
Data Clustering on 
the Parallel Hadoop 
MapReduce Model
Dimitrios Verraros



Overview
The purpose of this thesis is to implement and 
benchmark the performance of a parallel K-
means clustering algorithm on the Apache 
Hadoop framework
● Data Clustering and K-means Algorithm
● Apache Hadoop Framework
● Parallel K-means implementation on the 

MapReduce model
● Experiment results



Motivation
Big Data explosion
● Vast amounts of data that needs to be 

processed and analyzed
○ Human generated data
○ Machine generated data

● Increased demand for efficient storage and 
processing solutions



Data Clustering
Machine Learning techniques focus on 
organizing data into sensible groupings
● Unsupervised learning
● Grouping of objects based on their 

relationship instead of preset tags or labels



Clustering Challenges
● Definition of Similarity
● Familiarity with the available data

○ Data preprocessing
● Cluster Diversity
● Data Representation

○ Number of Clusters
○ Data type
○ Data scale



Cluster Diversity



K-means Clustering
● One of the most popular machine learning 

algorithms utilized for clustering data sets
● Partitioning n observations into meaningful k 

clusters
● Target is to reduce the mean error of all 

observations to their respective cluster
● Centroid clustering
● Hard clustering



K-means Algorithm
● Define the number of clusters K, and 

initialize them
● Repeat the following steps until the stopping 

condition is met
○ Assign every point*

 to its closer cluster
○ Recalculate cluster centers

*point: n dimensions vector



K-means Steps



Apache Hadoop
Open source framework for storage and large 
scale processing of data-sets on computer 
clusters
● Web-scale

○ terabytes to petabytes of data
○ hundreds to thousands of machines

● Used and developed by the industry leaders
○ Yahoo!
○ Facebook
○ Netflix



Hadoop Components
● Hadoop Common

○ tools, libraries and utilities used by the other Hadoop 
modules

● Hadoop Distributed File System – HDFS
● Hadoop YARN

○ Resource Manager
○ Task Manager

● Hadoop MapReduce Implementation
● Hadoop Ecosystem

○ underlying platform of many Apache “Big Data” 
projects



Hadoop HDFS
● Distributed File-system after Google’s GFS
● Runs on commodity hardware

○ handles failures
● Master/Slave architecture

○ single point of failure?
● Designed for BIG files

○ 64 -128 MB default block size
● Replication across all nodes that serve as 

block pools



Hadoop YARN
Yet Another Resource Negotiator
● Separated from the MapReduce component 

since version 2
● Resource Management
● Monitoring
● Task Scheduling
● Job execution
● Failure Management



Hadoop YARN



Hadoop MapReduce
● Programming model for processing large 

data sets with a parallel, distributed 
algorithm on a cluster

● Implementation of the technology introduced 
by Google

● Inspired by map and reduce methods from 
functional programming

● Takes advantage of the locality of data
○ parallelism over data



MapReduce
Can be seen as a two step process
● Map step

○ process the input data and extract them as <key, 
value> pairs

(combining and shuffling)
● Reduce step

○ collect the outputs of the mappers, sorted and 
grouped by their key, and form the final output



WordCount Example



Apache Hadoop 
It makes sense for big amounts of data
● the amount of mappers comes out by 

dividing the size of the file with the block size 
(64 -128 MB)

● every mapper must have enough work to do
● each node should have at least 10 mappers
● practically it makes no sense of processing 

something smaller than 1GB of data



Apache Hadoop
● Parallel Programming Challenging
● Higher Level Abstractions

○ programming interfaces
○ administration tools
○ data distribution
○ measures against race conditions

● Scalable
● Fault tolerant



K-means on MapReduce
Parallel K-means
● Increased need to parallelize it
● Fits quite well the MapReduce model

○ map step - classification step (data parallel over 
points)

○ reduce step - recompute centers (data parallel over 
centers)



Experiment
● MLSP Amazon Access Data Set

○ more than 8 million rows
○ CSV format

● okeanos Cloud Infrastructure
○ Resource pool with 18 cores, 22 GBs of RAM and 

260 GBs of HDD
○ Ubuntu Linux 12.04
○ Apache Hadoop 2.2.0

● 5-dimensional data points



K-means on MapReduce



Execution parameters
● Input path
● Sample size – number of data points
● Block size

a. block size directly affects the number of splits and in 
turn the amount of mappers

b. smaller block size => more blocks
c. the number of blocks equals the number of splits 

and the number of mappers
● Number of clusters
● Number of iterations



Results
Master node with 1 core and 4 GBs of memory and 
Slave node with 1 core and 2 GBs of memory



Scaling up and out
Experiment on 3 nodes with increased 
resources



K-means on MapReduce
Considerations
● K-means is an iterative algorithm

○ every iteration is a new Job
○ Job initialization produces overhead
○ between every iteration all the data are written back 

to the disk and then read again
● Needs a LOT of data points (~10m per node)



Alternatives
● Apache Mahout

○ Machine Learning library on top of Hadoop
● Apache Spark

○ Engine for data processing – DAG model
● Apache Hama

○ BSP model
● Stratosphere

○ MapReduce extension



Conclusions
● K-means is a broadly adapted, easy to 

implement and quite efficient clustering 
algorithm

● Apache Hadoop is one of the best 
frameworks for distributed storage and 
parallel data processing

● MapReduce gets deprecated – better 
alternatives come up



Data Clustering on Hadoop
Questions








