
Data Clustering on the Parallel Hadoop

MapReduce Model

Dimitrios Verraros

dimver@it.teithe.gr

Department of Informatics,

Alexander Technological Educational Institute of Thessaloniki

February 9, 2014

Abstract

Machine Learning is one of the best ways to process and analyse data. The industry

created the tools to utilize the benefits of machine learning algorithms by executing

them in a parallel way, on huge computer clusters where the information is stored.

One of the most popular is Apache Hadoop, which provides the abstractions needed

to perform those operations in a way that more businesses, organizations and

individuals can use it, in order to achieve their goals. In this thesis, we examine

the most popular machine learning algorithm, the K-means, and implement it on

the MapReduce framework. We then execute it on a Hadoop cluster, to measure

the performance gains offered by parallelizing the algorithm that analyzes data

distributed on multiple machines. Alternative solutions and evolutions in the direction

of parallel data processing are presented to conclude an overview of the possible

directions that the Big Data term moves towards.

Contents

1 Introduction 3

2 Data Clustering and K-means algorithm 5

2.1 Introduction . 5

2.2 Data Clustering . 6

2.2.1 Data Representation . 7

2.3 K-means . 8

3 Hadoop 12

3.1 Introduction . 12

3.1.1 Big Data . 12

3.2 The Hadoop Approach . 14

3.2.1 Versions and Development Timeline 15

3.2.2 Architecture Overview . 17

3.2.2.1 Hadoop Distributed File System (HDFS) 17

3.2.3 Hadoop MapReduce . 22

3.2.3.1 MapReduce 1.0 and YARN (MRv2) 24

3.3 Cluster Setup . 26

3.3.1 Single Node Setup . 27

3.3.2 Multi Node Cluster Setup . 35

4 Parallel K-Means on MapReduce 38

4.1 Introduction . 38

1

4.2 Implementation Overview . 38

4.2.1 Job Level . 39

4.2.2 Map Step . 40

4.2.3 Reduce Step . 40

4.3 Job Execution . 41

5 MLSP Amazon Access Data Clustering 43

5.1 Amazon Access Data . 43

5.1.1 Processing the Amazon Data 44

5.1.2 Cluster Center Initialization . 45

5.2 Experimental Setup . 45

5.3 Results . 46

5.4 Alternatives . 49

6 Conclusions 52

A Code Listings 57

2

Chapter 1

Introduction

The web is evolving increasingly fast, leading to a chaotic amount of information

that needs to be stored, accessed and processed efficiently. Thus, the importance

of finding better ways to manipulate and analyse this volume of data is greater than

ever.

Machine Learning is the branch of artificial intelligence, that managed to reach

greater adoption in the industry, as the most effective way to train systems with

data. While being around for more than 50 years, machine learning gained a lot of

popularity in the past decade, with large scale companies using those algorithms for

mainstream products, like web search, recommendation systems, photo tagging or

spam filtering among others.

However, those techniques require a lot of computational power and time, and speed

is a significant factor for companies, organizations and scientific research nowadays.

Given the distributed nature of modern storage solutions that exceed the petabyte

scale, is suitable to parallelize these algorithms and have them operating close to

where the data resides, in order to achieve greater results that match the demands

of the industry.

Apache Hadoop is a tool that captures those needs and simplifies the operation

and management of large computer clusters. It offers a distributed storage layer for

the data, a resource manager, and an implementation of the parallel computational

framework MapReduce.

In the first section of this thesis, will focus on the clustering of data using machine

learning algorithms and particularly the K-means. We will then introduce the Hadoop

project, analysing its main components and offerings, while presenting a setup

and utilization guide on a cluster. The MapReduce programming model, will be

3

examined, in order to understand how it is possible to write and execute parallel

programs on top of a Hadoop cluster.

We will then implement a parallel K-means algorithm using the MapReduce API, to

present a scalable solution that makes possible to process vast amounts of data in

a fair amount of time. We will see which parts of the algorithm can be parallelized in

order to apply a clustering method on large scale data. Comprehensive experiments

are conducted in order to demonstrate the possible attributes that can affect the

performance of the algorithm and then scale up and out, showcasing the advantages

and disadvantages of each scenario.

Finally the shortcomings of using the MapReduce framework for iterative algorithms,

like K-means, is discussed, and alternative solutions that deal with this problems are

briefly presented.

4

Chapter 2

Data Clustering and K-means
algorithm

2.1 Introduction

“Organizing data into sensible groupings is one of the most fundamental modes of

understanding and learning”[13].

Learning is more than important nowadays, in the age of internet, surveillance, and

social media. Recognising patterns amongst those sources provides significant

value when it comes to understanding consumer habits, stock exchange, traffic flow,

news and many other events which are now consistently stored and being available

for accessing and analyzing them. Machine Learning is the science that investigates

and tries to find out new ways of making useful assumptions and predictions out of

the available knowledge. It is more abstractly split into two categories of supervised

and unsupervised learning with their main difference being down to the ability of the

respective algorithms to operate having labelled or unlabelled data in their disposal.

Given the nature and the amount of data coming out of the aforementioned sources

it gets clear that supervised learning is not applicable due to the fact there is no prior

knowledge on the information we want to dig into. Cluster analysis is the study of

algorithms and techniques for finding structure and similarities between objects that

share the same characteristics. This is what distinguishes clustering, unsupervised,

from classification analysis, unsupervised learning. The subject of Clustering is

a long running topic in the Machine Learning science. Since the proposal of the

K-means algorithm, more than 50 years ago, a vast amount clustering algorithms

have been proposed, still though K-means remains one of the most popular ones,

5

mostly due to its simplicity and effectiveness.

2.2 Data Clustering

Data clustering, or cluster analysis, is a tool for discovering the structure of data,

without making assumptions used in other statistical methods. Objects are grouped

together by their relationships instead of identifying them by preset tags or labels.

Representing the entities of a dataset as points in a multi-dimensional space is the

key to group them with their similar ones and distinguish them from the ones that

differ. The biggest problem at this point is defining similarity. This can greatly vary

because of differences in shape, size and density. Figure 2.2.1 shows how diversity

in clusters can make the task of isolating the entities harder.

Figure 2.2.1: Cluster Diversity [13]

While it is pretty clear for a human to recognise the patterns in the previous example

it is nearly impossible for the available algorithms to separate them. On the other

hand, it is equally difficult for humans to perceive and understand a dataset which

is presented in more than 3 dimensions. Data representation is thus essential for

successfully identifying clusters and equally important with defining proximity and

measuring it. Clustering algorithms are consistent, fast and reliable, enough to

pose as great candidates for solving this king of problems. In the next sections

we will describe the significance Data Representation and how perform clustering

analysis on them using one if the most common and popular clustering algorithms,

the K-means.

6

2.2.1 Data Representation

Representation of the data influences significantly the outcome of a clustering

algorithm. With good representation clusters are going to be compact and isolated

but this not always easy to achieve since prior domain knowledge is required.

Careful selection of the purpose of grouping, the number of clusters but also using

the appropriate data type and scale, are key points to have a successful clustering.

Grouping Deciding on the proper grouping decides the final outcome and

conclusions to be made out of the clustering. In a movie dataset for example the

movies could be grouped based on their country of origin, their genre or their budget.

Those characteristics would give completely different clusters on the same dataset

of movies.

Number of Clusters The number of clusters is not trivial to determine. Most of the

times the number of clusters has to be manually defined but many automatic ways

of deciding them are also proposed. Figure 2.2.2 shows how the number of clusters

affects the result.

Figure 2.2.2: Number of Clusters [13]

7

Data Types Data Types refer to the “degree of quantization in the data”[14]. Each

feature can be either binary, discrete or continuous. Binary data can be represented

on a data matrix as 0/1s (or yes/no). Discrete can be a feature which is assigned a

finite amount of values, like stars on an album rating. Likewise continuous can take

as a value any real number in a given range. Data Types are an important factor for

selecting the appropriate proximity function.

Data Scales Every object in a dataset is defined by a d-space vector. The values

that make up each vector should be in a range that makes sense when compared

to the rest of the objects so that the ratio and the interval between them is suitable

for successfully separating the objects into clusters.

2.3 K-means

The selection of the most appropriate clustering algorithm depends on the factors

mentioned above. The K-means algorithm proves to be quite effective across

different domains and alongside its speed and efficiency. K-means is also quite easy

to parallelize, making it scalable and eventually capable of analyzing very large data

sets.

K-means is a partitioning algorithm that separates the objects of a dataset,

represented in a n-dimensional data matrix. Given a set of n-dimensional points X

= {xi}, i=1,. . . ,n to be clustered in a set of K clusters, C = {ck}, K=1,. . . ,K, K-means

assigns each point to cluster in a way that the squared mean error of every cluster

is minimized. The squared error of a cluster is the sum of the squared Euclidean

distances between every point in a cluster Ck and its center µ(k), which is also called

within-cluster variation.

e2k =
∑
i=1

(x
(k)
i − µ(k))

2
(2.3.1)

Besides the Euclidean distance, other metrics can also be used, with the most

popular being the Manhattan distance

Mht =
∑
i=1

|x(k)i − µ(k)| (2.3.2)

or the Mahalanobis distance. While the fisrt two are able to find only spherical

clusters, using the Mahalanobis distance, ellipsoidal clusters can be detected, due to

8

the fact that the Mahalanobis function takes into account the Cosine similarity, which

however increases the computational cost. The goal of K-means is to minimize the

square-error of all entire cluster, which is calculated by the next function:

E2
K =

K∑
k=1

e2k (2.3.3)

K-means is an iterative algorithm. It is implemented in two parts which are then

repeated all over until a stopping condition is reached. This can be the number of

iterations, the convergence or the combination of those two. The main part of the

algorithm is implemented like that:

• Define the number of clusters K, and initialize them

• Repeat the following steps until the stopping condition is met

– Assign every object to its closer cluster

– Recalculate cluster centers

Figure 2.3.1 shows the steps during the execution of the K-means algorithm on a

2-dimensional dataset.

The are various implementations of the K-means algorithm, and picking one

depends on the characteristics of the dataset. The most commonly used are the

Forgy/Lloyd algorithm, the MacQueen algorithm and the Hartigan & Wong algorithm.

As mentioned earlier the selection of the number of clusters is the most critical

choice. It is common that the algorithm can be run many times with different

amount of clusters until the most meaningful result is picked. The way the data

are represented also affects the clustering results. K-means converges to local

minimums and running it many times with different combinations of the above can

help finding out the best solution which is characterized by the smallest value of

square error. It is always important to work on a small sample of the dataset for

making the initial assumptions, and then move on to analyzing the whole dataset.

K-means has a complexity of O (x*n*K*I), where x is the number of points, n the

attributes of each point, K the number of clusters and I the number of iterations. Due

to the fact that it monotonically approaches a local minimum of the cost function, it

is described as a hard Clustering algorithm.

9

Figure 2.3.1: (a) In the first step the data are represented on a 2-dimensional table

(b) Three objects are selected as the initial cluster centers (c), (d) and (e) The

algorithm iterations with the center recalculations until convergence is achieved [13]

Extensions of K-Means and other approaches on Data Clustering Many

extensions have been proposed, in order to solve various problems related to it

with the most notable ones being the fuzzy K-means [Dunn, 1973], X-Means [Pelleg

& Moore, 2000], Kernel K-Means [Scholkopf et al., 1998]. All of those, improve the

results of the K-means in many aspects, but hamper its performance by increasing

the complexity of the algorithm. Bregman Divergences [Banerjee, Arindam; Merugu,

Srujana; Dhillon, Inderjit S.; Ghosh, Joydeep (2005)], and Expectation Maximization

(EM) [Dempster, Laird & Rubin (1977)] are also trying a similar approach to K-means

by using probabilistic methods for measuring the similarity of the patterns. They

are both characterized as soft Clustering algorithms since they try to avoid local

optima by assigning each point to multiple cluster with a membership value (soft

assignment).

Nevertheless, K-means remains one of the most prominent clustering algorithms.

It is also quite easy to parallelize making it an excellent candidate for distributed

computation on big clusters.

In the next chapter we will dig into Apache Hadoop, the one of the most popular

10

distributed computational and storage solutions. We will the describe how to

implement the K-means algorithm on the MapReduce framework and parallelize

it in order to be able to analyze huge amounts of data stored across thousands of

machines.

11

Chapter 3

Hadoop

3.1 Introduction

As of 2013 Hadoop tends to be a first class synonym when it comes to Big Data.

Still it is a bit unclear what Hadoop is actually though.

Hadoop started as part of the Apache Nutch project, an open source web search

engine, itself being part of Apache Lucene. One of the first issues its authors

came upon was the problem of scalability and the ability of managing hundreds

to thousands of machines that were meant to handle the analysis of the ever

growing amount of data. Things became more clear with the publication of Google’s

MapReduce and Google File System (GFS) papers[4].

Hadoop is an open-source implementation of the aforementioned concepts of

MapReduce and GFS. Being already applicable for a much broader realm than

the one of Nutch, Hadoop became an independent subproject of Lucene in 2006.

Early adopted and supported by Yahoo! Hadoop turned into a top-level project of the

Apache Software Foundation in February of 2008. At the time of writing, Hadoop is

used by a vast majority of technology giants including Facebook, Google, Microsoft,

Twitter, Last.fm, Netflix and Spotify to name a few.

3.1.1 Big Data

The exponentially increasing amount of data raised the need for an efficient solution

to collect, store and analyze them. The term Big Data is quite spread lately with its

definition being quite loose. In general Big Data can be described as a very large,

loosely structured data set that defies traditional storage[18].

12

Those data come out from two sources: Human Generated Data and Machine

Generated Data.

Human Generated Data consist from emails, articles, facebook statuses, photos,

tweets etc. Considering the amount of time that each one of us spends on a

computer every day you can imagine the rate of data generation in a world scale.

Machine Generated Data comes out of activity logs, traffic cameras, stock exchange,

flight’s telemetries and more.

Prior to Hadoop, machine generated data were largely ignored, mostly down to the

inability and inefficiency to collect those. However things changed and we know now

have machine generated data outnumbering the human generated data.

Figure 3.1.1: Big Data Pyramid [18]

And some numbers:

• Facebook: has 40 PB of data and captures 100 TB / day

• Yahoo!: 60 PB of data

• Twitter: 8 TB / day

• eBay: 40 PB of data, captures 50 TB / day

The above information can help us understand the scale of the amount of storage

and computational power which is required in order to deal with the above

requirements. Moreover considering the nature of that data which tends to be

unstructured or semi-structured traditional methods of storing and accessing them,

like relational databases, prove to be not such a good fit.

13

3.2 The Hadoop Approach

Having in mind those demands, Hadoop can solve those problems by providing a

common compute and storage cluster. Merging those two eliminates the problem of

having separate structures for processes that are about to exploit both of them. It

skips the communication barriers raised and makes managing those tasks easier

offering the right tools. Most importantly Hadoop clusters can run and scale

horizontally on commodity hardware that can be added and removed with ease.

While it can run on a single node it can scale out to thousands of nodes with

different specification and efficiently distribute jobs across them. As stated by Yahoo!

hundreds of gigabytes of data constitute the low end of Hadoop-scale[12], thus

earning the tag “web-scale”.

Hadoop is a big ecosystem under which a lot of projects lie, including HBase,

ZooKeeper, Hive and Pig amongst others, all of them running on top of Hadoop.

Itself though consists of the following core components.

The Hadoop Common package is a collection of Operating System tools and utilities,

that help managing the Hadoop instance, the needed Java Archives (JAR) files

and scripts in order to run it, the source code, the documentation and the libraries

needed to use it.

Next comes MapReduce and HDFS. It is suitable here to distinguish MapReduce

and Hadoop though. MapReduce is a programming model for processing large data

sets with a parallel, distributed algorithm on a cluster [17]. It is inspired by the map

and reduce functions commonly used in functional programming. The model was

initially developed by Google and it was published in 2004. Its target is to distribute

tasks in multiple computers and make sure that they are successfully executed

regardless network or machine failures. Hadoop MapReduce is the open-source

implementation of that computational model which goes hand by hand with the next

module which is the Hadoop Distributed File System (HDFS).

HDFS is also modeled after Google’s GFS. It stands for the “storage layer” of a

Hadoop cluster. Considering the amount of data meant to be stored on a Hadoop

cluster, going for expensive hardware and complex structures to achieve the needed

scale and speed proves quite inefficient. Another fact is that this data is going to be

stored on many computers, since the filesystem is distributed, which are commodity

hardware increasing the possibility of failures. Thus Hadoop has to take care of

the possible failures by having replication and keeping copies of that data on many

machines.

14

3.2.1 Versions and Development Timeline

A very common image that someone can come across while looking for the right

Hadoop version is seen in Figure 3.2.1.

Figure 3.2.1: Hadoop Versions [2]

Since Hadoop came in life a lot of companies showed a great interest in it and

actively supported its development. In most Apache projects new features are

developed on a main codeline named “trunk”. Every large feature is developed on

its own branch which is supposed to be merged in the future back into trunk. Any

community member can create a branch and name it as they like. Big players like

Cloudera (CDH), HortonWorks, MapR and IBM got involved among others. In most

of the cases it ended up each one of them working on their own branch, bringing

their features which finally reached a situation that there has been an 18 month

period where there has been no one Apache release including all the committed

features[24]. Table 3.2.2 shows the features each version has, as of the beginning

15

of 2012.

Figure 3.2.2: Hadoop Version Diagram [24]

Since then the situation didn’t evolve in a much better direction, however it is a bit

clearer where is the current stable version and which one is the main future branch.

An important thing to have in mind is that the version number does not indicate the

chronological order in which each one of it started. For example Hadoop 0.22 was

released one month after 0.23.

Hadoop 1.x.x, a descendant of branch 0.20.x, is now the main stable version,

containing most of the features and being officially supported by most Hadoop

vendors. The current version of this branch is 1.2.1. The second main, and

stable version, branch is 2.x.x, which comes out of branch 0.23.x. It is still a big

question which version of Hadoop is someone supposed to use considering its

features, stability and support. He should also make sure that the version he picks

is compatible with the subproject of the Hadoop family he is indenting to use with.

The following table sums up the features supported by each version:

Some conclusions can be made having a look on this table, which confirm the

aforementioned version history. Versions 0.23 and 2.0 are almost identical. Versions

0.20 and 1.0 alongside the Cloudera versions are production ready. It is also

important to notice which versions support YARN (MRv2) and which ones MRv1,

16

Feature 0.20 0.21 0.22 0.23 1.0 2.0 CDH3 CDH4

Production quality X X X X

HDFS append X X X X X X X

Kerberos security X[a] X X X X X X

HDFS symlinks X X X X X

YARN (MRv2) X X X

MRv1 daemons[b] X X X X X X

Namenode federation X X X

Namenode HA X X X

Table 3.2.1: [a] Support for Kerberos-enabled HDFS only. [b] All versions include

support for the MRv1 APIs.

with them being mutually exclusive.

Versions 0.23.x and subsequently 2.x see the introduction of YARN. This is one

of the major overhauls brought in those versions. In the chapter dedicated to the

MapReduce part of Hadoop we will explain the differences between MRv2 and MRv1

and the significance of the new features in terms of performance and efficiency that

the new implementation carries.

Considering the improvements this branch brings and that is now the second stable

version of Hadoop, this project will go through the details and architecture of Hadoop

2.2.0.

3.2.2 Architecture Overview

As mentioned earlier, Hadoop consists from Hadoop Common, the Hadoop

Distributed File System (HDFS) and MapReduce/YARN. In the following sections

an overview of the design and features, alongside with a setup and configuration of

those components, will be presented.

3.2.2.1 Hadoop Distributed File System (HDFS)

Like every Hadoop component HDFS is written in Java. Given the fact that Java

is highly portable and supported by most machines, HDFS can be deployed on a

17

wide range of them. HDFS is a distributed file system with its key differences when

compared to other distributed file systems is its ability to run on low cost, commodity

hardware. This fact triggers a series of assumptions and solutions that HDFS is

supposed to provide.

Hardware Failure Given the status of the used hardware, HDFS takes failure as

a common situation rather than a worst case scenario. Therefore fault-tolerance

is very important and detection of failures and fast recovery from them is the main

goal. This is achieved by replicating (duplicating) data in many different nodes.

Streaming Data Access and Large Files HDFS is quite different from a common

file system where a user is accessing frequently many small files, but actually fast

throughput is needed for use with large data sets. HDFS favours that instead of

low latency. Likewise HDFS trades some key features of the POSIX specification in

order to adapt to the demands of applications targeted to for HDFS.

Data Sets used on Hadoop clusters tend to take gigabytes to terabytes of space.

HDFS is tuned to match those requirements having a typical block size of 64 to

256 MBs. Another key point of HDFS is that it does not support overwriting files

but only creating and appending to them favouring write-once-read-many approach

enabling high throughput data access fitting perfectly a Map/Reduce application or

a web-crawler.

Master/Slave Architecture Since data is spread across many nodes there must

be a way to coordinate them. Every machine has a ‘daemon’ running which is talking

to Master node that manages the whole cluster, hence ending up with a master/slave

architecture. This brings us to the conclusion of having a single point of failure in our

cluster, it being the master node. While many could consider that unreasonable this

approach greatly simplifies the system’s architecture, design and implementation.

This single node, named NameNode, manages the file system namespace and

regulates file access amongst clients. In other words it controls all the file system

operations like file creation, access, permissions, etc. The DataNodes run on every

node and represent the slaves of the cluster and are responsible for managing the

storage of every machine they run on.

Files are stored in many blockes which are distributed and stored in a set of

DataNodes. The NameNode performs the file system namespace operations and

18

Figure 3.2.3: HDFS Architecture [6]

determines the mapping of blocks across the DataNodes, which on their turn

execute the commands received from the NameNode.

Data Replication Like in most file systems, files stored on HDFS are split into

sequences of blocks, each one of them, except the last, having the same file size.

To achieve fault-tolerance those blocks are replicated in many nodes, which can be

configured per file. The NameNode determines where each block shall be stored,

and is aware of the status of every DataNode by receiving a Heartbeat and a

Blockreport from them periodically. The replication of data across the DataNodes

can be seen in Figure 3.2.4.

The way those blocks are distributed depends on the cluster configuration. In most

cases they are distributed evenly across the DataNodes with every block running

on different nodes or even different racks. Tuning the cluster for increased reliability

and performance is not a trivial task and requires a lot of experience. There are

many policies that can be implemented having in mind the network topology and

bandwidth, the available hardware and the nature of the data being stored.

Despite having only one master node on which the NameNode runs there can be

a secondary NameNode. Because of the fact that the NameNode can also fail,

19

Figure 3.2.4: Datanodes [6]

the secondary NameNode acts as a fail-over node merging the namespace image

and logs and keeping a backup of those. It normally runs on a separate physical

machine from the master node and can replace the master node in case this one

fails. It should be noted that the secondary NameNode is not an exact copy of

the NameNode, and there must be a recovery process from the NameNode in on

order to replace it. The 0.23.x and 2.x sees the introduction of two new significant

features in HDFS, the HDFS Federation and HDFS High-Availability which handle

those scenarios with ease and effect.

HDFS Federation When the cluster grows up the need to scale the name service

horizontally comes up. With the introduction of HDFS Federation it is possible to

run many NameNodes which run independent and do not coordinate with each

other. This way the namespace can be split across many nodes having each one

managing a diffent rooted directory. All DataNodes are used as storage blocks by

every NameNode simultaneously. Under federation each NameNode manages a

self-contained unit, made up of the namespace and a block pool named Namespace

Volume, with every block from the those block pools being stored on the DataNodes.

Figure 3.2.5 illustrates the concept of block pools.

20

Figure 3.2.5: Block Pools [6]

HDFS High-Availability Having multiple NameNodes and secondary NameNodes

the possibility of data loss is very limited, however every NameNode is a single point

of failure. With HDFS HA NameNodes can be configured in active-standby pairs

that share all the log entries and block mapping, making it possible for the standby

node to quickly take over in case a NameNode fails.

HDFS Interfaces HDFS can be accessed in many ways. Those include a

command line interface, Java and C APIs, and through HTTP using the WebHDFS

and HttpFS clients.

The command line interface can be accessed from a node using the bin/hadoop dfs

command from Hadoop’s installation root directory, passing as parameters common

unix commands like ls or cat, among others.

HDFS can be used from an application using the provided libraries for different

platforms. Java APIs are available with the Hadoop distributables while C programs

can use libhdfs. There are also packages for python like Pydoop or Snakebite.

Finally HDFS can be accessed remotely through HTTP. WebHDFS exposes all the

available HDFS operations with a REST API, while HttpFS is a REST HTTP gateway

which is interoperable with webhdfs. An important difference is that HttpFS supports

communication with clusters running on different versions of Hadoop overcoming

RCP versioning issues that occur in webhdfs.

21

3.2.3 Hadoop MapReduce

Hadoop 2.x sees the introduction of YARN, a revision of the initial MapReduce

implementation, in order to catch up with the increasing demands of the industry and

overcome the limitations of the first version. At first we will go through the objectives

and targets of the MapReduce concept and then describe the architecture of YARN.

As mentioned earlier MapReduce is a framework for writing applications which run

on a large number or machines, that make up a cluster, and process huge amounts

of data in a parallel way. It is designed to run where the data resides, taking

advantage of low latency. MapReduce takes place in two steps, map and reduce,

hence the name. Each step is split in multiple jobs which operate on key/value

pairs, that are coming as an input, get processed and returned as a new output in

key/value form.

On the Map Step the master node takes the input divides it into smaller jobs which

are independent and run on parallel on the worker nodes. Every job processes

chunks of data which reside on the node it runs on and after they are finished they

return the answer to the master node.

On the Reduce Step all the outputs collected from the executed jobs are combined

and the reduce task returns in turn the output of the problem.

The number of mappers and reducers is a very important factor for the performance

of Hadoop. Many tasks increase the framework overhead but improve the load

balancing and lower the cost of failures. The normal amount of maps is around

10–100 per node. This number is determined by Hadoop, but depends on the

configuration. Task setup can take time so it makes sense for every mapper to have

an significant amount of work to do. A decisive factor for the number of mappers is

the size of the input and the block size, since the amount of splits equals the division

of these values and one mapper is assigned per split. The proposed rule for the

number of reducers ranges from 0.95 to 1.75 multiplied by the number of nodes and

the maximum number or simultaneous reduces per task tracker.

Compute nodes tends to be the same as the storage node and with efficient

configuration the tasks are scheduled to the appropriate nodes thus increasing the

bandwidth across the cluster.

To have a better understanding of the map/reduce process we will got through

the commonly used example of finding the maximum temperature from a dataset

containing recorded temperatures from many cities many times per year. We

22

assume that the data are semi-structured which means data may be missing for

some cities over the years or they are formed in slightly different way.

Our dataflow starts by reading the file, parsing it and formatting the data to <key,

value> pairs that can be represented like this:

<Athens, 25>

<London, 17>

<Berlin, 15>

<Paris, 24>

<London, 23>

<London, 19>

<Paris, 28>

This is the input reader which divides the data and assigns it to each Map function

that will process it and give a result like this:

<Athens, [25]>

<Berlin, [15]>

<London, [17, 19, 23]>

<Paris, [24, 28]>

The amount of maps is normally decided by the number of the inputs which in turn is

the total number of blocks of the input files. While the map functions are completed,

their output is collected and merged. During this process, the partition function, the

results are sorted and shuffled simultaneously and they are allocated to individual

reducers. The partition function generates a hash key for every task and by its

module the respective reducer is selected. On the reducer function the aggregated

values are reduced in smaller sets which are decided by the key. In our case the

output of the reduce function will look like this:

<Athens, 25>

<Berlin, 15>

<London, 23>

<Paris, 28>

Note that the results are sorted by their key which is the city name. Final step is

formatting the results and writing them to a file on HDFS which is handled by the

Output Writer.

23

As part of the process there is a Reporter which tracks the job execution and reports

the progress to the master node, sets the application-level status and holds the

Counters.

3.2.3.1 MapReduce 1.0 and YARN (MRv2)

With the second version of Hadoop, MapReduce was was revised in order to

overcome increased maintenance costs and addressing the significant drawbacks

like lack of support for non-MapReduce job execution. YARN is actually a separation

between the MapReduce model implementation and the task execution system.

The initial implementation of Hadoop MapReduce the project was split in the those

parts:

• The MapReduce API for writting MapReduce programms

• The MapReduce framework, which is the implementation of the mapreduce

steps

• The MapReduce system, which are the services running on the nodes taking

care of the job monitoring and execution

The MapReduce system is composed from the JobTracker and the TaskTracker.

The JobTracker runs on the master node, while the TaskTracker runs on the slaves.

JobTracker is assigning tasks for the submitted jobs to the TaskTrackers that are

responsible for executing them. Figure 3.2.6 gives an overview of the first Hadoop

MapReduce implementation.

Moving to YARN Support for more programming models is one of the main

reasons to separate MapReduce from the task management system, and this is

down to the fact that not every application can be modelled efficiently on it. The

difference between Hadoop version 1.x and 2.x on the rerource management level,

can be seen in Figure 3.2.7. Since a massive amount of data is already residing

on HDFS the need to be able to run more ways of processing them on the cluster

beyond MapReduce, it would be appropriate to be able utilize them through many

paths.

Demands for bigger clusters were also there and the existing implementation had

limitations on its scalability. The biggest step to achieve that came by splitting

24

Figure 3.2.6: MapReduce 1.0 [6]

JobTracker’s main responsibilities of resource management and job scheduling

in two daemons, the ResourceManager (RM) and ApplicationMaster (AM). The

ResourceManager is a global entity while the ApplicationMaster runs per-application

into the cluster tracking the execution of every job. A NodeManager (NM) runs

on every slave node arranging the resources and the processes which run on it

and reporting back to the ResourceManager. The YARN architecture is shown in

Figure 3.2.8.

The ResourceManager and the NodeManager form the data-computation

framework.

ResourceManager The ResourceManager organizes the job execution on

the cluster. It is made up by two components, the Scheduler and the

ApplicationsManager.

The Scheduler allocates resources in Containers across the cluster for pending

jobs given a number of constraints like available memory or CPU and application

requirements. It’s functionality is decided by policies which are pluggable onto it and

25

Figure 3.2.7: From MapReduce to YARN [11]

define the way resources should be used.

The ApplicationsManager accepts the job submissions and initiates the

ApplicationMaster on the Container where the application is going to be executed.

ApplicationMasters are the main negotiators of resources from the Scheduler and

track applications status and progress.

NodeManager The NodeManagers run per-node and they are responsible for

the containers running on them, reporting their resource consumption back to the

Scheduler. They keep track of the status of the node they run on, log events and

monitor the jobs which are executed on it.

3.3 Cluster Setup

In order to go through the setup of a Hadoop cluster it is needed to setup and

configure every single machine which is going to be part of it. Since Hadoop is

written on Java, it is required that is is installed in all of the nodes. While the

machines’ hardware specifications may vary it highly recommended that they are

all using the same version of Java. In addition, they all need to have an SSH server

installed and running because this is how Hadoop communicates with every node

on the cluster.

On the first a single node setup needs to take place, followed up by the multi-node

configuration.

26

Figure 3.2.8: YARN [6]

3.3.1 Single Node Setup

The proposed setup includes the following:

• Java Oracle 1.6

• Ubuntu 12.04 Server

• Hadoop 2.2.0

User and group In favour of security, user management and permissions it is

quite useful to add a user account and dedicated to running Hadoop. We will create

a hadoop group and a user hduser and add him to the hadoop and sudo groups. To

achieve that execute the following:

$ sudo addgroup hadoop

$ sudo adduser --ingroup hadoop sudo hduser

$ su - hduser

27

SSH configuration After going through the process of creating a user and group,

SSH access needs to be configured. Initially an RSA private/public key needs to be

created for enabling public key authentication. Creating a new pair goes like that:

$ ssh-keygen -t rsa -P ""

Now that the key is generated access can be granted to this node by adding this key

to every slave’s authorized keys list. Since the master node, except from NameNode,

acts as a DataNode too, the node needs to have ssh access on itself through

localhost, so its public key had to be into its own authorized key list. We append

our private key on this list like that:

$ cat $HOME/.ssh/id_rsa.pub > $HOME/.ssh/authorized_keys

Finally we have to test ssh access on the node and save the node’s host key

fingerprint on the known_hosts file.

$ ssh localhost

Network configuration Since our node is going to run both as master and slave,

given that we are on a single node setup, we have to set our hosts file to refer to our

machine’s local IP address as master. In linux this file is /etc/hosts and we edit it

as follows:

127.0.0.1 localhost // we disable the localhost reference

192.168.0.1 master // we set our local network IP to master which may vary

...

Downloading Hadoop Now the right version of Hadoop had to be downloaded

and extracted into the hduser’s home folder. From the Hadoop website we select

the desired version and download the precompiled package. It can be downloaded

and extracted executing:

wget \

http://apache.mirror.digionline.de/hadoop/common/hadoop-2.2.0/hadoop-2.2.0.tar.gz

tar -xzvf hadoop-2.2.0.tar.gz

28

Hadoop configuration After we are done with the previous steps it is now time

to write our configuration files. First we have to define the JAVA PATH on the

hadoop-env.sh file which is in the hadoop-2.0.0/etc/hadoop folder alongside the

rest of the configuration files. We add this line in the file:

export JAVA_HOME=/usr/lib/jvm/java-6

The above path depends on every platform and care must be taken in order to point

to the right directory.

The main configuration files of Hadoop are XML documents and follow the

*-site.xml naming convention. These contain a configuration root, under which

various properties are added assigning the desired values to each parameter. There

are 4 main files which refer to each one of Hadoop’s main components. These are

the following:

• core-site.xml – contains the values for the core Hadoop properties

• hdfs-site.xml – contains configuration for HDFS

• mapred-site.xml – sets the default MapReduce Jobs behaviour

• yarn-site.xml – contains the configuration for the ResourceManager

Before adding the configuration to those files, it is appropriate to create the tmp and

hdfs directories. The first one is needed for running Hadoop, and the latter is where

HDFS allocates its space. They can be placed in a directory named hadoop:

$ mkdir -p $HOME/hadoop/tmp

$ mkdir -p $HOME/hadoop/hdfs

First we edit the core-site.xml file defining the HDFS port and the tmp.dir directory.

It should look like this:

<configuration>

<property>

<name>fs.defaultFS</name>

<value>hdfs://master:9000</value>

</property>

<property>

29

<name>hadoop.tmp.dir</name>

<value>/home/hduser/hadoop/tmp</value>

</property>

</configuration>

Second comes the hdfs-site.xml where we define the desired replication, the

HDFS directory and disabling folder permissions:

<configuration>

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/hduser/hadoop/hdfs</value>

</property>

<property>

<name>dfs.permissions</name>

<value>false</value>

</property>

</configuration>

Next comes the mapred-site.xml where we add the following configuration:

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

<property>

<name>mapreduce.job.tracker</name>

<value>hdfs://master:9001</value>

<final>true</final>

</property>

</configuration>

Finally the yarn-site.xml should contain the ResourceManager ports and a couple

more properties:

30

<configuration>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

<property>

<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>

<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

<property>

<name>user.name</name>

<value>hduser</value>

</property>

<property>

<name>yarn.resourcemanager.address</name>

<value>master:54311</value>

</property>

<property>

<name>yarn.resourcemanager.scheduler.address</name>

<value>master:54312</value>

</property>

<property>

<name>yarn.resourcemanager.resource-tracker.address</name>

<value>master:54314</value>

</property>

<property>

<name>mapred.job.tracker</name>

<value>master</value>

</property>

</configuration>

This is an example set of configuration to get your node up and running. Hadoop

configuration has many parameters which can be tweaked depending on the

31

available hardware, the desired behaviour, network topology and many more. There

a great space for optimization and experimentation which is out of our scope.

Formatting the NameNode After our configuration is in place, we can format

the NameNode executing the format command from our Hadoop’s installation root

directory:

$ bin/hdfs namenode -format

Please note that this command will erase all the data in the HDFS.

Starting the Single Node Cluster Given the successful completion of the

previous steps, it is now possible to start the single node cluster. First we start

the HDFS:

$ sbin/start-dfs.sh

This command will initiate the NameNode the DataNode and the

SecondaryNameNode. The output should look like this:

Starting namenodes on [master]

master: starting namenode, logging to /home/hduser/hadoop-2.2.0/...

master: starting datanode, logging to /home/hduser/hadoop-2.2.0/...

Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /home/hduser/hadoop-2.2.0/...

Executing the command jps will return us the following running Java processes:

615 DataNode

954 SecondaryNameNode

364 NameNode

In case that something is not this way something is wrong. In order to find out the

cause of the problem we can have a look at the logs directory.

After that we can start YARN, which initiates the ResourceManager and the

NodeManager:

32

$ sbin/start-yarn.sh

starting yarn daemons

starting resourcemanager, logging to /home/hduser/hadoop-2.2.0/logs/...

master: starting nodemanager, logging to /home/hduser/hadoop-2.2.0/logs/...

Last, but not least, the proxyserver and the historyserver need to be started with

the following commands:

$./sbin/yarn-daemon.sh start proxyserver

$./sbin/mr-jobhistory-daemon.sh start historyserver

Now all of the required services must be running and jps should return them:

JobHistoryServer

ResourceManager

DataNode

SecondaryNameNode

NameNode

NodeManager

Hadoop also provides some web interfaces to monitor the status of the cluster.

The default interface can be accesed at port 8088. On a local machine it can be

accessed at localhost:8088. Through that someone can get the status of his nodes,

applications and logs among others. On port 8042 node related info can be found,

while ports 50070 and 50090 show information related to the NameNode and the

Secondary NameNode respectively.

Running a MapReduce Job We are now ready to run out first MapReduce job.

We will utilize one of the provided MapReduce examples, the wordcount application.

This job reads a file from HDFS, puts all the words in key value pairs, where key

is the word and value is the number of occurrences. In the map step all words are

assigned a value of one, while in the reduce step all the values per word are summed

up to give the final output.

For our demonstration we will download J. Verne’s A Journey to the Center of

the World, copy it into HDFS and then run the job.

33

$ wget http://www.textfiles.com/etext/FICTION/center_earth

Copy the downloaded file to HDFS

$ $HADOOP_HOME/bin/hdfs dfs -copyFromLocal ./center_earth /

$ $HADOOP_HOME/bin/hdfs dfs -ls /

Output

Found 1 items

-rw-r--r-- 2 hduser supergroup 489319 2013-06-27 14:44 /center_earth

We can now run the job by pointing to the available MapReduce example jar and

providing as arguments the desired app the file path on HDFS and the output path:

$ $HADOOP_HOME/bin/hadoop jar \

./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar \

wordcount /center_earth /wordcount_output

After the job is successfully completed we can see the results executing:

$ $HADOOP_HOME/bin/hdfs dfs -cat /wordcount_output/part-r-00000

output

...

you?" 4

young 4

young, 2

your 66

yourself 2

yourself, 5

yourself- 1

yourself. 2

...

To stop our cluster we can the equivalent ones for starting:

$ $HADOOP_HOME/sbin/stop-dfs.sh

$ $HADOOP_HOME/sbin/stop-yarn.sh

This concludes the steps needed to setup a single node cluster. Of course it poses

only for demonstration purposes since it does not have any value running Hadoop

on one machine, but it is the first step to test a single node and then add it on a

cluster. On the next section we will describe how to set a real multi node cluster.

34

3.3.2 Multi Node Cluster Setup

For setting up a cluster it is important to have multiple single node machines set up

and running. Following the instructions of the previous sections and setting up each

individual machine it is now quite easy to merge the changes and start our cluster.

Our target is having a setup which is illustrated in Figure 3.3.1.

Figure 3.3.1: Multi Node Cluster Overview [21]

In our case we suppose that all nodes are identical thus sharing the same

configuration. It is important that our nodes run on the same local network and

have a simplified network structure. For starting we first have to stop all the nodes,

in case they are running, in the way described in the end of the previous section.

Network configuration As in the previous section we have to define the IP

address of our master and slave in the /etc/hosts file. We append the IP and

the role of each node on every machine’s configuration:

192.168.0.1 master

35

192.168.0.2 slave0

192.168.0.3 slave1

...

192.168.0.N slaveN

In the single node setup, hduser needs to have ssh access to its own user account

on the same machine. On a multi node cluster it is needed that hduser of the

master node can access the hduser account on each single slave node with

password-less login. To do that you have to copy the master’s public key on each

slaves authorized_keys file:

$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slaveX

This will prompt the user to enter the password on each machine. After the public

key resides in every slaves authorized_keys file, the it should be able to connect

from the master’s hduser account to every slave:

$ ssh hduser@slaveX

enter "yes" to verify that you want to add every slave’s RSA key fingerprint

to the known_hosts file

Cluster Configuration The only change we need to make on our cluster now

is defining the list of slaves in the master’s slave file, which is into the default

hadoop’s configuration folder under $HADOOP_HOME/etc/hadoop/slaves. In the there

we define the list of our slaves by their hostname:

master

slave0

slave1

...

slaveN

Remember that the above action needs to be performed only on the master node.

After everything is set we can start our cluster from the master node executing the

same commands as in the single node setup. The difference observed is that the

daemons now start not only in the master node but on the slaves too. After starting

36

the cluster, the DataNode and the NodeManager should run in every slave. This can

always be verifies with the jps command.

Slave nodes can always be added on the fly on a running cluster without further

configuration by manually starting on them the DataNode and the NodeManager:

$ $HADOOP_HOME/sbin/hadoop-daemon.sh start datanode

$ $HADOOP_HOME/sbin/yarn-daemon.sh start nodemanager

They can be removed in the same way replacing start with stop in the

aforementioned commands.

Managing a big number of nodes is not a trivial task, from setting them up to

maintaining them. For this purpose there are many configuration management tools

that automate those procedures and reduce the repetition overhead. One can follow

the above steps and execute them on many machines using tools like pssh. The

best solution is using tools like chef or puppet which distribute configuration and run

automation scripts across many servers.

37

Chapter 4

Parallel K-Means on MapReduce

4.1 Introduction

Following the introduction on the K-means algorithm and the MapReduce model, we

now have an overview of our main ingredients and can go forward with combining

them in order to parallelize the heavyweight task of clustering big amounts of data.

Implementing the Parallel K-Means algorithm using MapReduce model is quite

straightforward since its two main steps of assigning a vector to the closest center

and then recalculating the new centers, can be implemented on the Map and Reduce

step respectively.

The proposed implementation is built using the mapreduce APIs which are bundled

with the Hadoop distribution. This is the latest version of the MapReduce library

which deprecates the old mapred APIs. The mapred APIs are still compatible with

the newer versions of Hadoop, however, while still being mostly compatible with

older versions of Hadoop, the new mapreduce APIs are not guaranteeing backwards

compatibility. It is based on the implementation of Thomas Jungblut[16].

4.2 Implementation Overview

As discussed, the K-means algorithm initially reads the input data from an external

source, creates N random cluster centers, and then assigns the closest center

to each vector, generating a cluster. Afterwards a new center for each cluster is

calculated and is written back on the disk. Reading the data and initiating the centers

consists the Job Level of the algorithm, the assignment to the closest centers is

38

implemented in the Map step, and the computation of the new centers is done in the

Reduce step. The Map and Reduce steps are repeated until the end condition is

reached.

4.2.1 Job Level

The Job Level is responsible for initializing the application, from reading the input

data and creating the required resources, to handling the job execution by setting

the configuration and iterating over them. It starts by parsing the given arguments,

like the path of the input data, the amount of lines to be processed, the desired

number of clusters and the maximum amount of iterations. Those are passed from

the main function to the run method, which in turn, will parse the input file and create

two Sequence files.

Sequence Files are “flat files consisting of binary key/value pairs.” [SequenceFile],

which are extensively used as input/output files in MapReduce in the user level,

but also internally for the temporary outputs of maps. These files are usually

compressed and stored in HDFS, making them ideal for serializing large files and

storing them in Hadoop’s filesystem. The first file contains the cluster centers and

the second one the vectors of our data set. Both share the same key/value structure,

where the key is a Text object holding a unique name for each cluster, and value is a

Vector type representing our vectors. These two files is were, and how, our data are

stored and used by the Map and Reduce Steps. In the beginning, the file containing

the vectors of our data set has an empty string as the name of the cluster as it has

none assigned to it yet. These files are created, after a cleanup of any files created

on previous runs is done.

It is suitable here to describe the two classes used as our key/value pairs, since

they play a major role for the whole implementation. As mentioned before,

Map and Reduce tasks iterate over key/value pairs. Any type which is going to

be used as a key in the Hadoop MapReduce framework should implement the

WritableComparable interface, while the values should at least implement the

Writeable interface. The Text type, is distributed with Hadoop and it stores, as its

name suggests, text. The Vector type is a custom implementation of the Writeable

interface, and stores vectors as tables of double values.

After the initial step is done, the main algorithm, which is repeated until the maximum

number of iterations is reached, takes over. In every iteration the following actions

are performed:

39

• Configuration initialization – reads the default Hadoop configuration and

overwrites the desired parameters or sets new ones.

• Setting the input file – since we are iterating over the same data the input of

every job is the output of the previous one.

• Initializing the Job – set our Map and Reduce classes, the input and output

format, and the output key/value pair types.

• Logging – printing helpful information about our jobs’ progress, which is also a

quite useful tool for debugging.

4.2.2 Map Step

The Map step is our K-means assignment step. Our KMeansMapper class extends

the Mapper class of the mapreduce API and it is done in two steps. Initially the file

containing the cluster centers is read, and those are stored in a list of ClusterCenter

objects. The ClusterCenter class, is a helper class for representing our cluster center

objects, holding the name of the cluster and its center, and providing the distance

measurement function.

Reading the cluster centers is done in the setup method which is called once at the

beginning of the task. After this is done we go forward to the map method, which is

the one that will actually loop over our vectors and emit them to the closest cluster

using the aforementioned distance function for calculating their proximity based on

the Euclidean distance formula. Since the map step iterates over each data point,

at this step our algorithm is parallelized over them.

The output of our map step are, as it should be clear by now, key/value pairs, were

key is the name of the assigned cluster and value is the actual vector. The code of

the mapper can be found in the Listing A.1.

4.2.3 Reduce Step

In the Reduce step we are going to get the output of the mapper shuffled, sorted and

grouped by the key. The KMeansReducer extends the Reducer class and performs

the reduce step and the final cleanup. Since we iterate over our keys, which are our

clusters, the algorithm now is parallelized over them and we are going to have a list

of the vectors for every cluster, that we will average to get our new cluster centers.

After the new centers are calculated they are added in a ClusterCenter list.

40

The output of the reduce function is stored in a SequenceFile in the file system,

containing all of our vectors with their assigned cluster name as their key.

Furthermore, when the reduce step is finished the final cleanup function is called,

which loops over the ClusterCenter list created in the reduce step, and stores the

new cluster centers with their name and vector in our center SequenceFile.

The output of the this job alongside the updated center file are going to be our new

input files for the next iteration, repeating this process until the end condition. The

reducer code is in Listing A.2.

4.3 Job Execution

Since we implemented the map and reduce functions and set the configuration for

executing the job, we can run our application. YARN will take care of the task

assignment, by splitting it to mapppers, combining their output and then sending

it to the reducer. The processes overview can be seen in Figure 4.3.1.

There are some considerations regarding the implementation of K-means on

MapReduce. First of all, iterating mapreduce jobs is not a standard formulation and

not the best way to work with repetitive tasks. For each iteration the data needs to be

written and then read back from the filesystem, which adds a significant overhead,

especially in cases of large data sets. On the other hand big data sets are the case

were Hadoop shines, and mappers need to get as many data points in order to

perform in way that is beneficial over a non parallel K-means implementation.

In the next chapter we are going to examine the behaviour and performance of the

our Parallel K-means algorithm, using a showcase setup and a provided amazon

data set, and discuss the proposed solution, the problems that came up, and what

would be the ideal test cases and scenarios.

41

Figure 4.3.1: K-means on MapReduce

42

Chapter 5

MLSP Amazon Access Data
Clustering

For demonstrating the use and function of our Parallel K-means on Hadoop we are

use the Amazon provided data set for the Machine Learning for Signal Processing

(MLSP) competition of 2012[19]. The infrastructure on which Hadoop will run,

are virtual instances from okeanos, GRNET’s cloud service, available for all the

members of the Greek research and academic community.

We are going to utilize the given data and resources on different scenarios and

compare the results. We will first present the available data and how we will process

them in order to initialize our data points for our K-means algorithm.

5.1 Amazon Access Data

The Amazon Access data set, was made available by Amazon’s Information Security

organization for use in academic models against real industry data. This gives as

a taste of the nature and the size of the information described as Big Data and the

challenges that are posed when it comes to processing them.

The data set consists from 4 files containing historical data collected from

2010/2011. These files hold different kind of data, which are samples from the

access history of Amazon employees on the company’s resources, stored in CSV

(comma separated values) format.

The first file is amzn-anon-access-samples-user-profile-history.csv holding a

set of attributes describing the employee profiles and the history of changes made

43

on them. Those are a timestamp of the change on an employee’s profile, his unique

ID, his manager’s ID, and ID’s related to his role, department name, title, role family

and role code. This file has 8116040 rows and it’s size is approximately 600 mb.

The next three files are relatively smaller in size and contain data like transaction

history, and snapshots of changes on specific dates, as well as a validation data file.

These files were used as input data for the MLSP competition of 2012, for

applications of collaborative filtering and data clustering. As it was mentioned on the

first chapter for extracting useful information from a data set and running a clustering

algorithm that will eventually produce valuable results the data needs to be carefully

studied and preprocessed for normalizing the input for the algorithm. This is out of

the scope of this project were the main focus is the implementation and examination

of a Parallel K-means algorithm on MapReduce.

For this purpose, only the first file will be utilized, of whose values are going to be

used as random data for our vectors that will constitute our test data set. While

completely random values could be generated and used, we opted in using some

real data for demonstrating the storage and processing capabilities of Hadoop. It is

preferred over the rest of the files because it is more rich in information and bigger

in size. However we will see that its size is still quite small for the scale that Hadoop

is supposed to process.

5.1.1 Processing the Amazon Data

The Amazon access file that we will use as seed for our data points has the following

structure:

DATE,EMPLOYEE_ID,MGR_ID,ROLE_ROLLUP_1,ROLE_ROLLUP_2,ROLE_DEPTNAME,

ROLE_TITLE,ROLE_FAMILY_DESC,ROLE_FAMILY,ROLE_CODE

2011-01-03,63936,37250,119611,118350,117895,118194,117913,117887,118196

2010-12-13,63936,37250,119611,118350,117895,118194,117913,117887,118196

2011-01-17,63936,37250,119611,118350,117895,118194,117913,117887,118196

2010-11-29,119612,547,117926,117927,117941,117885,117913,117887,117888

2011-06-06,95028,21184,118095,118096,118008,117885,117913,117887,117888

2011-05-09,95028,21184,118095,118096,118008,117885,117913,117887,117888

The fields used to form our vectors are from ROLE_ROLLUP_1 to ROLE_FAMILY_DESC,

producing vectors of size 5. Since the file holds regular snapshots of each employee

44

in different dates, there is a high possibility of the values being repeated over and

over if no change happens on a users profile. Using them the way they are would

hamper our data set and produce poor results, since a very high percentage of

vectors would have been repeated over and over again. For that reason the following

modifications are performed in order to normalize the data.

• Use the last 3 characters of the parsed fields to create integers in the range

100–999

• Multiply them with a random number to differentiate the values producing

vertices in the range 0–999

Each vector will be stored in a new created SequenceFile which will be used as the

data point input of first MapReduce job. The number of the size of the data set is

required as a parameter to limit the amount of vectors to be processed.

5.1.2 Cluster Center Initialization

The amount of clusters is set to a default value of 10. However this value is quite

small for the size of our data set. For this reason the desired amount of clusters can

be defined passed a command line argument. Given the size of the desired data

set, N random clusters will be picked from it, serve as the initial cluster centers.

5.2 Experimental Setup

The Hadoop cluster is initially set on 2 virtual machines, running on GRNET’s

cloud service okeanos. The available resources are 3 machines that share a total

of 16 CPUs, 22 GBs of memory and 260 GB of hard drive. The machines are

running Ubuntu Server 12.04.3 LTS and have installed the Java version 1.6.0_45

and Hadoop 2.2.0. In the beginning, the first machine used as the master node has

4 GBs of RAM and 60 GB of hard drive, while the slave has the remaining 2 GBs of

RAM and 40 GBs of HDD. Later we scale them up to 8 cores and 8GBs of memory

each to compare the performance gain on bigger machines.

These virtual machines are set as in the guide at Section 3.3, forming a multi-node

Hadoop cluster. Is should be noted that the storage and computational capacity of

these machines, and the size of this cluster, is extremely small compared to real

45

industry use cases that are utilizing hundreds to thousands of bare metal servers

with much more memory, CPUs and HDDs. The purpose here is to showcase the

parallelization of the K-means algorithm and investigate the potential of Hadoop and

the MapReduce framework.

5.3 Results

In the this section the results of a set of different parameters will be presented and

discussed. The proposed implementation will be run on the above setup using the

amazon data set as input and tested against the following settings:

• Sample size – the amount of records used for the test

• Block size – the HDFS block size used for storing the data defaults to 32mb

• Number of clusters – default 10

• Number of iterations – default 5

The block size is a very important factor for the performance of the application since

it is the decisive parameter, alongside the size of the input file, for the number

of splits and thus the amount of mappers per job. A compressed sequence file

containing 1 million vectors is approximately 60 MBs. Having a block size of 64 MBs,

which is the default size, will produce one map per job which eventually means that

our algorithm is not parallelized.

Running the application is done with the following command:

$ bin/hadoop jar kmmr-0.0.1-SNAPSHOT.jar KMeansClusteringJob \

/amazon/amzn-anon-access-samples-user-profile-history.csv \

5000000 64 500 5

The command bin/hadoop is ask to load a jar file, where we pass our algorithm

archived snapshot, and we execute the KMeansClusteringJob. We then pass the

path of our input file on HDFS, the amount of samples we want to process, the block

size in megabytes, the number of cluster centers and the amount of iterations.

In the output we can many info related to the job initialization, out log messages,

a progress report of every job and some results for each one of them. In the end,

46

all the cluster centers are printed, and a text file containing all the vectors with their

assigned cluster is stored in HDFS. The cluster centers result looks can be seen

here:

14/01/12 21:55:24 INFO KMeansClusteringJob: cluster133 /

[494.12, 442.42, 510.78, 525.50, 506.75]

14/01/12 21:55:24 INFO KMeansClusteringJob: cluster134 /

[566.46, 526.00, 557.36, 563.19, 549.39]

14/01/12 21:55:24 INFO KMeansClusteringJob: cluster135 /

[122.40, 112.70, 199.38, 208.80, 194.09]

The progress report looks like this:

14/01/12 18:18:27 INFO mapreduce.Job: map 75% reduce 8%

14/01/12 18:18:35 INFO mapreduce.Job: map 79% reduce 8%

14/01/12 18:18:39 INFO mapreduce.Job: map 79% reduce 13%

14/01/12 18:18:45 INFO mapreduce.Job: map 83% reduce 13%

14/01/12 18:18:46 INFO mapreduce.Job: map 100% reduce 13%

14/01/12 18:18:49 INFO mapreduce.Job: map 100% reduce 17%

14/01/12 18:18:52 INFO mapreduce.Job: map 100% reduce 25%

It is clear here that after some mappers are done the results are already sent to the

reducer which progresses as the rest of the mappers still work. The progress of the

jobs can be also seen from the web interface which is available on HTTP port 8088

and looks like in Figure 5.3.1.

Figure 5.3.1: Hadoop Web Interface

The results of executing the algorithm in the initial setup with two small nodes,

are presented for some cases depending on the aforementioned parameters on

Table 5.3.1. Significant factors affecting the overall time, is that in every run CSV file

containing the amazon data should be parsed and written as the sequence file with

47

Table 5.3.1: Results – Cluster with Master node with 1 core and 4 GBs of memory

and Slave node with 1 core and 2 GBs of memory

Sample Size Block Size Clusters Iterations Mappers Avg. Job Time Total Time

Run 1 1 million 2 MB 100 5 30 5 min 2 sec 27 min 25 sec

Run 2 1 million 16 MB 100 5 4 2 min 36 sec 14 min 27 sec

Run 3 1 million 32 MB 100 5 2 2 min 9 sec 12 min 33 sec

Run 4 1 million 64 MB 100 5 1 1 min 56 sec 11 min 6 sec

Run 5 5 million 32 MB 500 5 10 4 min 34 sec 28 min 45 sec

Run 6 5 million 64 MB 500 5 10 5 min 13 sec 30 min 1 sec

Run 7 8 million 32 MB 500 5 16 6 min 23 sec 39 min 28 sec

Run 8 8 million 64 MB 500 5 8 6 min 7 sec 37 min 32 sec

our vectors. In the end of the run the application writes out in a text file the output of

the algorithm, which is also time consuming, depending on the sample size. These

can add approximately minutes to the overall time. Additionally, every job needs

approximately 1 minute to be initialized. It should be noted that every job has one

reducer.

Having in mind these factors we can make some conclusions about our results. First,

it is quite clear that the block size is inversely proportional to the number of mappers.

As it can be seen, a quite small block size of 2 MBs – which is an unusual and

not recommended configuration – increases the number of mappers that process

small chunks of our data, having a quite dramatic effect on the performance of the

algorithm. Interestingly enough for the same amount of vectors and block size of 64

MBs, we only have one mapper – meaning no parallelization – and the performance

is slightly better than with 2 splits of the 32 MBs block size run and parallelization.

This is due to the overhead of managing the job and splitting it over too machines

that are anyway quite slow, plus that the amount of data per mapper is still lower

than the recommended 64 MB block size. The same thing can be observed when

comparing run 7 and 8, where completing a job with 8 mappers is slightly faster

than processing with the same amount of data but half the block size and twice the

mappers.

Scaling up our cluster, which translates to increasing the size of the machines in

terms of computational and power, is fairly easy on cloud services like okeanos.

Bringing the nodes from 1 to 8 cores and the memory to 8 GBs shows significants

performance gains as expected, that are shown in table 5.3.2

48

Table 5.3.2: Results – Cluster with 1 Master and 1 Slave nodes with 8 cores and 8

GBs of memory

Sample Size Block Size Clusters Iterations Mappers Avg. Job Time Total Time

8 million 64 MB 500 5 8 3 min 23 sec 19 min 42 sec

Depending on the size of our data we have to decide whether to scale vertically, by

growing up our machines, or horizontally, by adding new nodes on our cluster. Since

the proposed amount of mappers per node ranges from ten to hundred it makes

to sense to parallelize the algorithm to more machines if the number of expected

mappers does not exceed this range.

Once again it should be noted that the results are not the most representative but

are mostly showcasing the setup of a Hadoop cluster and parallelizing the K-means

algorithm. Hadoop runs on multi-core machines with high memory and hundreds of

machines, operating on terabytes of data.

Another serious consideration, is if MapReduce is the ideal way of implementing

iterative algorithms which is the case for most Machine Learning and Artificial

Intelligence applications. This is mostly due to the fact that each mapreduce job

reads and writes the data back to the hard drive, instead of being able to keep them

in-memory and every reducers feeding directly the next mapper.

5.4 Alternatives

In this section the most prominent implementations of K-means and more machine

learning algorithms, will be presented.

Apache Mahout [8] An official Apache Hadoop subproject offering distributed,

or so called scalable, implementations of machine learning algorithms, covering

a wide range of applications in the fields of clustering, collaborative filtering and

classification. It is the most well known scalable machine learning library. As it is

claimed on the official home page of the project, it is “scalable to reasonably large

data sets”.

Apache Spark [9] Spark is an Apache incubator project, initiated by the Berkeley

AMPLab. Spark has its own runtime environment, but can run on top of other cluster

49

managers including Hadoop. In Figure 5.4.1 a comparison against mapreduce can

be seen, as the number of iterations increases. Spark applications can be written

in Java, Scala or Python. It has some ready examples including parallel K-means

implementations for all the three aforementioned programming languages.

Figure 5.4.1: Hadoop MapReduce / Spark comparison [9]

A more comprehensive Machine Learning library running on Spark is the MLbase

library, which is also developed by the Berkeley AMPLab.

Apache Hama [7] Yet another Apache project, Hama is an analytics tool running

on top Hadoop but is not implemented on the MapReduce model but uses the Bulk

Synchronous Parallel (BSP) model which is more effective considering the iterative

nature of machine learning and graph algorithms. Figure 5.4.2 shows a comparison

against Mahout.

Stratosphere [22] A European Union project developed in the TU Berlin, is

Stratosphere, offering next-generation Big Data Analyctics. Stratosphere extends

the MapReduce model adding more operators besides, map, reduce and combine,

including joins, unions and iterations among others, enabling advance data flow

graphs beyond the classic map -> reduce process. In-memory data transfers

increase performance by significantly reducing disk and network I/O. Stratosphere

offers both Java and Scala APIs and can run on top of YARN. K-means is offered

as one of its example applications, suggesting significantly better performance

compared to standard MapReduce implementations.

50

Figure 5.4.2: Hama / Mahout comparison [7]

51

Chapter 6

Conclusions

We presented an implementation of Parallel K-means on the MapReduce model.

K-means is one the most widely used data clustering algorithms and while, quite

simplistic it gives consistent and valuable results. The current volume of data that

need to be processed in the real industry, makes impossible processing them on

single nodes. Hadoop offers a great platform for storage of terabytes, to petabytes

of data on a distributed environment, and gives the ability of processing them in

a parallel way on the machines they reside on. The second version of Hadoop

introduced YARN, that extends the capabilities of Hadoop by scaling it on more than

4000 nodes and enabling the freedom of using other programming models beyond

MapReduce.

We examined a fair amount of the aspects of the Hadoop framework, covering its

Filesystem, the implementation of the MapReduce model and the YARN resource

managers. We also investigated the parameters and the settings needed to setup a

single Hadoop node and eventually a cluster.

While the K-means matches the map and reduce steps, lack of support of native

iterations, adds big overheads on disk and network I/O and job initialization. It

is also clear that K-means implementations on Hadoop are meaningful given a

significant amount of data. Still our experimental setup was able to perform well

enough considering the data size and available resources. A significant advantage

is that the solution is portable and can run out of the box on any existing Hadoop

cluster, and can scale as the number of data increases.

K-means shares the main principles of most machine learning algorithms, and in

the effort of parallelizing it, we came across the common problems met in these

scenarios. The need for scaling machine learning algorithms is extremely important

52

nowadays, and this is clear by the effort and involvement put in developing more

libraries and solutions, by many companies and organizations.

Hadoop is the most established tool for managing large clusters, and is under

constant development. While many applications can be directly developed and

run on top of Hadoop, it is obvious that Hadoop serves as the platform for running

higher level applications that are offered for storing, processing and analyzing data

on industry scale environments.

53

Bibliography

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning

(Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag

New York, Inc., 2006. ISBN: 0387310738.

[2] Konstantin I. Boudnik. Hadoop Genealogy: continued. Sept. 2013. URL: http:

//drcos.boudnik.org/2013/09/hadoop-genealogy-continued.html.

[3] Abhinandan S. Das et al. “Google News Personalization: Scalable Online

Collaborative Filtering”. In: Proceedings of the 16th International Conference

on World Wide Web. WWW ’07. Banff, Alberta, Canada: ACM, 2007,

pp. 271–280. ISBN: 978-1-59593-654-7. DOI: 10.1145/1242572.1242610. URL:

http://doi.acm.org/10.1145/1242572.1242610.

[4] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data

Processing on Large Clusters”. In: Proceedings of the 6th Conference on

Symposium on Opearting Systems Design & Implementation - Volume 6.

OSDI’04. San Francisco, CA: USENIX Association, 2004, pp. 10–10. URL:

http://dl.acm.org/citation.cfm?id=1251254.1251264.

[5] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox. “MapReduce for

Data Intensive Scientific Analyses”. In: Proceedings of the 2008 Fourth IEEE

International Conference on eScience. ESCIENCE ’08. Washington, DC,

USA: IEEE Computer Society, 2008, pp. 277–284. ISBN: 978-0-7695-3535-7.

DOI: 10.1109/eScience.2008.59. URL: http://dx.doi.org/10.1109/

eScience.2008.59.

[6] Apache Software Foundation. Apache Hadoop 2.2.0. July 2013. URL: https:

//hadoop.apache.org/docs/current2/.

[7] Apache Software Foundation. Apache Hama. Feb. 2014. URL: http://hama.

apache.org/.

[8] Apache Software Foundation. Apache Mahout. Feb. 2014. URL: http : / /

mahout.apache.org/.

54

http://drcos.boudnik.org/2013/09/hadoop-genealogy-continued.html
http://drcos.boudnik.org/2013/09/hadoop-genealogy-continued.html
http://dx.doi.org/10.1145/1242572.1242610
http://doi.acm.org/10.1145/1242572.1242610
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dx.doi.org/10.1109/eScience.2008.59
http://dx.doi.org/10.1109/eScience.2008.59
http://dx.doi.org/10.1109/eScience.2008.59
https://hadoop.apache.org/docs/current2/
https://hadoop.apache.org/docs/current2/
http://hama.apache.org/
http://hama.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/

[9] Apache Software Foundation. Apache Spark. Feb. 2014. URL: http://spark.

incubator.apache.org/.

[10] Thilina Gunarathne et al. “Scalable Parallel Computing on Clouds Using

Twister4Azure Iterative MapReduce”. In: Future Gener. Comput. Syst. 29.4

(June 2013), pp. 1035–1048. ISSN: 0167-739X. DOI: 10.1016/j.future.

2012.05.027. URL: http://dx.doi.org/10.1016/j.future.2012.05.027.

[11] Hortonworks Inc. Hadoop YARN. Jan. 2014. URL: http://hortonworks.com/

hadoop/yarn/.

[12] Yahoo! Inc. Yahoo! Hadoop Tutorial. Jan. 2014. URL: http : / / developer .

yahoo.com/hadoop/tutorial/module1.html.

[13] Anil K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern

Recognition Letters 31.8 (2010), pp. 651–666.

[14] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1988. ISBN: 0-13-022278-X.

[15] Manasi N. Joshi. Parallel K- Means Algorithm on Distributed Memory

Multiprocessors Abstract. 2003.

[16] Thomas Jungblut. k-Means Clustering with MapReduce. May 2011. URL:

http://codingwiththomas.blogspot.de/2011/05/k-means-clustering-

with-mapreduce.html.

[17] MapReduce. URL: http://en.wikipedia.org/wiki/MapReduce.

[18] Sujee Maniyam Mark Kerzner. Hadoop Illuminated. Hadoop illuminated LLC,

2013.

[19] MLSP 2012 Competition: Amazon Data Science Competition. Jan. 2012. URL:

http://mlsp2012.conwiz.dk/index.php?id=43.

[20] Makho Ngazimbi. “Data Clustering using MapReduce”. MA thesis. Boise State

University, 2009.

[21] Michael G. Noll. Running Hadoop on Ubuntu Linux (Multi-Node Cluster). July

2011. URL: http://www.michael-noll.com/tutorials/running-hadoop-on-

ubuntu-linux-multi-node-cluster/.

[22] Stratosphere. Feb. 2014. URL: http://stratosphere.eu/.

[23] Tom White. Hadoop: The Definitive Guide. 3rd. O’Reilly Media, Inc., 2012.

ISBN: 978-1-4493-1152-0.

[24] Charles Zedlewski. An update on Apache Hadoop 1.0. Jan. 2012. URL: http:

//blog.cloudera.com/blog/2012/01/an-update-on-apache-hadoop-1-0/.

55

http://spark.incubator.apache.org/
http://spark.incubator.apache.org/
http://dx.doi.org/10.1016/j.future.2012.05.027
http://dx.doi.org/10.1016/j.future.2012.05.027
http://dx.doi.org/10.1016/j.future.2012.05.027
http://hortonworks.com/hadoop/yarn/
http://hortonworks.com/hadoop/yarn/
http://developer.yahoo.com/hadoop/tutorial/module1.html
http://developer.yahoo.com/hadoop/tutorial/module1.html
http://codingwiththomas.blogspot.de/2011/05/k-means-clustering-with-mapreduce.html
http://codingwiththomas.blogspot.de/2011/05/k-means-clustering-with-mapreduce.html
http://en.wikipedia.org/wiki/MapReduce
http://mlsp2012.conwiz.dk/index.php?id=43
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://stratosphere.eu/
http://blog.cloudera.com/blog/2012/01/an-update-on-apache-hadoop-1-0/
http://blog.cloudera.com/blog/2012/01/an-update-on-apache-hadoop-1-0/

[25] Weizhong Zhao, Huifang Ma, and Qing He. “Parallel K-Means Clustering

Based on MapReduce”. In: Cloud Computing. Ed. by MartinGilje Jaatun,

Gansen Zhao, and Chunming Rong. Vol. 5931. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2009, pp. 674–679. ISBN:

978-3-642-10664-4. DOI: 10.1007/978- 3- 642- 10665- 1_71. URL: http:

//dx.doi.org/10.1007/978-3-642-10665-1_71.

56

http://dx.doi.org/10.1007/978-3-642-10665-1_71
http://dx.doi.org/10.1007/978-3-642-10665-1_71
http://dx.doi.org/10.1007/978-3-642-10665-1_71

Appendix A

Code Listings

Listing A.1: MapperClass

import . . .

public class KMeansMapper extends

Mapper<Text , Vector , Text , Vector > {

private f i n a l L i s t <ClusterCenter > c lus te rCen te rs =

new Ar rayL i s t <ClusterCenter > () ;

@Override

protected void setup (Context con tex t) throws IOException ,

In te r rup tedExcep t i on {

super . setup (con tex t) ;

Con f i gu ra t i on conf = contex t . ge tCon f i gu ra t i on () ;

Path cen t ro ids = new Path (conf . get (" cen t ro i d . path ")) ;

SequenceFile . Reader reader =

new SequenceFile . Reader (conf , Reader . f i l e (cen t ro ids)) ;

Text key = new Text () ;

Vector value = new Vector () ;

while (reader . next (key , value)) {

C lus terCenter c lus te rCen te r = new ClusterCenter (

new Text (key) ,

new Vector (value)

57

) ;

c l us te rCen te rs . add (c lus te rCen te r) ;

}

reader . c lose () ;

}

@Override

protected void map(Text key , Vector value , Context con tex t)

throws IOException , In te r rup tedExcep t i on {

Clus terCenter nearest = c lus te rCen te rs . get (0) ;

double nearestDis tance = Double .MAX_VALUE;

for (C lus terCenter c lus te rCen te r : c lus te rCen te rs) {

double d i s t =

c lus te rCen te r . measureDistance (value . getVector ()) ;

i f (nearestDis tance > d i s t) {

nearest = c lus te rCen te r ;

nearestDis tance = d i s t ;

}

}

con tex t . w r i t e (nearest . getName () , value) ;

}

}

58

Listing A.2: Reducer Class

public class KMeansReducer extends

Reducer<Text , Vector , Text , Vector > {

private f i n a l L i s t <ClusterCenter > c lus te rCen te rs =

new Ar rayL i s t <ClusterCenter > () ;

@Override

protected void reduce (Text key , I t e r a b l e <Vector > values ,

Context con tex t)

throws IOException , In te r rup tedExcep t i on {

Vector newCenter = new Vector () ;

L i s t <Vector > v e c t o r L i s t = new Ar rayL i s t <Vector > () ;

newCenter . se tVector (new double [5]) ;

for (Vector value : values) {

v e c t o r L i s t . add (new Vector (value)) ;

for (i n t i = 0 ; i < value . getVector () . l eng th ; i ++) {

newCenter . getVector () [i] += value . getVector () [i] ;

}

}

for (i n t i = 0 ; i < newCenter . getVector () . l eng th ; i ++) {

newCenter . getVector () [i] =

newCenter . getVector () [i] / v e c t o r L i s t . s i ze () ;

}

C lus terCenter center =

new ClusterCenter (new Text (key) , newCenter) ;

c lus te rCen te rs . add (center) ;

for (Vector vec to r : v e c t o r L i s t) {

con tex t . w r i t e (key , vec to r) ;

}

}

protected void cleanup (Context con tex t) throws IOException ,

In te r rup tedExcep t i on {

super . cleanup (con tex t) ;

59

Con f i gu ra t i on conf = contex t . ge tCon f i gu ra t i on () ;

Path outPath = new Path (conf . get (" cen t ro i d . path ")) ;

Fi leSystem f s = Fi leSystem . get (conf) ;

f s . de le te (outPath , true) ;

SequenceFile . Wr i t e r out =

SequenceFile . c rea teWr i t e r (conf , Wr i t e r . f i l e (outPath) ,

Wr i t e r . keyClass (Text . class) ,

Wr i t e r . valueClass (Vector . class)) ;

for (C lus terCenter c lus te rCen te r : c lus te rCen te rs) {

out . append (c lus te rCen te r . getName () ,

c l us te rCen te r . getCenter ()) ;

}

out . c lose () ;

}

}

60

	Introduction
	Data Clustering and K-means algorithm
	Introduction
	Data Clustering
	Data Representation

	K-means

	Hadoop
	Introduction
	Big Data

	The Hadoop Approach
	Versions and Development Timeline
	Architecture Overview
	Hadoop MapReduce

	Cluster Setup
	Single Node Setup
	Multi Node Cluster Setup

	Parallel K-Means on MapReduce
	Introduction
	Implementation Overview
	Job Level
	Map Step
	Reduce Step

	Job Execution

	MLSP Amazon Access Data Clustering
	Amazon Access Data
	Processing the Amazon Data
	Cluster Center Initialization

	Experimental Setup
	Results
	Alternatives

	Conclusions
	Code Listings

