is available for free in http://www.mentor.com/embedded-software/

sourcery-tools/sourcery-codebench/editions/lite-edition/.

6.2 NXP LPCXpresso IDE

Figure 6.1: LPCXpresso interface

Final software was developed with NXP’s LPCXpresso. The LPCXpresso IDE is a
highly-integrated software development environment for NXP’s LPC micro-controllers.
It is a low-cost development tool platform, available directly from NXP (see http:

//www.lpcware.com/lpcxpresso/code-red). It includes the GNU toolchain for ARM
and some extra tools to develop high-quality software solutions. LPCXpresso builds
on its Eclipse foundation by including many enhancements that simplify develop-
ment with NXP LPC micro-controllers.

The LPCXpresso platform supports all of NXP’s LPC family of microcontrollers, in-
cluding those based on ARM7, ARM9 and Cortex-M.

Some of NXP LPCXpresso’s key features are as follows:

http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.lpcware.com/lpcxpresso/code-red
http://www.lpcware.com/lpcxpresso/code-red


Development of an Embedded GOOSE Router According to IEC 61850-90-5 23/57

• Eclipse-based IDE.

• Free Edition supports code sizes up to 256 kb after activation and can be
upgraded to unlimited code size by purchasing a Pro Edition license.

• Supports C++ application and library projects.

• Instruction Trace support.

• Contains helpful coding examples.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 24/57

6.3 CMSIS code layer

6.3.1 Background of CMSIS

The Cortex-M micro-controllers are gaining momentum in the embedded application
market, as more and more products based on the Cortex-M processor and software
that support the Cortex-M processor are emerging. At the end of 2008, there were
more than five C compiler vendors, and more than 15 embedded Operating Systems
(OS) supporting the Cortex-M processor. There are also a number of companies
providing embedded software solutions, including codecs, data processing libraries,
and various software and debug solutions. The Cortex Micro-controller Software In-
terface Standard (CMSIS) was developed by ARM chip manufacturers to help users
of the Cortex-M micro-controllers to develop their embedded application quickly and
reliably.

The CMSIS was started in 2008 to improve software usability and inter-operability
of ARM micro-controller software. It is integrated into the driver libraries provided
by silicon vendors, providing a standardized software interface for the Cortex-M pro-
cessor features, as well as a number of common system and I/O functions. The
library is also supported by software companies including embedded OS vendors
and compiler vendors.

The aims of CMSIS are to:

• Improve software portability and reusability

• Enable software solution suppliers to develop products that can work seam-
lessly with device libraries from various silicon vendors

• Allow embedded developers to develop software quicker with an easy-to-use
and standardized software interface

• Allow embedded software to be used on multiple compiler products

• Avoid device driver compatibility issues when using software solutions from
multiple sources

The first release of CMSIS was available from fourth quarter of 2008 and has already
become part of the device driver library from microcontroller vendors. The CMSIS is
also available for Cortex-M0.

6.3.2 Areas of standardization

The scope of CMSIS involves standardization in the following areas:



Development of an Embedded GOOSE Router According to IEC 61850-90-5 25/57

• Hardware Abstraction Layer (HAL) for Cortex-M processor registers: This in-
cludes standardized register definitions for NVIC, System Control Block regis-
ters, SYSTICK register, MPU registers, and a number of NVIC and core feature
access functions.

• Standardized system exception names: This allows OS and middleware to use
system exceptions easily without compatibility issues.

• Standardized method of header file organization: This makes it easier for users
to learn new Cortex microcontroller products and improve software portability.

• Common method for system initialization: Each Micro-controller Unit (MCU)
vendor provides a SystemInit() function in their device driver library for essen-
tial setup and configuration, such as initialization of clocks. Again, this helps
new users to start to use Cortex-M micro-controllers and aids software porta-
bility.

• Standardized intrinsic functions: Intrinsic functions are normally used to pro-
duce instructions that cannot be generated by IEC/ISO C.* By having stan-
dardized intrinsic functions, software reusability and portability are consider-
ably improved.

• Common access functions for communication: This provides a set of software
interface functions for common communication interfaces including universal
asynchronous receiver/transmitter (UART), Ethernet, and Serial Peripheral In-
terface (SPI). By having these common access functions in the device driver
library, reusability and portability of embedded software are improved. At the
time of writing this book, it is still under development.

• Standardized way for embedded software to determine system clock frequency:
A software variable called SystemFrequency is defined in device driver code.
This allows embedded OS to set up the SYSTICK unit based on the system
clock frequency.

The CMSIS defines the basic requirements to achieve software reusability and porta-
bility. MCU vendors can include additional functions for each peripheral to enrich the
features of their software solution. So using CMSIS does not limit the capability of
the embedded products.

The role of these layers is summarized in Figure 6.2.

6.3.3 Organization of CMSIS

The CMSIS is divided into multiple layers as follows:

Core Peripheral Access Layer



Development of an Embedded GOOSE Router According to IEC 61850-90-5 26/57

Figure 6.2: CMSIS Struture

http://www.electronicproducts.com/Software/Development_Tools_and_

Software/Software_interface_standard_gives_new_framework.aspx

• Name definitions, address definitions and helper functions to access core reg-
isters and core peripherals

Middleware Access Layer

• Common method to access peripherals for the software industry (work in progress)

• Targeted communication interfaces include Ethernet, UART, and SPI.

• Allows portable software to perform communication tasks on any Cortex mi-
crocontrollers that support the required communication interface

Device Peripheral Access Layer (MCU specific)

• Name definitions, address definitions, and driver code to access peripherals

Access Functions for Peripherals (MCU specific)

• Optional additional helper functions for peripherals

http://www.electronicproducts.com/Software/Development_Tools_and_Software/Software_interface_standard_gives_new_framework.aspx
http://www.electronicproducts.com/Software/Development_Tools_and_Software/Software_interface_standard_gives_new_framework.aspx


Development of an Embedded GOOSE Router According to IEC 61850-90-5 27/57

6.3.4 Using CMSIS

Since the CMSIS is incorporated inside the device driver library, there is no special
setup requirement for using CMSIS in projects. For each MCU device, the MCU
vendor provides a header file, which pulls in additional header files required by the
device driver library, including the Core Peripheral Access Layer defined by ARM
(see 6.3).

These header files contain the peripheral register definitions and access functions
for the Cortex-M3 processor peripherals like NVIC, System Control Block registers,
and SYSTICK registers. They also contain declaration of CMSIS intrinsic func-
tions to allow C applications to access instructions that cannot be generated using
IEC/ISO C language.

A notification is that in some cases, the intrinsic functions in CMSIS could have
similar names compared with the intrinsic functions provided in the C compilers,
whereas the CMSIS intrinsic functions are compiler independent.

The C files contain implementation of CMSIS intrinsic functions that cannot be im-
plemented in the header files using simple definitions.

Figure 6.3: CMSIS Files

There is also a system header file, which contains microcontroller specific interrupt
number definitions and peripheral register definitions. The system C file contains a
microcontroller specific function called SystemInit for system initialization.

In addition, CMSIS compliant device drivers also contain start-up code (which con-
tains the vector table) for various supported compilers, and CMSIS version of intrin-
sic functions to allow embedded software access to all processor core features on
different C compiler products.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 28/57

6.3.5 Benefits of CMSIS

The main advantage is much better software portability and reusability. Besides
easy migration between different Cortex-M3 microcontrollers, it also allows software
to be quickly ported between Cortex-M3 and other Cortex-M processors, reducing
time to market.

For embedded OS vendors and middleware providers, the advantages of the CMSIS
are significant. By using the CMSIS, their software products can become compatible
with device drivers from multiple microcontroller vendors, including future microcon-
troller products that are yet to be released. Without the CMSIS, the software vendors
either have to include a small library for Cortex-M3 core functions or develop multiple
configurations of their product so that it can work with device libraries from different
microcontroller vendors.

The CMSIS has a small memory footprint (less than 1 KB for all core access func-
tions and a few bytes of RAM). It also avoids overlapping of core peripheral driver
code when reusing software code from other projects.

Since CMSIS is supported by multiple compiler vendors, embedded software can
compile and run with different compilers. As a result, embedded OS and middleware
can be MCU vendor independent and compiler tool vendor independent. Before
availability of CMSIS, intrinsic functions were generally compiler specific and could
cause problems in retargetting the software in a different compiler.

Since all CMSIS compliant device driver libraries have a similar structure, learning to
use different Cortex-M3 microcontrollers is even easier as the software interface has
similar look and feel (no need to relearn a new application programming interface).

CMSIS is tested by multiple parties and is Motor Industry Software Reliability Asso-
ciation (MISRA) compliant, thus reducing the validation effort required for developing
your own NVIC or core feature access functions. [11]

6.4 Mbed online environment

Mbed provides an online development environment for some ARM Cortex-M plat-
forms. It includes a variety of libraries, an editor and a compiler for fast prototyping.
The mbed environment is available through web browsers (as shown in Figure 6.4).

There is also a community where developers upload their work or contribute to back
fixes and libraries as help to other developers.

Online environment contributes very much in developing from the aspect of time and
effectiveness. However, for the final application code, it was preferred for the author
not to use the ready made code, but to develop from scratch. Annex A shows an
example of an application developed with this environment.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 29/57

Figure 6.4: Online mbed environment running in Google Chrome



Development of an Embedded GOOSE Router According to IEC 61850-90-5 30/57

7 Software Development and Partial
Tests

7.1 GPIO programming

The mbed board has 4 LEDs. These LEDs are connected to LPC 1768 with certain
GPIO pins. For example LED 1 is connected to pin P1.18 (pin 18 which belongs
to port 1). The LED is on after the set up of 3 configuration registers, PINSEL3,
FIO1DIR2 and FIO1MASK2 and the status register FIO1PIN2 (to control LED sta-
tus). Table 7.1 shows which values have to be written to these registers to turn on
LED 1 and Figure 7.1 is showing the result [13].

Table 7.1: Settings for turning on LED 1

Register Value Explanation

PINSEL3 0x00 Initialization of register

FIO1DIR2 0xFF Controls the direction of each port pin

FIO1MASK2 0x00 Writes, sets, clears and reads to the port

FIO1PIN2 0xFF Shows current state of digital port pins

7.2 SPI programming

As seen in chapter 5, LPC 1768 is connected with the W5100 via SPI. In this chapter
it is explained how SPI module of the LPC 1768 was set and how the W5100 was
configured via SPI commands.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 31/57

Figure 7.1: LED 1 is turned on

7.2.1 Introduction to SPI

The Serial Peripheral Interface (SPI) bus is a synchronous serial data link that op-
erates in full duplex mode. Multiple slave devices are allowed with individual slave
select lines, but only one master device is allowed. SPI is a four-wire serial bus,
contrasting with three-, two-, and one-wire serial buses.

The SPI bus specifies four logic signals:

• SCLK: serial clock (output from master);

• MOSI: master output, slave input (output from master);

• MISO: master input, slave output (output from slave);

• SS: slave select (active low, output from master).

Alternative naming conventions are also widely used:

• SCLK: SCK, CLK: serial clock (output from master)

• MOSI: SIMO, SDO, DO, DOUT, SO, MTSR: serial data out; data out, serial
out, master transmit slave receive

• MISOMISO: SOMI, SDI, DI, DIN, SI, MRST: serial data in; data in, serial in,
master receive slave transmit

• SS: nCS, CS, CSB, CSN, nSS, STE, SYNC: chip select, slave transmit enable
(active low, output from master)



Development of an Embedded GOOSE Router According to IEC 61850-90-5 32/57

SPI
Master

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

Figure 7.2: SPI bus: single master and single slave

SPI
Master

SCLK
MOSI
MISO
SS1
SS2

SPI
Slave

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

SS1

SS2

Figure 7.3: SPI bus: single master and multiple slaves

Figure 7.2 shows single master/single slave communication, while Figure 7.3 ex-
poses single master/multiple slave communication. If a single slave device is used,
the SS pin may be fixed to logic low if the slave permits it. Some slaves require
a falling edge of the chip select signal to initiate an action, which starts conversion
on a high-low transition. With multiple slave devices, an independent SS signal is
required from the master for each slave device.

To begin a communication, the bus master first switches the logic 0 for the desired
slave over the SS. SS is switched to logic 0 because it is active low, meaning its off
state is a logic 1. Afterwards, the master configures the clock, using a frequency
less than or equal to the maximum frequency the slave device supports. Such fre-
quencies are commonly in the range of 10 kHz – 100 MHz. If a waiting period is
required (such as for analog-to-digital conversion), then the master must wait for at
least that period of time before starting to issue clock cycles. After clock configura-
tion, the data is transferred and after that the master switches SS back to logic 0.
During each SPI clock cycle, a full duplex data transmission occurs:

• The master sends a bit on the MOSI line; the slave reads it from that same
line.

• The slave sends a bit on the MISO line; the master reads it from that same
line.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 33/57

SS

Cycle # 2 3 4 5 6 7 81

MISO 2 3 4 5 6 7 8 zz 1

MOSI 2 3 4 5 6 7 8 zz 1

CPHA=1

CPHA=0
Cycle # 1 2 3 4 5 6 7 8

MISO 1 2 3 4 5 6 7 8z z

1 2 3 4 5 6 7 8zMOSI z

SCK
CPOL=0
CPOL=1

Figure 7.4: Timing diagram showing clock polarity and phase

In addition to setting the clock frequency, the master must also configure the clock
polarity and phase with respect to the data. To do so, most micro-controllers use
CPOL and CPHA respectively, as internal registers. Figure 7.4 shows the different
states of polarity and phase. At CPOL=0 the base value of the clock is zero:

• For CPHA=0, data are captured on the clock’s rising edge (low-high transition)
and data is propagated on a falling edge (high-low clock transition).

• For CPHA=1, data are captured on the clock’s falling edge and data is propa-
gated on a rising edge.

At CPOL=1 the base value of the clock is one (inversion of CPOL=0):

• For CPHA=0, data are captured on clock’s falling edge and data is propagated
on a rising edge.

• For CPHA=1, data are captured on clock’s rising edge and data is propagated
on a falling edge.

That is, CPHA=0 means sample on the leading (first) clock edge, while CPHA=1
means sample on the trailing (second) clock edge, regardless of whether that clock
edge is rising or falling. Note that with CPHA=0, the data must be stable for a half
cycle before the first clock cycle.

The MOSI and MISO signals are usually stable (at their reception points) for the
half cycle until the next clock transition. SPI master and slave devices may well
sample data at different points in that half cycle. This adds more flexibility to the
communication channel between the master and slave.

Below can be seen the part of the code that enables the SPI interface.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 34/57

int spi_enable(void){

LPC_SC_TypeDef *systemControl = LPC_SC;

// First we turn ON power for the SPI module

// This is done in the PCONP register

// SPI is activated with the bit 8 in PCONP register

// bit8 = 0 -> no power (deactivated)

// bit8 = 1 -> power (activated)

systemControl->PCONP |= BIT8; // SPI is activated

// Then we set clock for the SPI module

// This is done in the PCLKSEL0 register

// Clock for SPI is modified in bits 17:16 in PCLKSEL0

register

// 17:16 = 00 -> CCLK/4

// 17:16 = 01 -> CCLK

// 17:16 = 10 -> CCLK/2

// 17:16 = 11 -> CCLK/8

systemControl->PCLKSEL0 &= ~(BIT17|BIT16); // CCLK/4

}

7.2.2 SPI for the mbed board

In this section it is exposed how the SPI module is configured in the mbed board.
The registers which are modified are SPCR, SPCCR and SPDR. In table 7.2 it is
shown bit-by-bit how the value of SPCR is set.

SPCCR controls the frequency of a master’s SCK. The register indicates the number
of SPI peripheral clock cycles that make up an SPI clock. In Master mode, this
register must be an even number greater than or equal to 8. SPCCR has a value
equal to 0xFA, in order the SCK to be 96kHz.

Finally, data register SPDR provides the transmit and receive data for the SPI. Trans-
mit data is provided to the SPI0 by writing to this register.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 35/57

Table 7.2: SPCR Register bit values and explanation, bits 0,1 are not used

Bit Value Explanation

Bit2 0 SPI controller sends 8 bits

Bit3 0 CPHA - Data is sampled on the first rising edge of CLK

Bit4 0 CPOL - CLK is active high

Bit5 1 The device is an SPI master

Bit6 0 SPI data is transferred MSB (bit 7 first)

Bit7 0 SPI interrupts are inhibited

Bit8 0

Bits 11:8 are 1000 respectively. This means that 8 bits are transferred
Bit9 0

Bit10 0

Bit11 1

7.2.3 Learning and testing SPI for W5100 chip

As mentioned before, the W5100 chip supports SPI interface and behaves as an SPI
slave. W5100 accepts two types of commands - Read and Write. These commands
are 4 bytes long and permit to modify registers in the W5100. The first byte stands
for the command, second and third for the address of the register to be modified
and the forth for the data. Table 7.4 summarizes the two commands. The 4 bytes
are transferred with the most significant bit(MSB) first and least significant bit(LSB)
last [12].

Table 7.3: SPI Commands

Command OP-Code Field Address Field Data Field

Write 0xF0 1111 0000 2 bytes 1 byte

Read 0x0F 0000 1111 2 bytes 1 byte

In order to test W5100 SPI interface, it has been used Microchip’s MCP2210 USB-
to-SPI Protocol Converter (see Figures 7.5 and 7.6). It is a general purpose SPI
master. This chip comes with testing software called SPI Terminal (Figure 7.7).



Development of an Embedded GOOSE Router According to IEC 61850-90-5 36/57

Figure 7.5: MCP2210 USB-to-SPI Protocol Converter

Figure 7.6: Testboard 1.W5100 chip, 2.MCP2210 USB-to-SPI Protocol Converter

Figure 7.8 shows the result of a write command captured with an oscilloscope. As
it can be seen, the first byte is 0xF0 and stands for the operation command, then
two bytes 0x00 and 0x01 stand for the address 0x01 of the W5100 memory and the
last byte is 0x12 that stands for data. In annex A.2, it is also described an example
of the Read operation. Figure 7.9 shows how the oscilloscope is connected to the
testboard.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 37/57

Figure 7.7: Write operation example

Figure 7.8: Example of write operation in oscilloscope



Development of an Embedded GOOSE Router According to IEC 61850-90-5 38/57

Figure 7.9: Connection between the mbed board, the W5100 chip and the oscillo-
scope

7.2.4 W5100 configuration

In order to configure the W5100, some common registers needed to be set up. The
table 7.4 shows which values were written to the registers (in certain addresses) for
the configuration of W5100.

Figure 7.10 shows the result of a ”ping” after the configuration of the W5100.

All the proper configurations for the SPI communication are shown in the part of
code below.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 39/57

Table 7.4: Basic Settings for the W5100

Register name Address Written Value Explanation

Mode 0x00 0x80 Pin enabled

Interrupt Mask 0x16 0xC1 IP Conflict and Destination
unreachable enabled

Retry Time-value
0x17 0x0F

400ms timeout
0x18 0xA0

Retry Count 0x19 0x08 The number of re-
transmission

Gateway Address

0x01 0xAC

The gateway address is
172.26.0.1

0x02 0x1A

0x03 0x00

0x04 0x01

Source Hardware
Address

0x09 0x0A

The MAC address of the
Board is set as
0A:0B:0C:0D:0E:0F

0x0A 0x0B

0x0B 0x0C

0x0C 0x0D

0x0D 0x0E

0x0E 0x0F

Subnet Mask
Address

0x05 0xFF

The Subnet Mask is
255.255.252.0

0x06 0xFF

0x07 0xFC

0x08 0x00

Source IP Address

0x0F 0xAC

Source IP Address (mbed
IP) is set as 172.26.0.89

0x10 0x1A

0x11 0x00

0x12 0x59



Development of an Embedded GOOSE Router According to IEC 61850-90-5 40/57

spi_WriteToWiznet(0x00, 0x00, 0x80);// *MR reset and

ping enable

// *IMR:IP Conflict BIT7

spi_WriteToWiznet(0x00, 0x16, 0xC1);// *Destination

unreachable BIT6

// *Occurrence of Socket 0

Socket Interrupt BIT0

spi_WriteToWiznet(0x00, 0x17, 0x0F);// *

spi_WriteToWiznet(0x00, 0x18, 0xA0);// *RTR 400ms

timeout

spi_WriteToWiznet(0x00, 0x19, 0x08);// *RCR

spi_WriteToWiznet(0x00, 0x01, 0xAC);//172 *

spi_WriteToWiznet(0x00, 0x02, 0x1A);//26 *

spi_WriteToWiznet(0x00, 0x03, 0x00);//0 *

spi_WriteToWiznet(0x00, 0x04, 0x01);//1 *GAR

spi_WriteToWiznet(0x00, 0x09, 0x0A);//0A *

spi_WriteToWiznet(0x00, 0x0A, 0x0B);//0B *

spi_WriteToWiznet(0x00, 0x0B, 0x0C);//0C *

spi_WriteToWiznet(0x00, 0x0C, 0x0D);//0D *

spi_WriteToWiznet(0x00, 0x0D, 0x0E);//0E *SHAR random

MAC address

spi_WriteToWiznet(0x00, 0x0E, 0x0F);//0F

*0A.0B.0C.0D.0E.0F

spi_WriteToWiznet(0x00, 0x05, 0xFF);//255 *

spi_WriteToWiznet(0x00, 0x06, 0xFF);//255 *

spi_WriteToWiznet(0x00, 0x07, 0xFC);//252 *

spi_WriteToWiznet(0x00, 0x08, 0x00);//0 *SUBR



Development of an Embedded GOOSE Router According to IEC 61850-90-5 41/57

spi_WriteToWiznet(0x00, 0x0F, 0xAC);//172 *

spi_WriteToWiznet(0x00, 0x10, 0x1A);//26 *

spi_WriteToWiznet(0x00, 0x11, 0x00);//0 *

spi_WriteToWiznet(0x00, 0x12, 0x59);//89 *SIPR

spi_WriteToWiznet(0x00, 0x1A, 0x03);// *RX MEM SIZE

2kB RMSR 8kB TO SOCKET 0

spi_WriteToWiznet(0x00, 0x1B, 0x03);// *RX MEM SIZE

2kB RMSR 8kB TO SOCKET 0

spi_WriteToWiznet(0x04, 0x00, 0x02);// *S0_MR = 0x02

UDP MODE

a=spi_readFromAddress(0x04, 0x00);

spi_WriteToWiznet(0x04, 0x01, 0x01);//1 *S0_CR OPEN

SOCKET 0

for(dummy = 0 ; dummy < 100 ; dummy++){

// Waiting

}

spi_WriteToWiznet(0x04, 0x04, 0xD4);// *

spi_WriteToWiznet(0x04, 0x05, 0x31);// *S0_PORT 54321



Development of an Embedded GOOSE Router According to IEC 61850-90-5 42/57

Figure 7.10: Pinging with the W5100 chip

7.3 Ethernet programming

NXP provides users of LPCXpresso with examples. The author found an example
of the implementation of the Ethernet module (an example of an HTTP Server) and
adapted it to the project’s needs.

A test was implemented using an extra mbed board as a shown in Figure 7.11.
The extra mbed board works as an Ethernet message sender. It was programmed
to send messages periodically, using the online environment. The code for this
operation is shown below.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 43/57

W5100

SPI

LPC
1768

LPC
1768

sender receiver

1.Ethernet,frame,
sent

crossover crossover

2.Frame,received,,
message,sent,to,W5100

3.Message,sent,
over,UDP,

Figure 7.11: Ethernet testing

#include "mbed.h"

DigitalOut myled1(LED1);

DigitalOut myled2(LED2);

DigitalOut myled3(LED3);

DigitalOut myled4(LED4);

int main(){

Ethernet eth;

char TrData[100];

char *p = TrData;

eth.set_link(Ethernet::FullDuplex100);

//set destination MAC, your server’s MAC address or

broadcast address, example shows broadcast

TrData[0]=0x0A;

TrData[1]=0x0B;

TrData[2]=0x0C;

TrData[3]=0x0D;

TrData[4]=0x0E;

TrData[5]=0x0F;



Development of an Embedded GOOSE Router According to IEC 61850-90-5 44/57

//set source MAC, the mbed’s MAC address (use your own)

TrData[6]=0xA1;

TrData[7]=0x02;

TrData[8]=0xF7;

TrData[9]=0xF1;

TrData[10]=0xC8;

TrData[11]=0x74;

//set ethertype, just use IPv4, here is 0x0800

TrData[12]=0x00;

TrData[13]=0xAB;

//set the transmission data

TrData[14]=0x48;//H

TrData[15]=0x45;//E

TrData[16]=0x4C;//L

TrData[17]=0x4C;//L

TrData[18]=0x4F;//O

TrData[19]=0x5F;//_

TrData[20]=0x4D;//M

TrData[21]=0x41;//A

TrData[22]=0x4E;//N

TrData[23]=0x5F;//_

TrData[24]=0x48;//H

TrData[25]=0x4F;//O

TrData[26]=0x57;//W

TrData[27]=0x5F;//_

TrData[28]=0x41;//A

TrData[29]=0x52;//R

TrData[30]=0x45;//E

TrData[31]=0x5F;//_

TrData[32]=0x59;//Y

TrData[33]=0x4F;//O

TrData[34]=0x55;//U



Development of an Embedded GOOSE Router According to IEC 61850-90-5 45/57

TrData[35]=0x3F;//?

TrData[36]=0x3F;//?

for(int i=37;i<99;i++){

TrData[i]=0x58;//X

}

TrData[99]=’Z’;

while(1) {

wait(1);

// Needed after startup.

if(eth.link()){

//

Checking if there is Ethernet connection turn on

LED4

myled1=1;

//send packet

eth.write(p, sizeof(TrData));

eth.send();

wait(1);

myled1=0;

}

}

}



Development of an Embedded GOOSE Router According to IEC 61850-90-5 46/57

Figure 7.12: Board-to-Board Ethernet Communication

Figure 7.13: Wireshark result with message.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 47/57

8 Final Application and Results

8.1 Description

GOOSE
over

ETHERNET

W5100

SPI

GOOSE/
sender/

GOOSE/message/router

mbed

GOOSE
+

UDP/IP
+

ETHERNET

GOOSE

receiverDK/61

Figure 8.1: Functionality of the GOOSE router

Figure 8.1 shows the functionality of the GOOSE router developed. The GOOSE
router receives GOOSE messages(which are mounted directly over Ethernet) and
adds the proper UDP/IP header. Figure 8.2 shows the actual equipment used.

For the GOOSE sender it has been used the Development kit DK61 manufactured by
Beck GmbH. The board includes the commercial IEC 61850 library PIS-10 (library
version: 1.0) developed by SystemCorp. This server sends real GOOSE messages
periodically to the GOOSE router. Details about the GOOSE messages generated
are explained in annex A.3.

The GOOSE receiver is a computer, which uses WireShark to show the incoming
GOOSE + UDP/IP message.

8.2 Final software

In figure 8.3 is depicted the UML diagram of the final software. At first, the initializa-
tion of the LEDs and the SPI Interface for the mbed board is executed. After that,
the initialization of the W5100 and the Ethernet module. The W5100 socket needs
some time to get into UDP mode and there is a possibility not to be ready on time.
If it is not, then there is a short delay.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 48/57

Figure 8.2: 1.DK61 GOOSE sender, 2.Mbed board, 3.W5100, 4.GOOSE+UDP/IP
receiver

Next, the mbed Ethernet socket changes status to OPEN and ”listens” for incom-
ing GOOSE messages. When a GOOSE message arrives, it is processed. The
message is read byte by byte. The first 12 bytes containing source and destination
hardware address are cut out.

Then a UDP message containing a message about the size of the incoming one
is sent. Finally, UDP header is added to the GOOSE data part and the GOOSE +
UDP/IP message is sent.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 49/57

InitializationYofYLEDs

ListenYforYGOOSEYmessages

GOOSEYmessageYprocess

SendYGOOSEuUDPAIPYmessage

SocketYin
UDPYmode?

NO

YES

ReceivedY
GOOSE?

YES

NO

InitializationYofYSPIYInterface

InitializationYofYW5Hxx

InitializationYofYEthernet

SendYUDPYmessageYwithYsize

SPIYenable
SPIYClockYSetup
ClockYPolarityYandYPhase

PingYenable
GatewayYIPYaddress

SourceYhardwareYaddress
SourceYIPYaddress
SourceYandYdestMYport
SocketYselection
SocketYUDPYmode

EthernetYenable

MACYregistersYsetup
CollisionYwindow

MaxMYframeYlength
PHYYsetting

EthernetYSocketY
StatusYOPEN

Figure 8.3: UML activity diagram



Development of an Embedded GOOSE Router According to IEC 61850-90-5 50/57

8.3 Final result

Figure 8.4, shows the WireShark capture of a GOOSE message as described by
IEC 61850. This message is generated by the DK61 GOOSE sender. In figure 8.5,
it is presented the WireShark capture of a routed GOOSE message.

Figure 8.4: WireShark capture with GOOSE message generated by the GOOSE
sender

Figure 8.5: WireShark capture with UDP message containing the GOOSE message



Development of an Embedded GOOSE Router According to IEC 61850-90-5 51/57

9 Conclusions

In this work, we have implemented a GOOSE message router for PMUs, according
to IEC 61850-90-5.

PMUs can play a key role in wide area monitoring system of the Smart Grid. Actually,
it was a major topic in the last five IEEE PES Innovative Smart Grid Technologies.

In 2012, IEC 61850-90-5 was published. This is one chapter of IEC 61850 standard
that defines how to transmit synchrophasor data according to IEEE C37.118. This
standard proposes GOOSE messages and SV messages to exchange PMU infor-
mation. Especially, it proposes routing GOOSE messages over UDP/IP protocol.

An ARM Cortex-M3 micro-controller has been programmed to receive GOOSE mes-
sages and send them through SPI to an Ethernet controller, the W5100. This Eth-
ernet controller adds UDP/IP header to the GOOSE message and sends it through
the internet.

The GOOSE router prototype covers all the primary constraints given in chapter
2. The fast LPC 1768 micro-controller contributes for fast data processing and SPI
interface for faster data transmission. Also UDP/IP protocol is used for this reason.
The prototype was based only on economic, manufactured components and all the
software development tools used were open source. Finally, the author had to obtain
skills for embedded software development, in order to complete the prototype.

The GOOSE router could be a positive impact to the Smart Grid, because it can help
for a better monitoring of it, by receiving real time measurements, from distance.
Having such capability reduces the chance of big black outs to occur. Moreover, can
be used with protection relays.

Furthermore it could be applied to more futuristic applications for IEDs inside a
Smart House. Another application could be the remote controlling of house ap-
pliances and other smart devices.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 52/57

Annex A Learning Applications and
Testing

A.1 GPIO programming

Examples of turning on LED1.

A.1.1 Developed with Assembly

.equ PINSEL3, 0x4002C00C

.equ STACK_TOP, 0x20000800

.equ FIO1DIR2, 0x2009C022

.equ FIO1PIN2, 0x2009C036

.equ FIO1MASK2, 0x2009C032

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start

start:

ldr r0, =PINSEL3//initialization of reg. PINSEL3 for

GPIO port1.18

mov r1, #0x00

str r1, [r0]



Development of an Embedded GOOSE Router According to IEC 61850-90-5 53/57

ldr r0, =FIO1DIR2 //reg. FIO1DIRx controls the

direction of each port pin

mov r1, #0xFF

str r1, [r0]

ldr r0, =FIO1MASK2 //reg. FIO1MASKx writes, sets,

clears and reads

mov r1, #0x00

str r1, [r0]

ldr r0, =FIO1PIN2//reg. FIO1PINx current state of

digital port pins

mov r1, #0xFF

str r1, [r0]

loop: //endless loop

b loop

.end

A.1.2 Developed with C

int led1_on(unsigned char const port, unsigned char const

pin){

LPC_GPIO_TypeDef *gpio;

gpio = LPC_GPIO1; //(LPC_GPIO_TypeDef *) (0x2009C000UL

+ 0x00020)

gpio->FIODIR2 |= (1<<2);

gpio->FIOMASK2 &= ~(1<<2);

gpio->FIOPIN2 |= (1<<2);



Development of an Embedded GOOSE Router According to IEC 61850-90-5 54/57

return 0;

}

A.1.3 Developed with the online Environment

Figure A.1: LED1 on with online environment

A.2 SPI MCP2210 SPI Terminal

Read operation. The TX Data column contain the bytes wanted to be transmitted.
The first byte is the read command, the next 2 bytes are for the memory address.
The last byte is not affecting the result, so we can put any one-byte-value.

A.3 Final Test with GOOSE Server

The GOOSE Server generates messages about the status of some onboard switches.
As shown in figure A.4, the statuses of the switches no. 5, 6, 7, and 8 are 1, 0, 0
and 1 respectively. Figure A.5 shows the GOOSE message with the status of the
switches as True, False, False and True.



Development of an Embedded GOOSE Router According to IEC 61850-90-5 55/57

Figure A.2: Read operation, SPI Terminal

Figure A.3: Example of read operation in oscilloscope



Development of an Embedded GOOSE Router According to IEC 61850-90-5 56/57

Figure A.4: Status of the switches

Figure A.5: WireShark capture of GOOSE message with the status of each switch



Development of an Embedded GOOSE Router According to IEC 61850-90-5 57/57

Bibliography

[1] J.-D. Lee, S.-J. Lee, J.-H. Bae, and D.-Y. Kwon, “The PMU Interface using IEC
61850,” in ICT Convergence (ICTC), 2013 International Conference on, 2013,
pp. 1125–1128.

[2] A. Ruiz and I. Cairo, “KIC Instinct - Traffic Requirements of Microgrid Control
Algorithms and IEC 61850,” Institut de Recerca en Energia de Catalunya, Tech.
Rep., 2013.

[3] R. Mackiewicz, “Overview of IEC 61850 and Benefits,” in Transmission and
Distribution Conference and Exhibition, 2005/2006 IEEE PES, 2006, pp. 376–
383.

[4] D. Hart, D. Uy, V. Gharpure, D. Novosel, D. Karlsson, and M. Kaba, “Pmus - a
new approach to power network monitoring,” 2001.

[5] J. Alonso-Zarate, J. Matamoros, D. Gregoratti, and M. Dohler, Smart Grid Com-
munications and Networking. Cambridge University Press, 2012, ch. 6, p. 28.

[6] A. Ruiz and I. Cairo, “Substation Communications, Introduction to IEC 61850,”
Institut de Recerca en Energia de Catalunya, Tech. Rep., 2013.

[7] IEC, “IEC 61850-7-2: Abstract Communication Service Interface,” IEC, Tech.
Rep., 2003.

[8] ——, “IEC 61850-8-1: Mapping to MMS,” IEC, Tech. Rep., 2003.

[9] ——, “IEC 61850-9-1: Sampled Values Over Serial Unidirectional Multidrop
Point to Point Link,” IEC, Tech. Rep., 2003.

[10] ——, “IEC 61850-9-2: Sampled Values over ISO/IEC 8802-3,” IEC, Tech. Rep.,
2004.

[11] ARM, The Definitive Guide to the ARM Cortex-M3 Second Edition.

[12] WIZnet, W5100 Datasheet Version 1.1.8.

[13] NXP, UM10360 LPC17xx User manual.


	1 Introduction
	2 Purpose of the Project
	3 PMUs Overview
	3.1 Introduction to PMUs

	4 IEC 61850 and GOOSE Messages
	4.1 Introduction to IEC 61850
	4.1.1 Benefits of IEC 61850

	4.2 Communication Protocols used in IEC 61850
	4.3 GOOSE Protocol and IEC 61850-90-5

	5 GOOSE Router Prototype
	5.1 Hardware components
	5.2 Mbed LPC 1768
	5.3 ARM Cortex-M3 architecture
	5.4 WIZnet W5100 board

	6 Software Development Tools
	6.1 First steps: Assembly development
	6.1.1 GNU toolchain for ARM architecture

	6.2 NXP LPCXpresso IDE
	6.3 CMSIS code layer
	6.3.1 Background of CMSIS
	6.3.2 Areas of standardization
	6.3.3 Organization of CMSIS
	6.3.4 Using CMSIS
	6.3.5 Benefits of CMSIS

	6.4 Mbed online environment

	7 Software Development and Partial Tests
	7.1 GPIO programming
	7.2 SPI programming
	7.2.1 Introduction to SPI
	7.2.2 SPI for the mbed board
	7.2.3 Learning and testing SPI for W5100 chip
	7.2.4 W5100 configuration

	7.3 Ethernet programming

	8 Final Application and Results
	8.1 Description
	8.2 Final software
	8.3 Final result

	9 Conclusions
	Annex A Learning Applications and Testing
	A.1 GPIO programming
	A.1.1 Developed with Assembly
	A.1.2 Developed with C
	A.1.3 Developed with the online Environment

	A.2 SPI MCP2210 SPI Terminal
	A.3 Final Test with GOOSE Server

	Bibliography

