Data Clustering on
the Parallel Hadoop
MapReduce Model

Dimitrios Verraros

Overview

The purpose of this thesis is to implement and
benchmark the performance of a parallel K-
means clustering algorithm on the Apache
Hadoop framework

e Data Clustering and K-means Algorithm

e Apache Hadoop Framework

e Parallel K-means implementation on the
MapReduce model

e Experiment results

Motivation

Big Data explosion

e \Vast amounts of data that needs to be

processed and analyzed S
o Human generated data
o Machine generated data

welo \ogs, clickloggs, sensov dato

L4

e Increased demand for efficient storage and
processing solutions

Data Clustering

Machine Learning techniques focus on
organizing data into sensible groupings
e Unsupervised learning

e Grouping of objects based on their
relationship instead of preset tags or labels

Clustering Challenges

e Definition of Similarity

e Familiarity with the available data
o Data preprocessing

e Cluster Diversity

e Data Representation

o Number of Clusters
o Data type
o Data scale

ty

N
-
L
>

Cluster D

K-means Clustering

e One of the most popular machine learning
algorithms utilized for clustering data sets

e Partitioning n observations into meaningful k
clusters

e Targetis to reduce the mean error of all
observations to their respective cluster

e (Centroid clustering

e Hard clustering

K-means Algorithm

e Define the number of clusters K, and
Initialize them

e Repeat the following steps until the stopping
condition is met

o Assign every point* & =3 (@M - u®)
to its closer cluster i=1
o Recalculate cluster centers K
E; = Z er

*point: n dimensions vector

K-means Steps

A A A A o + ® 4 o . ® +
A A . N . 3
A 4 il ¢ 3 ¢
A A + ' + ‘
4 A r's i 3 L K + +
. A
B .
A - o 1]
- O +
A + .
A A A+ A A
. ® 0
A N * . Y A
A A A a @ + A - +
A A

¢ ¢ " 4 ¢ ¢ - 4
3 . B .
e ~ . 4 ~ .
-+ ’ L—
K . + 4 B -
+
b . B
o - +
+ +
A A
A A A A
A A
Q 4 DA
A A 4 A A 4
A A

(d) Iteration 3 (e) Final clustering

Apache Hadoop

Open source framework for storage and large

scale processing of data-sets on computer
clusters

e \Web-scale

o terabytes to petabytes of data
o hundreds to thousands of machines

e Used and developed by the industry leaders
o Yahoo!

o Facebook
o Netflix

Hadoop Components

e Hadoop Common

o tools, libraries and utilities used by the other Hadoop
modules

e Hadoop Distributed File System — HDFS
e Hadoop YARN

o Resource Manager
o Task Manager

e Hadoop MapReduce Implementation
e Hadoop Ecosystem

o underlying platform of many Apache “Big Data”
projects

Hadoop HDFS

e Distributed File-system after Google’'s GFS

e Runs on commodity hardware
o handles failures

e Master/Slave architecture
o single point of failure?

e Designed for BIG files
o 64 -128 MB default block size

e Replication across all nodes that serve as
block pools

Hadoop YARN

Yet Another Resource Negotiator

e Separated from the MapReduce component
since version 2

Resource Management

Monitoring

Task Scheduling

Job execution

Failure Management

Hadoop YARN

T -a

| MapReduce Status
Job Submission
Node Status
Resource Request ---------.

Hadoop MapReduce

e Programming model for processing large
data sets with a parallel, distributed
algorithm on a cluster

e Implementation of the technology introduced
by Google

e Inspired by map and reduce methods from
functional programming

e Takes advantage of the locality of data
o parallelism over data

MapReduce

Can be seen as a two step process
e Map step

o process the input data and extract them as <key,
value> pairs

(combining and shuffling)

e Reduce step

o collect the outputs of the mappers, sorted and
grouped by their key, and form the final output

WordCount Example

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear, 1 ——w»{ Bear, 2
Deer,1 —— | Bear, 1
Deer Bear River ——»{ Bear, 1

River, 1
/ Car, 1
Car,1 ——m» Car,3 | ——w»| Bear,2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ———m»{ CarCarRiver ———w» Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 ——w» Deer,2 ——

Deer, 1
Deer, 1 ;
Deer CarBear ——» Car, 1
Bear, 1 River, 1 ——— = River, 2

River, 1

Apache Hadoop

It makes sense for big amounts of data

e the amount of mappers comes out by
dividing the size of the file with the block size
(64 -128 MB)

e every mapper must have enough work to do

e cach node should have at least 10 mappers

e practically it makes no sense of processing
something smaller than 1GB of data

Apache Hadoop

e Parallel Programming Challenging

e Higher Level Abstractions

o programming interfaces

o administration tools

o data distribution

o measures against race conditions

e Scalable
e Fault tolerant

K-means on MapReduce

Parallel K-means

e Increased need to parallelize it
e Fits quite well the MapReduce model
o map step - classification step (data parallel over
points)
o reduce step - recompute centers (data parallel over
centers)

e MLSP Amazon Access Data Set

o more than 8 million rows
o CSV format

e okeanos Cloud Infrastructure

o Resource pool with 18 cores, 22 GBs of RAM and
260 GBs of HDD

o Ubuntu Linux 12.04

o Apache Hadoop 2.2.0

e 5-dimensional data points

K-means on MapReduce

. Compute the

: distance to each data

. point from each cluster
map() . center and assign

. points to the

: cluster centers

Compute the new
 cluster centers

User Program

Execution parameters

Input path
Sample size — number of data points
Block size

a. block size directly affects the number of splits and in

turn the amount of mappers
b. smaller block size => more blocks

c. the number of blocks equals the number of splits
and the number of mappers

Number of clusters
Number of iterations

Master node with 1 core and 4 GBs of memory and
Slave node with 1 core and 2 GBs of memory

Sample Size Block Size Clusters

Iterations

Mappers Avg. Job Time

Total Time

Run1 1 million 2 MB 100 5 30 5min2sec 27 min 25 sec
Run2 1 million 16 MB 100 5 4 2min 36 sec 14 min 27 sec
Run3 1 million 32 MB 100 5 2 2min9sec 12 min 33 sec
Run4 1 million 64 MB 100 5 1 1min56sec 11 min 6 sec
Run5 5 million 32 MB 500 5 10 4 min 34 sec 28 min 45 sec
Run6 5 million 64 MB 500 5 10 5min13sec 30 min 1 sec
Run7 8 million 32 MB 500 5 16 6 min 23 sec 39 min 28 sec
Run 8 8 million 64 MB 500 5 8 6 min 7 sec 37 min 32 sec

Scaling up and out

Experiment on 3 nodes with increased
resources

K-means on MapReduce

Considerations

e K-means is an iterative algorithm

o every iteration is a new Job
o Job initialization produces overhead

o between every iteration all the data are written back
to the disk and then read again

e Needs a LOT of data points (~10m per node)

Alternatives

e Apache Mahout

o Machine Learning library on top of Hadoop

e Apache Spark

o Engine for data processing — DAG model

e Apache Hama
o BSP model

e Stratosphere
o MapReduce extension

Conclusions

e K-means is a broadly adapted, easy to
Implement and quite efficient clustering
algorithm

e Apache Hadoop is one of the best
frameworks for distributed storage and
parallel data processing

e MapReduce gets deprecated — better
alternatives come up

Data Clustering on Hadoop

Questions

