
 
   
 

December 2013 
 

 

DATA PREPARATION AND PREPROCESSING 
FOR DATA MINING USING R 

 

 

by 

Pazaras Christos 

 

 

A thesis submitted in partial fulfillment of the requirements for the 

degree of 

 

 

INFORMATION TECHNOLOGY ENGINEER 

 

 

at the 

Alexander Technological Educational Institute of Thessaloniki 

 

 

Supervisor: Dimitrios A. Dervos 

 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 2 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 3 of 112 

Table of Contents 
 

Acknowledgements ................................................................................................ 7 

Επηηνκή .................................................................................................................. 9 

Abstract ................................................................................................................ 11 

Introduction ........................................................................................................... 13 

1. R ....................................................................................................................... 15 

1.1 Summary .................................................................................................... 15 

1.2 Why use R .................................................................................................. 15 

1.3 Uses and popular applications .................................................................... 16 

1.4 The R environment ..................................................................................... 16 

1.4.1 Commands syntax ................................................................................ 17 

1.4.2 Issuing a command .............................................................................. 18 

1.4.3 R functions ........................................................................................... 18 

1.4.4 Vectorization......................................................................................... 19 

1.4.5 R scoping ............................................................................................. 22 

1.4.6 Reading commands from external source file ...................................... 22 

1.4.7 Importing and exporting data ................................................................ 22 

1.4.8 Workspace and memory management ................................................. 23 

1.5 R data types ................................................................................................ 24 

1.5.1 Vectors ................................................................................................. 24 

1.5.2 Factors ................................................................................................. 25 

1.5.3 Matrices ................................................................................................ 26 

1.5.4 Arrays ................................................................................................... 28 

1.5.5 Lists ...................................................................................................... 29 

1.5.6 Data frames .......................................................................................... 32 

1.6 Conclusion .................................................................................................. 33 

2. Data Mining ...................................................................................................... 35 

2.1 Introduction ................................................................................................. 35 

2.2 Data mining phases and techniques ........................................................... 36 

2.3 Association Rules ....................................................................................... 37 

2.3.1 Description ........................................................................................... 37 

2.3.2 Uses / applications ............................................................................... 38 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 4 of 112 

2.3.3 Rules format ......................................................................................... 38 

2.3.4 Interestingness / significance measuring .............................................. 38 

2.3.5 The Apriori algorithm ............................................................................ 39 

2.3.6 Association rule mining in R - required packages ................................. 40 

2.3.7 Package installation in R ...................................................................... 41 

2.3.8 Verification of a package installation in R ............................................. 42 

2.3.9 Using Apriori in R ................................................................................. 43 

2.3.10 Mining the rules .................................................................................. 45 

2.3.11 Visualizing the results ......................................................................... 49 

2.3.12 Storing the results .............................................................................. 55 

2.4 Classification ............................................................................................... 57 

2.4.1 Description ........................................................................................... 57 

2.4.2 A few words about supervised learning ................................................ 58 

2.4.3 Uses / applications ............................................................................... 58 

2.4.4 Classification versus prediction ............................................................ 59 

2.4.5 The C4.5 algorithm ............................................................................... 59 

2.4.6 Classification in R – required packages ............................................... 59 

2.4.7 Using the C4.5 algorithm in R............................................................... 60 

2.4.8 Building a decision tree ........................................................................ 60 

2.4.9 Pruning a decision tree ......................................................................... 62 

2.4.10 Visualizing the results ......................................................................... 63 

2.5 Conclusion .................................................................................................. 66 

3. R to DBMS Connectivity ................................................................................... 67 

3.1 Introduction ................................................................................................. 67 

3.2 Required packages ..................................................................................... 68 

3.3 MySQL ........................................................................................................ 68 

3.3.1 A short history of MySQL ..................................................................... 68 

3.3.2 Connecting R to MySQL ....................................................................... 69 

3.3.3 Issuing MySQL queries from R............................................................. 70 

3.3.4 Fetching information from a MySQL database to R.............................. 72 

3.4 PostgreSQL ................................................................................................ 73 

3.4.1 A short history of PostgreSQL .............................................................. 73 

3.4.2 Connecting R to PostgreSQL ............................................................... 74 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 5 of 112 

3.4.3 Issuing queries to a PostgreSQL DBMS from R ................................... 74 

3.4.4 Fetching information from a PostgreSQL database to R ...................... 75 

3.4.5 Conclusion............................................................................................ 75 

4. R installation to the dbTech.net Virtual Machine .............................................. 77 

4.1 Introduction and purpose ............................................................................ 77 

4.2 The DBTechNet Virtual Machine................................................................. 77 

4.3 Necessary pre-software installation actions ................................................ 78 

4.4 R setup ....................................................................................................... 79 

4.5 Installation of PostgreSQL .......................................................................... 79 

4.6 Installation of required packages ................................................................ 79 

4.7 Conclusion .................................................................................................. 80 

5. Case Studies .................................................................................................... 83 

5.1 Mining association rules from supermarket transactions ............................ 83 

5.1.1 Introduction........................................................................................... 83 

5.1.2 Loading the required packages into R .................................................. 84 

5.1.3 Pre-processing - reading the transactions into R .................................. 85 

5.1.4 Pre-processing - extracting the transactions information that will be used 

in the association rules mining process ......................................................... 86 

5.1.5 Performing the association rules mining ............................................... 88 

5.1.6 Visualizing and evaluating the results .................................................. 88 

5.1.7 Storing the results in a database, for permanent storage and further 

processing ..................................................................................................... 91 

5.1.8 Creating a recommender system ......................................................... 93 

5.1.9 Discussion ............................................................................................ 98 

5.2 Classifying Titanic passengers using a decision tree .................................. 99 

5.2.1 Introduction........................................................................................... 99 

5.2.2 Loading the required packages into R .................................................. 99 

5.2.3 Reading the passengers information into R ........................................100 

5.2.4 Building the decision tree ....................................................................100 

5.2.5 Visualizing and evaluating the results .................................................101 

5.2.6 Discussion ...........................................................................................103 

6. Epilogue ..........................................................................................................105 

7. References ......................................................................................................107 

9. Appendix .........................................................................................................111 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 6 of 112 

9.1 Rattle .........................................................................................................111 

9.2 Core (most useful / mostly used) functions ................................................111 

 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 7 of 112 

Acknowledgements 
 

Foremost, I would like to express my sincere gratitude to my supervisor, Professor 

Dimitrios A. Dervos, for his continuous support of my thesis study and research, 

for his patience, motivation, enthusiasm, and immense knowledge. His guidance 

was crucial to me during the times of research and writing of this thesis. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 8 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 9 of 112 

Επιτομή 
 

Η παξνύζα πηπρηαθή εξγαζία εθπνλήζεθε ωο απνηέιεζκα κειέηεο θαη έξεπλαο 

πνπ πξαγκαηνπνηήζεθε ζηα πιαίζηα ηεο δηεξεύλεζεο ηεο γιώζζαο 

πξνγξακκαηηζκνύ «R» θαη εηδηθόηεξα ηωλ δπλαηνηήηωλ απηήο ζηνπο ηνκείο ηεο 

εμόξπμεο πιεξνθνξίαο θαη ηεο ζπλδεζηκόηεηάο ηεο κε Σπζηήκαηα Δηαρείξηζεο 

Βάζεωλ Δεδνκέλωλ. Η γιώζζα πξνγξακκαηηζκνύ «R» κειεηήζεθε ζε βάζνο θαη ε 

κειέηε επηθεληξώζεθε αξρηθά ζηα ζεκειηώδε ζηνηρεία ηνπ πξνγξακκαηηζκνύ κε 

απηή. Μεηέπεηηα κειεηήζεθαλ νη δπλαηόηεηέο ηεο ζε δεηήκαηα εμόξπμεο 

πιεξνθνξίαο, ζε ζπλδπαζκό κε ηηο δπλαηόηεηεο ζπλδεζηκόηεηάο ηεο κε δεκνθηιή 

Σπζηήκαηα Δηαρείξηζεο Βάζεωλ Δεδνκέλωλ θαη αληαιιαγήο πιεξνθνξηώλ κε 

απηά. Σηελ πξνζπάζεηα λα εληζρπζεί ε θαηαλόεζε ηωλ ζύλζεηωλ ζεκάηωλ πνπ 

δηεξεπλήζεθαλ πξαγκαηνπνηήζεθαλ δύν πεξηπηωζηνινγηθέο κειέηεο: Η πξώηε 

επηθεληξώζεθε ζηελ εμόξπμε θαλόλωλ ζπζρέηηζεο από έλα ζύλνιν δεδνκέλωλ ην 

νπνίν πεξηέρεη αξρεία παξειζόληωλ ζπλαιιαγώλ ελόο πνιπθαηαζηήκαηνο, νη 

νπνίνη ρξεζηκνπνηήζεθαλ ζηε ζπλέρεηα ωο βάζε γηα ηελ θαηαζθεπή ελόο 

ζπζηήκαηνο ζπζηάζεωλ – ελόο ζπζηήκαηνο ην νπνίν έρεη ηελ ηθαλόηεηα λα 

πξνηείλεη ζηνρεπκέλα πξνϊόληα ζηνπο πειάηεο ηνπ πνιπθαηαζηήκαηνο βαζηδόκελν 

ζηα αξρεία ζπλαιιαγώλ ηνπ παξειζόληνο ηνπ πνιπθαηαζηήκαηνο. Η κειέηε απηή 

είλαη κηα πξνζνκνίωζε ηνπ tutorial ηεο IBM “Mining your business in retail with 

IBM DB2 Intelligent Miner”[22] θαη ηα απνηειέζκαηά ηεο αληηθαηνπηξίδνπλ πιήξωο 

ηα απνηειέζκαηα πνπ παξάγνληαη ζην tutorial απηό, επαιεζεύνληαο έηζη ηελ 

ηθαλόηεηα ηεο R λα πξαγκαηνπνηεί επηηπρώο θαη κε αθξίβεηα εμόξπμε θαλόλωλ 

ζπζρέηηζεο θαη ζπλδεζηκόηεηα κε Σπζηήκαηα Δηαρείξηζεο Βάζεωλ Δεδνκέλωλ. Η 

δεύηεξε κειέηε εζηίαζε ζηελ θαηαζθεπή ελόο δέληξνπ απνθάζεωλ κε ζθνπό ηελ 

θαηεγνξηνπνίεζε ηνπ ζπλόινπ δεδνκέλωλ ηωλ επηβαηώλ ηνπ Τηηαληθνύ [13] 

ρξεζηκνπνηώληαο ηνλ αιγόξηζκν C4.5. Καη νη δύν κειέηεο απνδεηθλύνπλ 

ηθαλνπνηεηηθά όηη ε R είλαη κία ηζρπξή γιώζζα πξνγξακκαηηζκνύ, ηθαλή λα 

ζπλδεζεί θαη λα αληαιιάμεη πιεξνθνξίεο κε Σπζηήκαηα Δηαρείξηζεο Βάζεωλ 

Δεδνκέλωλ θαη λα εθηειέζεη ζύλζεηεο εξγαζίεο εμόξπμεο πιεξνθνξίαο. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 10 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 11 of 112 

Abstract 
 

This thesis was conducted as a result of study and research done for the sakes of 

the exploration of the R programming language and especially its data mining and 

DBMS connectivity capabilities. The R programming language was studied in 

detail, the study initially focusing on the fundamental elements of programming 

with it. Furthermore, R‟s data mining capabilities were examined, along with its 

capability of connecting to and exchanging information with popular DBMSs. To 

aid the understanding of the complex issues investigated, verify the research 

results and extend the experience gained, two case studies were conducted: The 

first one was focused on mining association rules from a supermarket transaction 

records dataset using R, with which a product recommender system was created – 

a system that can accurately recommend products to the customers according to 

the previous transactions records of the supermarket. This case study is a 

simulation of IBM‟s tutorial “Mining your business in retail with IBM DB2 Intelligent 

Miner”[22] and the results produced by R totally reflect the results produced in the 

tutorial, thus verifying R‟s capability of successfully and accurately performing 

association rules mining and DBMS connectivity. The second case study was 

focused on creating a decision tree to classify the passengers of the Titanic 

dataset [13] using the C4.5 algorithm. Both case studies sufficiently prove that R is 

a strong programming language, capable of performing DBMS connectivity and 

complex data mining tasks. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 12 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 13 of 112 

Introduction 
 

The following thesis was conducted in order to explore the capabilities of the R 

language with regards to data mining and to connecting to, and exchanging 

information with, popular DBMSs such as MySQL and PostgreSQL. 

The first chapter covers everything a new R user needs to know about R – its 

environment, its commands syntax, its data types, its behavior. Further on, it 

focuses on certain important aspects and characteristics of the language as well 

as several key features that it offers, such as the function vectorization ability. 

Most of the information described on the first chapter arises from “A (not so) short 

introduction to S4: Object Programming in R” by Genolini, C. [10] and “Data Mining 

With R: Learning with case studies” by Torgo, L. [12]. 

Moving on, the second chapter introduces the term “data mining” and describes its 

purpose, its uses, what it offers, how it is performed. It then focuses on two major 

data mining techniques, the association rule mining technique and the 

classification technique, which are further analyzed. Finally, ways in which these 

data mining methods can be performed in the R language environment are 

described and demonstrated. The information described on this chapter was 

based on “Association Rule Mining: A Survey” by Zhao, Q et al[29] and “R and 

Data Mining: Examples and Case Studies” by Zhao, Y. [30]. 

The third chapter is devoted to introducing the term “DBMS” and describing their 

usability, the features they provide in terms of data integrity and availability, and 

how manually fetching information from a database differs from producing 

information using data mining methods, how a DBMS cannot provide the 

information that can be gained via data mining. At that point, it focuses on R‟s 

connectivity ability with two popular DBMSs, MySQL and PostgreSQL, and 

describes the ways that R can connect to those DBMSs and exchange information 

with them, thus filling the gap between the DBMSs and their data mining 

capabilities. 

The fourth chapter is focused on the setting up and configuration of a virtual 

machine on which the case studies for the sakes of this thesis were conducted. 

Detailed information is provided in a step-by-step manner upon installing and 

configuring everything that is needed in order for the machine to be able to be 

used for data mining using R and MySQL or PostgreSQL. 

Finally, the fifth chapter is devoted on the presentation of two case studies that 

were conducted, in the first of which the procedure of mining association rules 

from a supermarket transaction records dataset using R is demonstrated, while in 

the second of which the procedure of the classification of a dataset containing 

information about the passengers of the Titanic according to their surviving the 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 14 of 112 

tragedy or not using R is demonstrated. Both case studies were conducted on the 

machine that was set up on the fourth chapter. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 15 of 112 

1. R 

1.1 Summary 

 

R is a free, open-source programming language used for statistical computing, 

graphics, and data analysis. It is widely used by statisticians and data scientists. 

Polls and surveys of data miners show that R's popularity has increased 

substantially in recent years [23]. 

R is an implementation of the S programming language, which was created by 

John Chambers and colleagues during his time at Bell Labs (formerly AT&T, now 

Lucent Technologies), combined with lexical scoping semantics inspired by 

Scheme. It can be considered a different implementation of S - there are some 

important differences, but much of the code written for S runs unaltered under R. It 

was created at the University of Auckland, New Zealand, by Robert Gentleman 

and Ross Ihaka, and it is currently being developed by the R Development Core 

Team, of which Chambers is a member. As is easily perceived, the name of the 

language came partly from the creators' last names initial letter, and partly as a 

play on the name of S. 

The source code for the R software environment is written primarily in C, Fortran, 

and R. Though R itself is an interpreted language and as such uses a command 

line interface, several graphical user interfaces have been developed and are 

available for use with R. 

R is available as Free Software under the terms of the Free Software 

Foundation's GNU General Public License in source code form. It compiles and 

runs on a wide variety of UNIX platforms and similar systems (including FreeBSD 

and Linux), Windows and MacOS [10]. 

 

1.2 Why use R 

 

A fair question one might ask is what makes R worth learning and using. The 

following bullet points will try to provide the answer: 

 R is free software, distributed under the Free Software Foundation's GNU 
General Public License. 

 R is a powerful data-analysis package with many standard and cutting-edge 
statistical functions. (http://en.wikipedia.org, 2013) 

 R is easily extensible, via user-defined functions and packages. 
 Most of R's standard functions are written in R itself, which makes it easy 

for users to follow the algorithmic choices made. 
 C, C++, and Fortran code can be called and executed during run time. 
 R objects can be directly manipulated by C, C++ or Java. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 16 of 112 

 R is available for all major operating systems (Windows, Mac OS, GNU-
Linux). 

 R is object-oriented. 
 A portable version of R can be installed on a USB stick. 

 

1.3 Uses and popular applications 

 

R provides a wide variety of statistical and graphical techniques, which include 

time series analysis, classical statistical tests, classification, clustering, linear and 

nonlinear modeling, and is highly extensible. It shines due to the ease of well-

designed publication-quality plots generation that it provides, including 

mathematical symbols and formulae where needed. It can be used for graphical 

statistical charts generation, data mining tasks on data, complex mathematical 

algorithms, statistical analyses, probability measuring, and much more. 

R is widely used in political science, statistics, econometrics, actuarial sciences, 

sociology, finance, and elsewhere [23]. 

 

1.4 The R environment 

 

Many users think of R as a statistics system. We prefer to think of it of an 

environment within which statistical techniques are implemented [2].  

R is a complete suite of software facilities capable of manipulating data, 

calculating results and graphically displaying them. These facilities include:  

 a collection of graphical data displaying facilities 

 a collection of data analysis tools 

 facilities for data handling and storing 

 a simple and effective programming language, which includes all of the 

most common control structures a typical programming language 

implements (conditionals, loops, input/output operations, user-defined 

functions, recursion) 

 operators for performing calculations on arrays / matrices 

Using the term "environment", R is intended to be characterized not as a mere 

accretion of inflexible, highly specific tools (as is the case with most data analysis 

software), but as a totally coherent system. It is designed around a true computer 

programming language, allowing users to define their own functions and 

packages, execute code from other programming languages such as C or Fortran, 

and thus contributing to the extension of the language's functionality. 

R's extensionality is hugely supported and amplified by the Comprehensive R 

Archive Network (CRAN), which hosts an R package repository containing 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 17 of 112 

packages available to users for downloading and installation. Currently, the CRAN 

package repository features 4986 available packages (http://cran.r-project.org, 

October 2013). The packages hosted by CRAN are tested regularly, and users 

can contribute their own packages to the repository, thus enhancing the 

functionality of R. 

 

1.4.1 Commands syntax 

 

R is an object oriented programming language. This means that virtually 

everything can be stored as an R object. Each object has a class. This class 

describes what the object contains and what each function does with it. For 

instance, plot(x) produces different outputs depending on whether x is a 

regression object or a vector [14]. 

R programming - syntax principles: 

 The assignment symbol is "<-". Alternatively, the classical "=" symbol can 
be used, but use of "<-" is encouraged. 

 Arguments are passed to functions inside parentheses. 

 R supports function combination. For instance, it is legal to type:  

 
> mean(rnorm(1000)^2) 
 

 Line comments use the "#" (hash / pound) symbol. For example: 
 
> # this is a comment 
> 1+1   # this is also a comment 
 

 Commands are normally seperated by a newline, except for a multiple 

statements on one line case, where commands are seperated using the";" 

(semicolon) symbol. One statement on multiple lines is also legal. In this 

case, R uses the "+" (plus) character to specify the lines containing one 

statement. For example: 
 
> x <- 3+5; y <- 8+6; z <- 10 
> x <-  
+ 3+5; y 
+ <- 
+ 8+6; z <- 10 
 
 

 R is a case-sensitive language 

 The "_" (underscore) symbol is generally not used in names, but rather the 

"." (dot) character is used. The reasoning behind this is traditional though, 

and not language restriction originating in any way - it is perfectly legal to 

use underscores in names. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 18 of 112 

1.4.2 Issuing a command 

 

R commands are entered in the R console. The commands are typed after the 

angle bracket symbol ">", and are issued by pressing the "Enter" key on the 

keyboard. When a command is issued, R responds with the resulting output, 

printed right under the line where the command was typed. For example, if a 

negation command is issued, R will respond with the result of the negation: 

> 5 - 2 
[1] 3 
 

If the output is not in text form (for example, if a plotting command is issued), then 

the appropriate result will appear (in the example case of a plotting command, an 

appropriate graph will appear as the result). 

 

1.4.3 R functions 

 

As previously mentioned, one of the greatest strengths of R is its ability of allowing 

the users to extend its functionality by adding their own, user-defined functions.  

Functions in R are treated as objects, which have the mode “function”. This means 

that the R interpreter is able to pass control to the function, along with arguments 

that may be necessary for the function to accomplish the actions that are desired. 

The function in turn must correctly perform its task and return control to the 

interpreter as well as any results which may be stored in other objects [8]. 

To define a function, its source code must be assigned to a word, which will be the 

name of the function. Similarly to most programming languages, the function‟s 

parameters are enclosed in parentheses, and its source code is enclosed between 

“{“ and “}” brackets. For example: 

> hello <- function(some.parameter=some.value) { 
+ 3+3 
+ } 
 

When the function “hello” is called, the result seen on the console will be: 

[1] 6 

 

R functions facts: 

 R supports calling a function inside another function. 

 R allows the user to define a function inside another function. 

 R supports both matching a function‟s parameters by name and matching 

them by position, and also a mix of the two matching modes. For instance: 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 19 of 112 

> hello <- function(x,y,z) { 
+ # do something 
+ } 
 

Function “hello(x,y,z)” can be called either by positional matching: 

 > hello(1,2,3) 
 

which will result in x being assigned a value of 1, y being assigned a value 

of 2, and z being assigned a value of 3, or by the parameters‟ name 

matching: 

 > hello(y=2,z=3,x=1) 
 

 Finally, function “hello(x,y,z)” can be called by mixing the two modes: 

 > hello(1,z=3,y=2) 
 

which will, again, result in x being assigned a value of 1, y being assigned a 

value of 2, and z being assigned a value of 3. When using mixed matching 

modes, each parameter that is matched by name is removed from the 

parameters list, and all the remaining unnamed arguments are matched in 

the order that they are listed in the function definition. 

 

1.4.4 Vectorization 

 

A big advantage of R over other statistical analysis software worth mentioning is 

the ability it gives the user to simply program a series of analyses which will then 

be executed successively, instead of having to navigate through confusing drop-

down menus and dialog boxes. In most major programming languages, when the 

programmer needs to perform a series of operations on a certain set of data, the 

most common approach will be the use of a loop structure, via which the 

programmer will navigate through all of the data, and for each part of it perform the 

needed operations. 

In R, this procedure can be really simplified – or even completely omitted - due to 

a very useful feature R offers, called “Vectorization”. Vectorization, in short, refers 

to the operation of a function not only applying to a single value, but to a whole set 

of data. Vectorized functions work not only on a single value, but on all the values 

of, for example, a vector, thus making the use of a loop to perform the function 

operation on each of the vector‟s components one by one quite unnecessary. 

Apart from easing the programming, vectorization greatly optimizes the code 

speed as well. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 20 of 112 

The use of the vectorization feature is demonstrated in the following examples: 

> x <- c(1,2,3,4,5,6,7,8,9) 
> sum(x) 

[1] 45 
 

In another programming language, to find the sum of all the vector‟s elements the 

programmer would probably have to use a loop and a separate variable where the 

sum would be stored, and in each loop increase the sum variable by the value of 

the component being accessed in that particular loop. With vectorization, this 

procedure is quite unnecessary, since the vectorized function “sum()” performs it. 

So, the “vectorized function” term is introduced. A vectorized function is a function 

that implements vectorization in its operation – it operates on a set of data, a 

vector for example, separately performing its operations on each of the data - or 

the vector‟s components. 

Consequently, if a vectorized function that performs the task the programmer 

needs exists, the programmer is freed of the labor to execute the function for each 

component of the data set in use. 

An important relevant issue here is what happens when a vectorized function 

which will perform the task the programmer needs does not exist. Is the looping-

and-applying method described earlier the only way to go? 

The answer is, luckily, no. R has predicted this, and has a whole family of 

functions devoted to this matter, known as the “apply family” functions. 

The apply functions are a set of functions that will execute any given function on 

each element of a set of data. Thus, they can turn any function to a vectorized 

one. Though there exist many apply functions, each having its own purpose, deep 

down what they all provide is a vectorization of other functions. 

The following example demonstrates the vectorization of the “class()” function, 

which prints the class of the given object (for example: numeric, factor, data.frame, 

etc), using the “lapply()” function. 

> x <- matrix(data=1:9,nrow=3) 
> x 

     [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 

> class(x) 

[1] "matrix" 

> class(x[1,1]) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 21 of 112 

[1] "integer" 

> lapply(x,class) 

[[1]] 
[1] "integer" 
 
[[2]] 
[1] "integer" 
 
[[3]] 
[1] "integer" 
 
[[4]] 
[1] "integer" 
 
[[5]] 
[1] "integer" 
 
[[6]] 
[1] "integer" 
 
[[7]] 
[1] "integer" 

 
[[8]] 
[1] "integer" 
 
[[9]] 
[1] "integer" 
 

Thus, with the use of the “lapply()” function, the class function was executed 9 

times, one for each item of the “x” matrix. 

Apart from the “lapply()” function, more variations of the apply function exist. The 

most basic of them are: 

 apply() – used for matrices, returns a matrix. The “MARGIN” parameter 

needs to be set, which defines whether the function should consider the 

rows(c(1)), the columns(c(2)), or both (c(1,2)). 

 lapply() – returns a list 

 sapply() – similar to lapply(), returns a vector rather than a list 

 mapply() – used to apply a function to a set of several data structures. The 

function is first applied to the first elements of each structure, then to the 

second elements, then the third, etc. Returns a character (what is known in 

other programming languages as a string) 

 tapply() – Used to apply a function to each element of a nested list 

structure, recursively. Returns a vector of integers. 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 22 of 112 

1.4.5 R scoping 

 

Since the time of creation, R has always been lexically scoped. Objects and 

functions in R use lexical scoping.  

 

1.4.6 Reading commands from external source file 

 

R can read and execute source code from external sources. Quite a useful 

feature, since the source code can be kept organized in separate R scripts, and 

thus the need of certain commands to be reentered every time the R command 

line is eliminated as well. To read an external R script, the “source” function needs 

to be called, as such: 

> source(“filename.R”) 

When the “source” function is used, R will attempt to read and interpret the code 

from the file supplied. If an error occurs, the script reading procedure will stop, and 

R will print an error message on the console describing the error. Otherwise, the 

angle bracket symbol “>” will appear again, which will mean that the script was 

successfully read and interpreted. 

 

1.4.7 Importing and exporting data 

 

Generally speaking, data can be stored in a large variety of formats. Almost every 

statistical analysis software product utilizes its own format. R can read almost all 

file formats, thanks to a variety of functions it includes. 

Although more on importing and exporting data will be covered on a subsequent 

chapter, a reference to the functions used to read data from some of the most 

common formats is worth being made.  

One of the most common formats of storing tabular data (i.e. numbers and text) is 

the well-known “csv” (Comma Separated Values, or Character Separated Values) 

format. Csv files store data in plain text form and, as the format name specifies, 

generally use the “,” (comma) character to separate the values. Typically, each 

row of a csv file is in most cases considered a unique entity, a record, and each 

column is considered a “field”, though these admissions are not obligatory. 

To read data from a csv file, R provides the “read.csv()” function. The csv file in 

question has to be specified in the parameter list, and other parameters can 

optionally be specified as well, like the “HEADER” parameter, which, if set to 

TRUE, considers the first line of the csv file to be a line containing the column 

names, not a line containing data, or the “colClasses” parameter, which specifies 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 23 of 112 

the desired class that each column will be read as. For example, if the csv file to 

be read consists of two columns which contain numeric values and it is desired 

that they are read in R as characters, then, instead of reading them as numeric 

and converting them to characters afterwards, the “read.csv()” function can be 

instructed to read them directly as characters – i.e. perform the numeric to 

character conversion during read time, “on the fly” – by making use of the 

“colClasses” parameter. In this case, the function call would be: 

> read.csv(“<csv.file>”,  
+ colClasses=c(“character”,”character”)) 
 

Apart from the “csv” format, tabular data can also be read from any file as long as 

the structure of the data inside that file is instructed to R. The function used in 

such cases is the “read.table()” function. The “read.table()” function accepts a long 

list of parameters, most of which have to be defined in order for the data to be 

read correctly. 

Data in R can be read in various other ways and from a variety of other sources. 

Such a source could be a network connection, for example, over which data can 

be read via making use of the “read.socket()” function. Importing and exporting 

data to and from R will be covered in more detail later on. 

 

1.4.8 Workspace and memory management 

 

R provides a fair amount of control over the work environment, the workspace 

objects and the memory usage: 

 Workspaces can be saved as workspace images (for example, at the end of 

an R session) and reloaded when necessary. 

 Workspace objects can be saved directly to the hard drive instead of the 

memory. 

 History can be saved to external files and reloaded when needed. 

 Memory usage limits can be enforced, so that R does not use more 

memory than the user intends to. 

Due to all of the facts above, and with the right workspace and memory 

management and handling, R can effectively process big data sets and execute 

highly memory demanding functions even in weak, not so powerful systems. 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 24 of 112 

1.5 R data types 

 

To do anything in R, one has to learn the data types that R can handle. While 

common data types found in most major programming languages - such as 

integers, doubles, strings, logicals – do exist in R as well, some additional types of 

data which R utilizes need to be defined and explained. 

 

1.5.1 Vectors 

 

Vectors are the simplest R objects, an ordered list of primitive R objects of a given 

type (e.g. real numbers, strings, logicals). Vectors are indexed by integers starting 

at 1. What is important to note is that a vector consists of a sequence of data 

elements of the same basic type. The members of a vector are officially called the 

vector‟s components. 

To create a vector, the “c()” function must be used, as follows: 

> c(1,2,3,4) 

[1] 1 2 3 4 
 

A vector can also be created using the “:” symbol, which defines a number range, 

or the “seq()” function, which also defines a number range and allows the 

specification of an interval between the numbers using the “by” parameter. The 

above functions are used as such: 

> c(1:5) 

[1] 1 2 3 4 5 

> seq(1,5,by=2) # the “seq()” function returns a vector 
# by itself 

[1] 1 3 5 
 

Vectors can be assigned in variables: 

> x <- c(1,2,3,4) 

 

To refer to a component of a vector, its index must be used, as such: 

> x <- c(1,2,3,4) 
> x[1] 

[1] 1 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 25 of 112 

1.5.2 Factors 

 

Factors are a similar data structure to vectors, except for the fact that a factor 

holds categorical elements. Each element of a factor belongs to a “level” of that 

factor. To create a factor, the “factor()” function should be used, which converts a 

vector into a factor. For instance: 

> factor(c(“windy”,“windy”,“windy”,”sunny”,“windy”,”sunny”)) 

[1] windy windy windy sunny windy sunny 
Levels: sunny windy 
 

Thus a factor has been created, consisting of 2 levels, “sunny” and “windy”. 

Factors are really useful for storing categorical data, due to their “levels” 

mechanism. 

The levels of a factor can be obtained using the “levels()” function, as follows: 

> x <- 
+ factor(c(“windy”,“windy”,“windy”,”sunny”,“windy”,”sunny”)) 
> levels(x) 

[1] "sunny" "windy" 
 

The number of instances of each level in a factor can be counted via the “table()” 

function: 

> x <-  
+ factor(c(“windy”,“windy”,“windy”,”sunny”,“windy”,”sunny”)) 
> table(x) 

sunny windy  
    2     4 
 

Levels can have custom names or labels, via the “levels” and “labels” parameters. 

The “levels” parameter is used to manually specify the levels of the factor, 

whereas the “labels” parameters is used to give  a label to each level. For 

examples: 

> factor(c(“rainy”,“windy”,“windy”,”sunny”,“rainy”,”sunny”), 
levels=c(”rainy”,”sunny”)) 
> x 

[1] rainy <NA>  <NA>  sunny rainy sunny 
Levels: rainy sunny 

> table(x) 

X 
rainy sunny  
    2     2 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 26 of 112 

> x <-  
+ factor(c("rainy","windy","windy","sunny","rainy","sunny"),  
+ labels=c("rainy","sunny","windy")) 
> x 

[1] rainy windy windy sunny rainy sunny 
Levels: rainy sunny windy 

> table(x) 

X 
rainy sunny windy  
    2     2     2 
 

As is easily perceived, in the case of manually specifying the levels, all instances 

of variables that do not belong to a level specified are ignored. 

 

1.5.3 Matrices 

 

A matrix is a similar to a vector, but with a specific layout format, such that it looks 

like an actual matrix - i.e. the elements of a matrix are indexed by two integers, 

each starting at 1. 

Matrix elements can only be of numeric or character type. To create a matrix, one 

way is to use the “matrix()” function. A vector of data has to be entered, along with 

the numbers of rows and columns, and optionally the way that R will read the 

matrix can be specified as well, which can be either by row or by column (the 

default mode). The read mode is specified by the logical parameter “byrow”. Below 

is an example of creating a matrix: 

> matrix(data=1:16,nrow=4,ncol=4,byrow=TRUE) 

     [,1] [,2] [,3] [,4] 
[1,]    1    2    3    4 
[2,]    5    6    7    8 
[3,]    9   10   11   12 
[4,]   13   14   15   16 
 

A matrix can be created by combining multiple vectors, in case the data about to 

be entered in a matrix is stored in vectors. To create a matrix by combining 

multiple matrices, the functions “rbind()” and “cbind()” can be used. Function 

“rbind()” will combine the vectors in a “row-by-row” mode, whereas function 

“cbind()” will combine the vectors in a “column-by-column” mode. For example: 

> v1 <- c(1,2,3,4,5) 
> v2 <- c(6,7,8,9,10) 
> v3 <- c(11,12,13,14,15) 
> rbind(v1,v2,v3) 

   [,1] [,2] [,3] [,4] [,5] 
v1    1    2    3    4    5 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 27 of 112 

v2    6    7    8    9   10 
v3   11   12   13   14   15 

> cbind(v1,v2,v3) 

     v1 v2 v3 
[1,]  1  6 11 
[2,]  2  7 12 
[3,]  3  8 13 
[4,]  4  9 14 
[5,]  5 10 15 
 

The dimension of a matrix can be obtained using the “dim()” function. 

Alternatively, “nrow()” and “ncol()” functions return the number of the rows and 

columns, respectively, of a matrix. For example: 

> mx <- matrix(data=1:16,nrow=4,ncol=4,byrow=TRUE) 
> dim(mx) 

[1] 4 4 

> nrow(mx) 

[1] 4 

> ncol(mx) 

[1] 4 
 

Using the “t()” function, a matrix can be transposed, i.e. its columns will become its 

rows, and its rows will become its columns. Function “t()” is used as follows: 

> mx <- matrix(data=1:16,nrow=4,ncol=4,byrow=TRUE) 
> mx 

     [,1] [,2] [,3] [,4] 
[1,]    1    2    3    4 
[2,]    5    6    7    8 
[3,]    9   10   11   12 
[4,]   13   14   15   16 

> t(mx) 

     [,1] [,2] [,3] [,4] 
[1,]    1    5    9   13 
[2,]    2    6   10   14 
[3,]    3    7   11   15 
[4,]    4    8   12   16 
 

The rows and columns of a matrix can be named, using the functions “rownames 

()” and “colnames ()”, respectively: 

> mx <- matrix(data=1:16,nrow=4,ncol=4,byrow=TRUE) 
> rownames(mx) <- c(“row1”,”row2”,”row3”,”row4”) 
> mx 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 28 of 112 

     [,1] [,2] [,3] [,4] 
row1    1    2    3    4 
row2    5    6    7    8 
row3    9   10   11   12 
row4   13   14   15   16 

> colnames(mx) <- c(“col1”,”col2”,”col3”,”col4”) 
> mx 

     col1 col2 col3 col4 
row1    1    2    3    4 
row2    5    6    7    8 
row3    9   10   11   12 
row4   13   14   15   16 
 

Finally, reference to a matrix element can be achieved using the “[“ and “]” (square 

brackets) symbols, as in most major programming languages. If the row or the 

column index is not specified, R will return the same row/column as the 

row/column specified. If the row or the column index is not specified, but the row 

and column indexes are separated by a comma (“,”), then the whole row or 

column, respectively, will be returned. Usage is performed as follows: 

> mx <- matrix(data=1:16,nrow=4,ncol=4,byrow=TRUE) 
> mx[1] # Only one index is specified, so R returns the same 
row/column as the row/column specified: 

[1] 1 

> mx[2] # Only one index is specified, so R returns the same 
row/column as the row/column specified: 

[1] 5 

> mx[1,2] 

[1] 2 

> mx[,2] # Row index is not specified, so R returns the whole row: 

[1]  2  6 10 14 

> mx[2,] # Column index is not specified, so R returns the whole 
column: 

[1] 5 6 7 8 

 

1.5.4 Arrays 

 

Arrays are extensions of matrices to more than two dimensions. So arrays are 

similar to matrices, differing in the fact that they can have more than 2 dimensions. 

An array in R is composed of n dimensions, where each dimension is a vector of R 

objects of the same type. Items are placed into the array column-wise, and not 

row-wise as in most major programming languages. So the first item will be placed 

in position [1,1], the second will be placed in position [2,1], etcetera. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 29 of 112 

An array of a single dimension can be constructed thus: 

> arr <- array(c(“a”),dim=c(1)) 
> arr 

[1] "a" 
 

Similarly, an array of two dimensions can be constructed thus: 

> arr <- array(c(“a”,”b”,”c”,”d”),dim=c(2,2)) 
> arr 

     [,1] [,2] 
[1,] "a"  "c"  
[2,] "b"  "d" 
 

If more than two dimensions are required, then a multidimensional array can be 

constructed as follows: 

> arr <-  
+ array(c("a","b","c","d","e","f","g","h"),dim=c(2,2,2)) 

> arr 

, , 1 
 
     [,1] [,2] 
[1,] "a"  "c"  
[2,] "b"  "d"  
 
, , 2 
 
     [,1] [,2] 
[1,] "e"  "g"  
[2,] "f"  "h" 
 

The dimensions, row and column numbers, type of the components and 

components referencing can be achieved the same way it can be achieved in 

matrices. 

 

1.5.5 Lists 

 

A list is similar to a vector, but the elements need not all be of the same type. It is 

a collection of R objects of any type. The elements of a list can be indexed either 

by integers or by named strings, i.e. an R list can be used to implement what is 

known in other programming languages as an "associative array", "hash table", 

"map" or "dictionary". 

A list can be created via the “list()” function, thus: 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 30 of 112 

> x <- 5 
> y <- c(TRUE,FALSE,FALSE,TRUE,FALSE) 
> z <-  
+ array(c("a","b","c","d","e","f","g","h"),dim=c(2,2,2)) 
> mylist <- list(x,y,z) 
> mylist 

[[1]] 
[1] 5 
 
[[2]] 
[1]  TRUE FALSE FALSE  TRUE FALSE 
 
[[3]] 
, , 1 
 
     [,1] [,2] 
[1,] "a"  "c"  
[2,] "b"  "d"  
 
, , 2 
 
     [,1] [,2] 
[1,] "e"  "g"  
[2,] "f"  "h" 
 

The ways of referencing a list‟s components are quite flexible. Also, all of the 

methods a list component can be referenced by can be combined. A list 

component can be referenced by: 

 Index number: 

> x <- 5 
> y <- c(TRUE,FALSE,FALSE,TRUE,FALSE) 
> mylist <- list(x,y,z) 
> mylist[1] 

[[1]] 
[1] 5 

 Name string, using the “$” (dollar) sign: 

> mylist <- list() 
> mylist$planet <- “Earth” 
> mylist$planet 

[1] "Earth" 

> mylist[“planet”] 

$planet 
[1] "Earth" 

 A combination of index numbers and name strings: 

> x <- 5 
> y <- “Earth” 
> mylist <- list() 
> mylist[1] <- x 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 31 of 112 

> mylist$planet <- y 
> mylist 

[[1]] 
[1] 5 
 
$planet 
[1] "Earth" 
 

Direct reference to a list‟s inner component is possible, too. For example, if a 

vector is part of a list, a component of this vector can directly be referenced by the 

list name. For this to be done, the list index number needs to be contained inside 

double square brackets, thus: 

> x <- c(1,2,3,4) 
> mylist <- list(x) 
> mylist[[1]] 

[1] 1 2 3 4 

> mylist[[1]][1] 

[1] 1 
 

A list component can be named upon list creation, as follows: 

> mylist <- list(country=c(“Greece”,”Bulgaria”)) 
> mylist 

$country 
[1] "Greece"   "Bulgaria" 
 

A list can be transformed into a vector, via the “unlist()” function. Example: 

> mylist <- list(5,c(1,2,3),matrix(data=1:16,nrow=4,ncol=4)) 
> mylist 

[[1]] 
[1] 5 
 
[[2]] 
[1] 1 2 3 
 
[[3]] 
     [,1] [,2] [,3] [,4] 
[1,]    1    5    9   13 
[2,]    2    6   10   14 
[3,]    3    7   11   15 
[4,]    4    8   12   16 

> mylist <- unlist(mylist) 
> mylist 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 32 of 112 

1.5.6 Data frames 

 

A data frame is similar to a matrix, but does not assume that all columns contain 

objects of the same type. It is a list of variables or vectors of the same length. Less 

formally, a data frame is a type of table where the typical use employs the rows as 

observations and the columns as variables. Data frames can be really helpful for 

storing and handling data coming from a database or a dataset.  

A data frame is created with the use of the “data.frame()” function, thus: 

> a <- c(1,2,3) 
> b <- c(4,5,6) 
> c <- c(7,8,9) 
> df <- data.frame(a,b,c) 
> df 

  a b c 
1 1 4 7 
2 2 5 8 
3 3 6 9 
 

The top line of the table, called the header, contains the column names. Each 

horizontal line afterward denotes a data row, which begins with the name of the 

row, and is then followed by the actual data. Each data member of a row is called 

a cell [28]. 

A data frame‟s rows and columns can be named, using the “row.names” 

parameter for row naming, and either the “names()” function or direct naming for 

column naming. The column names are stored in the header of the data frame. 

The naming procedure is carried out as follows: 

> a <- c(1,2,3) 
> b <- c(4,5,6) 
> c <- c(7,8,9) 
> df <-  
+ data.frame(c1=a,c2=b,c3=c,row.names=c("row1","row2","row3")) 
> df 

       c1   c2   c3 
row1    1    4    7 
row2    2    5    8 
row3    3    6    9 

> names(df) <- c(“new.col1”,” new.col2”,” new.col3”) 
> df 

     new.col1 new.col2 new.col3 
row1        1        4        7 
row2        2        5        8 
row3        3        6        9 
 

Access to a data frame‟s components is obtained in a way similar to the one used 

to access a list‟s components. Either number indexing can be used, where the 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 33 of 112 

numbers are once again contained between square brackets, or name strings can 

also be used, either contained between square brackets or following the dollar 

sign. Some examples of accessing a data frame‟s components: 

> df <- data.frame(c1=c(1,2,3),c2=c(4,5,6),c3=c(7,8,9)) 
> df 

  c1 c2 c3 
1  1  4  7 
2  2  5  8 
3  3  6  9 

> df[1] 

  c1 
1  1 
2  2 
3  3 

> df[1,1] 

[1] 1 

> df[“c1”] 

  c1 
1  1 
2  2 
3  3 

> df$c1 

[1] 1 2 3 

 

1.6 Conclusion 

 

The basic data types, objects and commands needed to create and manipulate 

data in the R language have been described and their usage has been 

demonstrated. It is easily perceptible that R is a simple but powerful language. In 

the next chapter, its usability and performance in performing data mining in sets of 

data will be described in detail. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 34 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 35 of 112 

2. Data Mining 

2.1 Introduction 

 

Nowadays, big data is found everywhere. Corporations keep hiring data scientists, 

are worried about personal data and data control, entrepreneurs are trying to find 

new ways to collect data, control it, monetize it. Long story short, data is valuable, 

data is powerful. 

Data mining is inseparably connected to these facts. It is the connection, the link 

between raw data and intelligence, the means to extract useful information from 

tons of data. Without data mining, big data would be almost useless – no brain 

could be able to extract this much intelligence from this much data in such little 

time. 

The term “data mining”, in general, has been given many definitions: 

“Generally, data mining (sometimes called data or knowledge discovery) is the 

process of analyzing data from different perspectives and summarizing it into 

useful information - information that can be used to increase revenue, cuts costs, 

or both.” [5] 

“Data mining (the analysis step of the "Knowledge Discovery in Databases" 

process, or KDD), an interdisciplinary subfield of computer science, is the 

computational process of discovering patterns in large data sets involving methods 

at the intersection of artificial intelligence, machine learning, statistics, and 

database systems.” [17] 

 

So data mining refers to a series of actions performed on a set of data, in order to 

extract intelligence from it. Data is considered to be any number, text or fact that 

can be processed by a computer, usually stored in a computer database. 

Information is considered to be any pattern, relationship or association arising from 

the processing of the data, and the useful subset of these patterns, relationships 

or associations is used to produce knowledge – information that has a meaning 

and can be used in a beneficial way. 

The term “data mining” was first introduced in the 1990s, but data mining is 

actually the evolution of a field with a long history. 

Data mining roots are traced back along three family lines: classical statistics, 

artificial intelligence, and machine learning. 

Statistics are the foundation of most technologies on which data mining is built, 

e.g. regression analysis, standard distribution, standard deviation, standard 

variance, discriminant analysis, cluster analysis, and confidence intervals. All of 

these are used to study data and data relationships. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 36 of 112 

Artificial intelligence, or AI, which is built upon heuristics as opposed to statistics, 

attempts to apply human-thought-like processing to statistical problems. Certain AI 

concepts which were adopted by some high-end commercial products, such as 

query optimization modules for Relational Database Management Systems 

(RDBMS). 

Machine learning is the union of statistics and AI. It could be considered an 

evolution of AI, because it blends AI heuristics with advanced statistical analysis. 

Machine learning attempts to let computer programs learn about the data they 

study, such that programs make different decisions based on the qualities of the 

studied data, using statistics for fundamental concepts, and adding more 

advanced AI heuristics and algorithms to achieve its goals. 

Data mining, in many ways, is fundamentally the adaptation of machine learning 

techniques to business applications. Data mining is best described as the union of 

historical and recent developments in statistics, AI, and machine learning. These 

techniques are then used together to study data and find previously-hidden trends 

or patterns within [27]. 

 

2.2 Data mining phases and techniques 

 
The data mining process is often divided into 5 phases: 

 The Selection phase – definition of the dataset that will be processed, 

 The Pre-Processing phase – editing of the dataset in order for it to be ready 

for mining, i.e. have no missing values, be “clean”, 

 The Transformation phase – conversion of the data in the appropriate 

format for it to be entered in the data mining system, 

 The Data Mining phase – the data is processed (“mined”) using a data 

mining algorithm or technique, 

 The Evaluation phase – the data mining results are evaluated and 

knowledge is extracted from them. 

(en.wikipedia.org) 

Each of these phases plays its own specific role in the data mining procedure. The 

Pre-Processing phase is very important, as the result of the data mining process is 

highly dependent on it. The Data Mining phase is the one where the actual data 

mining happens, and as such, the phase that will be subsequently analyzed. 

The Data Mining phase, as described above, is the phase where the data is 

processed for information, or mined, making use of a data mining algorithm or 

technique. Such algorithms and techniques have been researched and developed 

over the past years, finally having come down to the conclusion that generally, 

when data mining, four main types of relationships among data are sought: 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 37 of 112 

Associations, classes, clusters, and sequential patterns (UCLA Anderson School 

of Management). Associations mining refers to the process of identifying 

associations (relationships) among data that appear frequently within the dataset. 

Classification, previously mentioned as classes definition, is the process of 

generalizing the known data, dividing it into classes, in order to then sort new data 

in the same structure. Clustering is the process which refers to the discovery of 

similar groups of data within the dataset, but without using previously known 

structures, as in Classification. Last but not least, sequential patterns mining looks 

for behavior patterns, and is often used for anticipation of certain trends (for 

example, predicting the likelihood of cheese being purchased in a transaction, 

based on a customer‟s purchase of bread and milk). 

More data mining algorithms, techniques and relationship types exist, of course, 

that are not covered in this thesis. 

 

2.3 Association Rules 

2.3.1 Description 

 

Association rule learning is a really well known and well researched method for the 

discovery of interesting relations among data in large datasets. Based on various 

interestingness measures, it identifies strong rules that apply on the data, which 

can provide useful information and knowledge. Critical decisions can be based on 

the results of this method, either in the business field, or in the medical science 

field, the sports field, the market field, and elsewhere. 

The most frequent example used to explain the association rules mining concept is 

the market basket scenario, where a dataset containing information about many 

consumers‟ transactions exists and interesting relations among the transaction 

items are sought. Thus, if the association rule “{tomatoes, onions} => {milk}” is 

found with an acceptable percentage of interestingness, then the seller knows that 

a high percentage of customers usually buy milk when they buy tomatoes and 

onions as well. 

The concept of association rules was popularised particularly due to the 1993 

article of Agrawal et al., which has acquired more than 6000 citations according to 

Google Scholar, as of March 2008, and is thus one of the most cited papers in the 

Data Mining field. However, it is possible that what is now called "association 

rules" is similar to what appears in the 1966 paper on GUHA, a general data 

mining method developed by Petr Hájek et al [16]. 

 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 38 of 112 

2.3.2 Uses / applications 

 

Association rule mining has been – and is still being – widely used in various 

areas, such as telecommunication networks, marketing, risk management, 

inventory control, betting calculation systems, casinos, sports, environmental 

research, medical science, and elsewhere. 

 

2.3.3 Rules format 

 

Typically, a rule follows a structure of the form X => Y, where X and Y are subsets 

of transaction items. The X => Y format means that if a transaction contains the 

items of the X item set, it is probable that it will also contain the items of the Y item 

set. No items that belong to the X item set can belong to the Y item set, and vice 

versa. The X item set is called “antecedent” or left-hand-side, LHS, while the Y 

item set is called “consequent” or right-hand-side, LHS. 

The probability of a transaction containing items that belong to the antecedent item 

set to also contain items that belong to the consequent item set (in short, the 

probability of a rule to be applicable) depends on the interestingness measures on 

which basis the rule was found. Interestingness measures are covered in more 

detail in the next section. 

 

2.3.4 Interestingness / significance measuring 

 

Prior to searching for association rules in a given dataset, the interestingness 

measure has to be instructed. Simply put, the association rules mining algorithm 

must be told how “interesting” or significant the resulting rules should be. In other, 

more practical, words, the association rules mining algorithm must be told how 

frequent a pattern should be in order for it to be regarded as an association rule. 

Three constraints are the most well-known on significance measuring: Minimum 

Support, minimum Confidence, and Lift. 

The Support of a rule is considered to be: the proportion of the appearance of the 

items of that rule in the dataset‟s transactions, together. For example, if the 

dataset consists of 10 transactions, 4 of which contain items X and Y, then the 

support of the rule “X => Y” (and the rule “Y => X” as well) would be 4 / 10, which 

equals 0.25 or 25%. 

 

supp(X => Y) = Transactions containing X, Y / Total transactions 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 39 of 112 

The Confidence of a rule is considered to be: the proportion of the appearance of 

the items of that rule in the dataset‟s transactions which contain the items of the 

LHS of the rule. For example, if the dataset consists of 10 transactions, 4 of which 

contain item X and only 2 of those containing item Y as well, then the confidence 

of the rule “X => Y” would be 2 / 4, which equals 0.5 or 50%. 

 

conf(X => Y) = supp(X => Y) / supp(X) 

 

The lift of a rule is considered to be: the ratio of the observed support to that 

expected if X and Y were independent [19]. 

Lift is a measure of the performance of a targeting model (association rule) at 

predicting or classifying cases as having an enhanced response (with respect to 

the population as a whole), measured against a random choice targeting model. A 

targeting model is doing a good job if the response within the target is much better 

than the average for the population as a whole. Lift is simply the ratio of these 

values: target response divided by average response [19]. 

The lift of a rule is defined as follows: 

 

lift(X => Y) = supp(X => Y) / supp(X) * supp(Y) 

 

As a general rule, when the lift of a rule is 1 then the items of that rule are, as is 

the terminology, statistically independent. In simple words, such a rule has no 

value, it is of no use. A rule‟s value increases as its lift increases. 

 

2.3.5 The Apriori algorithm 

 

One of the most popular frequent item set mining and association rule learning 

algorithms over transactional databases is the Apriori algorithm. Apriori is 

designed to operate on transactional databases, i.e. databases containing 

transactions. Each transaction is seen as a set of items, and Apriori defines the 

item sets that meet certain significance measures, with regards to their frequency 

of appearance inside the database. 

Apriori works as follows: it first identifies the frequent individual item sets in the 

database, and then extends them to larger and even larger item sets, as long as 

these item sets appear sufficiently often in the database [15]. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 40 of 112 

So Apriori uses a “bottom-up” approach – extending the frequent item sets, one at 

a time, and testing them against the data. The algorithm‟s termination point is 

reached when no further transactions meeting the significance criteria are found. 

 

2.3.6 Association rule mining in R - required packages 

 

R does not natively possess any built-in function to enable the user to apply the 

Apriori algorithm over a set of transactional data. However, due to R‟s great 

extensionality, packages have been built which are freely available to use and 

which provide the user with the means to execute the Apriori algorithm. 

The packages required to execute the Apriori algorithm that are used in this thesis 

are the packages named “arules” and “arulesViz”. 

The package “arules” contains all the necessary objects and structures for the 

inspection of the transactional item set, the execution of the Apriori algorithm, and 

the verification of the resulting data. Officially: Package “arules” provides the 

infrastructure for representing, manipulating and analyzing transaction data and 

patterns (frequent itemsets and association rules). Also provides interfaces to C 

implementations of the association mining algorithms Apriori and Eclat by C. 

Borgelt [6].  

The “arules” package depends on the packages named “stats”, “methods” and 

“Matrix” (version 1.0-0 or greater). Dependency in R refers to the need of certain 

packages‟ existence in the system prior to the installation of the package in 

question, in order for it to work correctly. So the user has to make sure that these 

three packages are already installed in the system before attempting to install 

“arules”. 

Package “arules” also requires an installation of R version 2.14.2 or greater. 

Package “arules” version is currently 1.0-15 (November 2013). 

The package “arulesViz” contains all the necessary objects and structures 

required for the visualization of the Apriori algorithm results. Using “arulesViz” the 

resulting association rules can be visualized in several visualization ways, 

including histograms, pie charts, dot plots, bar charts, line charts, box plots, even 

3D scatterplots. Officially: Package “arulesViz” provides various visualization 

techniques for association rules and itemsets. The packages also include several 

interactive visualizations for rule exploration. This package extends package 

arules [7]. 

As stated in the official description of the package, “arulesViz” extends package 

“arules”, thus the first dependency that should be met in order for “arulesViz” to 

work correctly is the “arules” package (and specifically, “arules” version 1.0-5 or 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 41 of 112 

greater). Other dependencies that have to be satisfied are the packages 

“scatterplot3d”, “vcd”, “seriation”, and “igraph”. 

Finally, package “arulesViz” also requires an installation of R version 2.14.0 or 

greater. Package “arulesViz” version is currently 0.1-7 (November 2013). 

2.3.7 Package installation in R 

 

Installation of a package in R can be done in two ways: Either the package can be 

automatically downloaded from a package repository and installed, or it can be 

compiled by source code and then installed. Obviously, the first option is easier, 

less error-prone, and guarantees that the latest stable version of the package will 

be installed. On the downside, it depends on the availability of an internet 

connection. 

To install a package by downloading it from a package repository, the function 

“install.packages()” needs to be used, thus: 

> install.packages(“<package.name>”) 
 

When issued, in most R versions this command will cause a dialog box to appear, 

prompting the user to select the repository mirror by which they wish to download 

the package. Alternatively, the internet address of the mirror can be manually 

specified by hardcoding it in the “.Rprofile” file: 

r = getOption("repos") # hard code the UK repo for CRAN 
r["CRAN"] = http://cran.uk.r-project.org 
options(repos = r) 
rm(r) 

 

To install a package from its source code, the file name and path of the source 

code must be specified, the “type” parameter must be set to “source”, and the 

“repos” parameter must be set to “NULL”. Package source codes are usually 

compressed in “tar” files. For example: 

> install.packages(“/path/to/source.tar.gz”, type=”source”,  
+ repos=NULL) 

 

An alternative way to install a package from its source code without using the R 

console at all is to use the “R CMD INSTALL” command on the respective 

operating system‟s command prompt. The “R CMD INSTALL” command needs 

only the filename and path of the source code file. The use is demonstrated below: 

~$ R CMD INSTALL /path/to/source.tar.gz 

 

http://cran.uk.r-project.org/


Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 42 of 112 

2.3.8 Verification of a package installation in R 

 

To verify that a package has been correctly installed in R, the functions 

“installed.packages()” and “library” are available, and suitable for the job.  

The “installed.packages()” function will output a list containing every package that 

is installed in the current R installation. If the package in question is included in the 

list, its installation was successful. 

The “library()” function is the function used to load a package into the memory, so 

as to begin using it. The best way of verifying the correct installation of a package 

is to attempt to load and use it. 

To load a package, its name has to be specified in the “library()” function call, thus: 

> library(“<package.name>”) 

 

For example, to successfully load the packages “arules” and “arulesViz”, and thus 

verify their correct installation, the procedure that should be followed is the 

following (notice how many dependencies should be met on the “arulesViz” 

package): 

> library(“arules”) 

Loading required package: Matrix 
Loading required package: lattice 
 
Attaching package: „arules‟ 
 
The following object is masked from „package:base‟: 
 
    %in%, write 
 
Warning message: 
package „arules‟ was built under R version 3.0.2 

> library(“arulesViz”) 

Loading required package: scatterplot3d 
Loading required package: vcd 
Loading required package: grid 
Loading required package: seriation 
Loading required package: cluster 
Loading required package: TSP 
Loading required package: gclus 
Loading required package: colorspace 
 
Attaching package: „seriation‟ 
 
The following object is masked from „package:lattice‟: 
 
    panel.lines 
 
Loading required package: igraph 
 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 43 of 112 

Attaching package: „igraph‟ 
 
The following object is masked from „package:gclus‟: 
 
    diameter 
 
 
Attaching package: „arulesViz‟ 
 

The following object is masked from „package:base‟ 
 
    abbreviate 
 
Warning messages: 
1: package „arulesViz‟ was built under R version 3.0.2  
2: package „vcd‟ was built under R version 3.0.2  
3: package „seriation‟ was built under R version 3.0.2  
4: package „TSP‟ was built under R version 3.0.2  
5: package „gclus‟ was built under R version 3.0.2  
6: package „colorspace‟ was built under R version 3.0.2  
7: package „igraph‟ was built under R version 3.0.2 
 

It is notable that in this situation the „library(“arules”)‟ command could be omitted, 

as the “arules” package is a dependency of the “arulesViz” package, and as such 

it would be automatically loaded upon the „library(“arulesViz”)‟ command. 

 

2.3.9 Using Apriori in R 

 

After successfully installing the appropriate packages, R is set up and ready to 

start mining transactional datasets for association rules. 

To mine association rules using the Apriori algorithm, the “arules” package 

provides a very useful function that combines the specification of almost every 

parameter that the Apriori algorithm needs to know, and “does it all”: the “apriori()” 

function. 

According to the “arules” package documentation [9], the “apriori()” function call 

consists of 4 parameters: 

 data – an object of class “transactions” or any data structure which can be 

coerced into transactions (for example, a binary matrix or data.frame). 

 parameter: object of class “APparameter” or named list. The default 

behavior is to mine rules with support 0.1, confidence 0.8, and maxlen 5. 

 appearance: object of class APappearance or named list. With this 

argument item appearance can be restricted. By default all items can 

appear unrestricted. 

 control: object of class APcontrol or named list. Controls the performance of 

the mining algorithm (item sorting, etc.) 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 44 of 112 

The “data” parameter, in short, defines the dataset from which the association 

rules will be mined. The dataset has to be an object of class “transactions” or any 

data structure which can be coerced into transactions, and should generally follow 

two formats: Either the “basket” format, according to which all of the transaction‟s 

items are included in one row and separated by a certain character, or the “single” 

format, according to which the transaction‟s items are included in separate rows, 

which contain at least the transaction id. Officially:  

For „basket‟ format, each line in the transaction data file represents a transaction 

where the items (item labels) are separated by the characters specified by sep. 

For „single‟ format, each line corresponds to a single item, containing at least ids 

for the transaction and the item [9]. 

The transactions are read from the dataset using the “read.transactions()” function, 

parameters of which are the “format” parameter mentioned earlier and the “sep” 

parameter, mentioned in the official formats description. 

The “parameter” parameter accepts a list of parameters regarding the Apriori 

algorithm. This is the parameter where the interestingness / significance measures 

are defined. For example, to define a minimum support of 0.1, a minimum 

confidence of 0.8 and a maximum rule length of 5 (which defines that the total 

items of the resulting rules will be at most 5 per rule), the “parameter” parameter 

should be defined thus: 

> apriori(dataset,parameter=list(sup=0.1,conf=0.9,minlen=2)) 
 

The “appearance” parameter instructs the algorithm about the desired appearance 

of the resulting association rules. For example, it might be desirable that only rules 

that contain “potatoe” in their LHS are mined. This can be achieved by setting the 

“appearance” parameter as follows: 

> apriori(dataset,appearance=list(lhs=c("potatoe"), 
+ default="rhs")) 
 

The „default=”rhs”‟ part instructs the algorithm that the RHS of the rule should be 

the default one (hence no constraints are to be applied to it). 

Finally, the “control” parameter defines several parameters regarding the 

performance of the algorithm. Such parameters may refer to the resulting rules‟ 

sorting order, the sorting algorithm to be used, memory usage and handling, and 

other control settings that need not be covered in this thesis. For example, to 

instruct the algorithm to optimize the memory usage, the “memopt” parameter 

should be set to TRUE: 

> apriori(dataset,control=list(memopt=TRUE)) 
 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 45 of 112 

Alternatively, if the sorting algorithm used should be the “quicksort” algorithm, 

instead of the “heapsort” algorithm that is being used by default, then the “heap” 

parameter should be set to “FALSE”: 

> apriori(dataset,control=list(heap=FALSE)) 
 

Thus, with just 4 parameters, the “apriori()” function offers a great amount control 

over the association rules mining. 

 

Sometimes, rules with an empty LHS are produced. For example, a rule like the 

following might sometimes occur: 

{} => {yogurt} 0.05603010  0.05603010 1.572722 
 

This kind of rules show the probability of the items contained in their RHS to show 

up in a rule‟s RHS, no matter what items exist in the LHS of that rule. So, 

obviously, this kind of rules‟ support and confidence measures will be equal, and 

their lift measure will be 1. 

The significance measures of the resulting association rules can be obtained using 

the “quality()” function: 

> quality(rules) 

     support confidence     lift 
1 0.13941428 0.13941428 1.000000 
2 0.05328452 0.05328452 1.000000 
3 0.05603010 0.21925985 1.572722 
4 0.02613382 0.10226821 1.919285 

An important fact to note is that “apriori()” only produces rules with one item in 

their RHS. 

 

2.3.10 Mining the rules 

 

To mine a transactional dataset for interesting association rules, the general 

procedure that should be followed is: 

 Loading of the dataset into R 

 Pre-Processing of the dataset 

 Mining of the rules 

For the sakes of this example, a dataset included in the “arules” package will be 

used, which contains 9835 transactions of a groceries store. This dataset is stored 

in the “Groceries” object. Each row of the dataset is a transaction. For the sakes of 

simplicity, the data in this dataset is already in the “basket” format (described later 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 46 of 112 

on). This example will attempt to mine rules from this dataset using the Apriori 

algorithm. 

Before any action can be taken on a dataset, it has to be loaded into the memory. 

The “data()” function loads a dataset into the memory, as follows: 

> data(<dataset.name>) 
 

Thus, to load the Groceries dataset, the appropriate command would be: 

> data(“Groceries”) 
 

If no output is produced, the dataset was loaded successfully. Alternatively, if the 

dataset is stored in a database or a file, other functions are used to read such 

datasets, such as the “dbReadTable()” function or the “read.table()” function, 

respectively. 

After loading the dataset, a pre-processing of the data is required in most cases (in 

some cases, a pre-processing of the data is required even before reading the 

dataset into R). The pre-processing of the data is a procedure where the dataset is 

edited appropriately in order for it to be compatible with the destination data mining 

system (in this case, the R language), and for the data to be valid for association 

rule mining (i.e. does not have missing values, non-categorical values are 

categorized / nominalized), so that the resulting rules are real and have a 

meaning. 

In this example the pre-processing stage is omitted for the sakes of simplicity, 

since, as previously mentioned, the data is already in the “basket” format, and 

ready for association rule mining. 

After the pre-processing is complete, it is time to mine the association rules. When 

the decisions regarding the significance measures are made, the “apriori()” 

function is ready to be called. In this example, the minimum support for a rule to be 

mined will be 0.08 and the minimum confidence will be 0.06: 

> rules <-  
+ apriori(Groceries,parameter=list(supp=0.08,conf=0.06)) 

 
parameter specification: 
 confidence minval smax arem  aval originalSupport support 
       0.06    0.1    1 none FALSE            TRUE    0.08      
minlen maxlen target   ext 
     1     10  rules FALSE 
 
algorithmic control: 
 filter tree heap memopt load sort verbose 
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE 
 
apriori - find association rules with the apriori algorithm 
version 4.21 (2004.05.09)        (c) 1996-2004   Christian 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 47 of 112 

Borgelt 
set item appearances ...[0 item(s)] done [0.00s]. 
set transactions ...[169 item(s), 9835 transaction(s)] done 
[0.01s]. 
sorting and recoding items ... [13 item(s)] done [0.00s]. 
creating transaction tree ... done [0.00s]. 
checking subsets of size 1 2 done [0.00s]. 
writing ... [13 rule(s)] done [0.00s]. 
creating S4 object  ... done [0.00s]. 
 

With the given significance measures, 13 rules were found. They can be viewed 

via the use of the “inspect()” function, thus: 

> inspect(rules) 

   lhs    rhs                   support confidence lift 
1  {}  => {bottled beer}     0.08052872 0.08052872    1 
2  {}  => {pastry}           0.08896797 0.08896797    1 
3  {}  => {citrus fruit}     0.08276563 0.08276563    1 
4  {}  => {shopping bags}    0.09852567 0.09852567    1 
5  {}  => {sausage}          0.09395018 0.09395018    1 
6  {}  => {bottled water}    0.11052364 0.11052364    1 
7  {}  => {tropical fruit}   0.10493137 0.10493137    1 
8  {}  => {root vegetables}  0.10899847 0.10899847    1 
9  {}  => {soda}             0.17437722 0.17437722    1 
10 {}  => {yogurt}           0.13950178 0.13950178    1 
11 {}  => {rolls/buns}       0.18393493 0.18393493    1 
12 {}  => {other vegetables} 0.19349263 0.19349263    1 
13 {}  => {whole milk}       0.25551601 0.25551601    1 
 

Evaluating the rules, it can be concluded that the item “whole milk” is the most 

“popular” item, as it is found in the 25.55% of the transactions (because it has a 

support value of 0.25551601), which is equal to almost 2513 transactions, out of 

9835. The second most popular item would be the “other vegetables” item, with a 

support of 0.19349263, therefore an appearance in the 19.35% of the 

transactions, equaling almost 1816 transactions. 

Though much can be said about the resulting association rules, the result only 

contains rules with an empty LHS. To make the algorithm mine rules with at least 

one item in both sides, the “minlen” parameter should be set to “2”. Also, in order 

to mine some more rules, the minimum support of each rule will be decreased to 

0.04: 

> rules <-  
+ apriori(Groceries,parameter=list(supp=0.04,conf=0.06, 
+ minlen=2)) 

 
parameter specification: 
 confidence minval smax arem  aval originalSupport support       0.06    
0.1    1 none FALSE            TRUE    0.04      
minlen maxlen target   ext 
     2     10  rules FALSE 
 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 48 of 112 

algorithmic control: 
 filter tree heap memopt load sort verbose 
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE 
 
apriori - find association rules with the apriori algorithm 
version 4.21 (2004.05.09)        (c) 1996-2004   Christian 
Borgelt 
set item appearances ...[0 item(s)] done [0.00s]. 
set transactions ...[169 item(s), 9835 transaction(s)] done 
[0.00s]. 
sorting and recoding items ... [32 item(s)] done [0.00s]. 
creating transaction tree ... done [0.00s]. 
checking subsets of size 1 2 3 done [0.00s]. 
writing ... [18 rule(s)] done [0.00s]. 
creating S4 object  ... done [0.00s]. 
 

In this case, 18 rules were mined: 

   lhs                   rhs                   support confidence      
lift 
1  {tropical fruit}   => {whole milk}       0.04229792  0.4031008 
1.5775950 
2  {whole milk}       => {tropical fruit}   0.04229792  0.1655392 
1.5775950 
3  {root vegetables}  => {other vegetables} 0.04738180  0.4347015 
2.2466049 
4  {other vegetables} => {root vegetables}  0.04738180  0.2448765 
2.2466049 
5  {root vegetables}  => {whole milk}       0.04890696  0.4486940 
1.7560310 
6  {whole milk}       => {root vegetables}  0.04890696  0.1914047 
1.7560310 
7  {soda}             => {whole milk}       0.04006101  0.2297376 
0.8991124 
8  {whole milk}       => {soda}             0.04006101  0.1567847 
0.8991124 
9  {yogurt}           => {other vegetables} 0.04341637  0.3112245 
1.6084566 
10 {other vegetables} => {yogurt}           0.04341637  0.2243826 
1.6084566 
11 {yogurt}           => {whole milk}       0.05602440  0.4016035 
1.5717351 
12 {whole milk}       => {yogurt}           0.05602440  0.2192598 
1.5717351 
13 {rolls/buns}       => {other vegetables} 0.04260295  0.2316197 
1.1970465 
14 {other vegetables} => {rolls/buns}       0.04260295  
0.2201787 1.1970465 
15 {rolls/buns}       => {whole milk}       0.05663447  0.3079049 
1.2050318 
16 {whole milk}       => {rolls/buns}       0.05663447  0.2216474 
1.2050318 
17 {other vegetables} => {whole milk}       0.07483477  0.3867578 
1.5136341 
18 {whole milk}       => {other vegetables} 0.07483477  0.2928770 
1.5136341 
 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 49 of 112 

Observing the rules, it is easily perceived that the most frequent item set is the 

{whole milk, other vegetables} item set, with a support of 0.07483477. Between 

the two, the item that has the highest probability to be included in a transaction if 

the other is included as well is the ”whole milk” item, since the “{other vegetables} 

=> {whole milk}” rule has a confidence value of 0.3867578, which is greater than 

the confidence value of the “{whole milk} => {other vegetables}” (0.2928770). 

Therefore, it is more probable that a transaction containing “other vegetables” will 

also contain “whole milk” than a transaction containing “whole milk” to also contain 

“other vegetables”. 

 

2.3.11 Visualizing the results 

 

Apart from extracting the rules in text form, a really useful feature that R offers is 

the visualization of the resulting association rules, via various graphics. As it has 

already been mentioned, rules can be visualized in histograms, bar charts, pie 

charts, line charts, dot plots, even 3D diagrams. Visualization of association rules 

can be very mind-opening and clarifying, since a visual representation of the rules 

can help pinpoint several aspects that were difficult to see before. 

To perform any kind of association rules visualization, the “arulesViz” package is 

required. The procedure of obtaining, installing and loading “arulesViz” is 

described in chapter 2.3.7 “Package installation in R”. 

Once “arulesViz” has been successfully installed, R is ready to begin visualizing 

the association rules. To begin, the “arulesViz” package should be loaded into the 

memory, via the “library()” function: 

> library(“arulesViz”) 

[output omitted] 
 

The simplest visualization that can be performed is a simple scatter plot. Its x-axis 

will represent the support of the rules, while its y-axis will represent the confidence 

of the rule. 

To plot a scatterplot, the “plot()” function is used, and it is called as follows: 

> plot(<rules.object>) 
 

Thus, continuing the previous example, the “plot()” function will be used to create a 

simple scatterplot of the resulting rules. To clarify, the “rules” object contains 18 

rules having a minimum support of 0.04, a minimum confidence of 0.05, and a 

minimum length of 2. The plotting procedure is the following: 

> plot(rules) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 50 of 112 

 

Figure 2.3.11-1: Visual representation of rules via scatter plot 

 

A scatter plot has been created. Observing it, an extra bar can be seen to the 

right, which contains the lift colorization. According to this bar, each point in the 

scatter plot is colored according to is lift value, therefore each point can represent 

3 different significance measures at the same time – in this case, support, 

confidence and lift. 

To create a scatterplot and choose the measures that the x and y axes will 

represent, the “measure” parameter has to be defined. If, for example, the desired 

measure for the x-axis is “confidence”, and the desired measure for the y-axis is 

“lift”, then the plot function needs to be called thus: 

> plot(rules,measure=c(“confidence”,”lift”)) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 51 of 112 

 
 

Figure 2.3.11-2: Visual representation of rules via scatter plot 

 

Observing the newly created scatter plot, though it is easily perceived that the x 

and y axes measures are indeed “confidence” and “lift”, the lift measure is still 

present in the color bar to the right. As the “lift” measure is already represented by 

the y-axis, its color representation as well is exaggeration. To replace the “lift” 

measure in the color bar with, for example, “support”, the “shading” parameter 

must be adjusted: 

> plot(rules,measure=c("confidence","lift"),shading="support") 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 52 of 112 

 

 

Figure 2.3.11-3: Visual representation of rules via scatter plot 

 

Now the rules are colorized according to their support rather than their lift. 

 

Apart from the simple scatter plot, various other visualization graphs are available 

in the “arulesViz” backage. For example, the rules can be visualized as a matrix: 

> plot(rules,method=”matrix”) 

Itemsets in Antecedent (LHS) 
[1] "{tropical fruit}"   "{whole milk}"       "{root 
vegetables}"  "{other vegetables}" "{soda}"             
"{yogurt}"           "{rolls/buns}"       
Itemsets in Consequent (RHS) 
[1] "{whole milk}"       "{tropical fruit}"   "{other 
vegetables}" "{root vegetables}"  "{soda}"             
"{yogurt}"           "{rolls/buns}"       



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 53 of 112 

 

 

Figure 2.3.11-4: Visual representation of rules via matrix 

 

The matrix graphic plots the antecedent and consequent of the rules. Each axis is 

split into 7 equal parts (1 for each different item contained in the rules set, the item 

order is output in the console), thus the matrix consists of 49 equal parts which 

represent the rules. Each rule is colorized by its support measure, as seen in the 

color bar to the right of the matrix. It is important to note that the numbers in the 

axes represent different items in each axis – for example, number 4 in the x-axis 

could stand for {whole milk} while number 4 in the y-axis could stand for {root 

vegetables}. 

One great feature of the “plot()” function is the “interactive” parameter, which, if set 

to TRUE, allows the user to use the mouse and click various points of the graphic, 

each click causing information about the clicked rule to be displayed. 

 

The rules can be also visualized as groups, using the “grouped” method: 

> plot(rules,method=”grouped”) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 54 of 112 

 
Figure 2.3.11-5: Visual representation of rules via groups 

 

The “grouped” method generates a group graph, where each rule is presented by 

a circle (or disk) as a group (similarly to mathematical groups). The size of the 

circle/disc represents the rule‟s support value, while the circle/disc color 

represents the rule‟s lift (the represented measures can be seen in the top-right 

corner of the graph). 

 

Finally, the “matrix3D” method will be demonstrated, where the rules are 

represented in a three-dimensional graph: 

> plot(rules,method=”matrix3d”) 

Itemsets in Antecedent (LHS) 
[1] "{tropical fruit}"   "{whole milk}"       "{root 
vegetables}"  "{other vegetables}" "{soda}"              
"{yogurt}"           "{rolls/buns}"       
Itemsets in Consequent (RHS) 
[1] "{whole milk}"       "{tropical fruit}"   "{other 
vegetables}" "{root vegetables}"  "{soda}"             
"{yogurt}"           "{rolls/buns}"       



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 55 of 112 

 

Figure 2.3.11-6: Visual representation of rules via 3D matrix 

 

The “matrix3d” method creates a three-dimensional rectangle. The x and y axes 

once again represent the antecedent and consequent of the rules, while the z-axis 

represents the support of each rule. The “measure” parameter can be used in the 

“matrix3d” graphic as well to adjust the measure being represented by the z-axis. 

 

As a conclusion, it is important to note that all of the plotting methods can be 

modified and adjusted at will, using the “measure” and “shading” parameters as 

previously described. 

 

2.3.12 Storing the results 

 

Once having successfully mined the association rules, the next prudent step one 

would take is to store them somewhere, in order for them to be available after the 

current R session has ended. The possible storage solutions vary: one could 

either save the results to a file, or export them to another statistical analysis 

system, or store them on a remote server over a network connection, or insert 

them into a database. In this thesis, the approaches covered are exporting the 

resulting rules to a file, and writing them to a database. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 56 of 112 

To write the results in a database, a connection to the database has to be made 

by R, and then the appropriate queries must be submitted to the database by R 

through this connection, in order for the rules to be stored as desired.  

Communicating with a database from R will be covered in more detail in the next 

chapter. 

To save the resulting rules to a file, the typical procedure that should be followed 

is: 

 Conversion of the rules to a format appropriate for exporting to a file 

 Creating the file 

When exporting the rules, the resulting object is an object of the “rules” class, 

which is an “S4” class, part of the “arules” package. The goal is for this object to 

be converted to a format suitable for exporting to a file – a data fame, for example. 

To convert (or, to use R‟s terminology, “coerce”) a “rules” object to a data frame, a 

function from the “as” family has to be used. The “as” functions family is a set of 

functions used for converting (“or coercing”) objects from one type to another. 

Usually, the name of the function implies the returned object type – for example, 

the “as.factor()” function will convert / coerce an object into a factor (and return it, 

of course). 

Hence, to convert a “rules” object to a data frame, the function that must be used 

is the “as()” function. It is important at this point to mention that “S4” class objects 

(like the ones originating from the “arules” package) may not comply with the “as()” 

family functions, and can be successfully converted only by using the “as()” 

function, specifying the target object type as a parameter to it. Therefore, the 

appropriate function call to convert a “rules” object to a data frame would be the 

following: 

> as(<rules.object>,”data.frame”) 
 

Consequently, continuing the previous example, to convert the resulting 

association rules to a data frame, the appropriate command to be issued is: 

> df <- as(rules,”data.frame”) 
> df 

                      rules    support confidence lift 
1      {} => {bottled beer} 0.08052872 0.08052872    1 
2            {} => {pastry} 0.08896797 0.08896797    1 
3      {} => {citrus fruit} 0.08276563 0.08276563    1 
4     {} => {shopping bags} 0.09852567 0.09852567    1 
5           {} => {sausage} 0.09395018 0.09395018    1 
6     {} => {bottled water} 0.11052364 0.11052364    1 
7    {} => {tropical fruit} 0.10493137 0.10493137    1 
8   {} => {root vegetables} 0.10899847 0.10899847    1 
9              {} => {soda} 0.17437722 0.17437722    1 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 57 of 112 

10           {} => {yogurt} 0.13950178 0.13950178    1 
11       {} => {rolls/buns} 0.18393493 0.18393493    1 
12 {} => {other vegetables} 0.19349263 0.19349263    1 
13       {} => {whole milk} 0.25551601 0.25551601    1 
 

The resulting rules have now been stored into the “df” object, which is a data 

frame: 

> class(df) 

[1] "data.frame" 
 

The association rules are now ready to be written into a file. For maximum 

compatibility, the rules will be stored in a csv file. The function that will accomplish 

this is the “write.table()” function, the parameters that need to be specified are the 

“file” parameter – indicates the destination file – and the “sep” parameter – defines 

the delimiter character that the function will use to separate entries. An extra 

parameter that may be useful to specify is the “row.names” parameter, which, if 

set to TRUE, adds an extra column to the output file which contains the row 

names – a feature that may not be desirable in many cases as this column is 

treated like any of the rest, thus the resulting file will have one column more than 

intended. Finally, the appropriate command required is the following: 

> write.table(df,file=”targetfile.csv”,sep=”,”) 
 

 

2.4 Classification 

2.4.1 Description 

 

Another widely used method in the data mining field is the well-known 

“classification” method.  Classification refers to the process of automatically 

building a model that can classify a class of objects, based on an already 

classified set of data, which can then correctly classify future objects according to 

a “class attribute”. A class attribute is the attribute on which the classification of the 

data will be based. In other words, it could be said that classification is a process 

of data generalization, according to various criteria. 

Consequently, the classification method is a two-phase procedure: 

During the first phase, a set of data is used to build a classification model. This set 

of data is already correctly classified according to a desired attribute, and as such 

it is used by the model in order for it to “learn how to classify”. Such a dataset is 

called a “training dataset”, and such a process is called “supervised learning”.  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 58 of 112 

During the second phase, new, unknown data is provided to the classification 

model, and the model tries to correctly classify this data using the knowledge 

acquired by the classification of the training dataset. 

To make things clearer, a short example shall be demonstrated: 

Supposedly, it is the desire of a doctor to build a classification model which 

correctly diagnoses what the symptoms of various patients mean, in order to 

define the malady which they have been afflicted by. In order to build such a 

model, the doctor will need to supply a training dataset to train the model, which in 

this case can be a dataset containing records of past patients whose symptoms 

were correctly identified and diagnosed. Once the model has been trained, the 

doctor can begin using it to classify new patients. 

It is very important at this point to note that, although the classification models are 

trained using correctly classified data, the classification of the new data is 

nevertheless not always 100% correct, since it is merely based on the statistical 

outcome of the training data set. Therefore, a classification model should never be 

the only clue which a decision is based on, especially in such cases that involve 

medical risk and as such cannot afford an incorrect classification / diagnosis. 

Unless, of course, it is the only clue available – when trying to predict unknown, 

future behaviors, for example. 

 

2.4.2 A few words about supervised learning 

 

Supervised learning is the machine learning task of inferring a function from 

labeled training data. The training data consist of a set of training examples. In 

supervised learning, each example is a pair consisting of an input object (typically 

a vector) and a desired output value (also called the supervisory signal). A 

supervised learning algorithm analyzes the training data and produces an inferred 

function, which can be used for mapping new examples. An optimal scenario will 

allow for the algorithm to correctly determine the class labels for unseen instances. 

This requires the learning algorithm to generalize from the training data to unseen 

situations in a "reasonable" way [25]. 

 

2.4.3 Uses / applications 

 

Classification is one of the most widely used data mining methods in business, 

science, medical, and other major fields, for behaviors predicting, marketing 

trends, treatment effectiveness analysis, etcetera. 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 59 of 112 

2.4.4 Classification versus prediction 

 

It is important to distinguish the term “classification” from the term “prediction”. 

Classification refers to the categorization of existing, known data, data that it is 

desirable that it be categorized. Prediction, on the other hand, refers to the 

production of data that is unknown, based on a classification model, in order to 

predict future trends – for example, the outcome of a patient‟s treatment. 

It is not inadvisable that a classification model is used for the prediction of future 

data, but it is important to keep in mind the difference of classifying existing data 

and predicting new data, using the same classification model. 

 

2.4.5 The C4.5 algorithm 

 

Classifier constructing systems are among the commonly used tools in data 

mining. Such systems accept a collection of cases as an input, where each case 

belongs to a class and is described by its values for a pre-defined set of attributes, 

and produce a classifier which can accurately predict the class to which a new 

case belongs. The “C4.5” algorithm generates classifiers expressed as decision 

trees - though it can also construct classifiers in more comprehensible rule set 

form [4]. 

Decision trees are trees that classify cases by sorting them based on their 

attributes‟ values. Each node of the tree contains an attribute, each branch of the 

node represents the possible outcomes of this attribute, and each leaf represents 

the decision taken about the case being examined after all attributes have been 

computed. For example, if the attribute selected is “Unemployed”, and the possible 

outcomes of this attribute are “Yes” and “No”, a node will be created for each 

outcome, which will contain the name of the next attribute to be processed. The 

procedure will then be repeated for that attribute, as many times as the different 

outcomes of the previous node attribute (thus, in this case, 2 times – one for the 

“Yes” outcome and one for the “No” outcome). If there are no more attributes to be 

processed, a leaf is created, containing the final decision made for the case. 

Nodes and leaves are also called decision nodes and leaf nodes, respectively. 

 

2.4.6 Classification in R – required packages 

 

Unfortunately, R does not have any built-in implementation for performing data 

classification. Thus, to perform data classification in R, extension packages need 

to be installed.  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 60 of 112 

For the sakes of this thesis‟s examples and case studies, the packages “RWeka” 

and “party” were used. The package “RWeka” was built by the “Weka” project 

team, and provides an R interface to Weka, via which Weka‟s implementation of 

the C4.5 algorithm – called J48, which is the C4.5 algorithm implementation in 

Java – is available to R. Weka is a collection of machine learning algorithms for 

data mining tasks written in Java, containing tools for data pre-processing, 

classification, regression, clustering, association rules, and visualization. 

To install the packages mentioned above, the following commands need to be 

issued: 

> install.packages(“RWeka”) 
> install.packages(“party”) 
 

Package installation in R is described in more detail in chapter 2.3.7 “Package 

installation in R”. 

 

2.4.7 Using the C4.5 algorithm in R 

 

After successfully installing the packages, they need to be loaded into R using the 

“library()” function: 

> library(“RWeka”) 
> library(“party”) 
 

The procedure of loading a package into R and the usage of the “library()” function 

are described in more detail in chapter 2.3.8 “Verification of a package installation 

in R”. 

Once successfully loading the packages, R is ready to begin the classification of a 

supplied dataset. For the sakes of this example, the dataset 'IRIS' from package 

'datasets' will be used. It consists of 50 objects from each of three species of Iris 

flowers (Setosa, Virginica and Versicolor). For each object four attributes are 

measured length and width of sepal and petal. The “iris” dataset is contained in a 

data frame object, which structure consists of four columns of class “numeric”, 

which contain the observations for the Iris flowers‟ petals and sepals, and one 

column of class “factor”, which contains the Iris species each flower belongs to. 

 

2.4.8 Building a decision tree 

 

To build a decision tree using the C4.5 / J48 algorithm, the “J48()” function should 

be used. The function‟s parameters are: “formula” - a symbolic description of the 

model to be fit (in most cases, this consists of a factor which contains the values 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 61 of 112 

into which the dataset objects will be classified, and the names of the attributes 

which the dataset objects will be classified by), “data” – an optional data frame 

containing the variables in the model (in most cases, this is the dataset that 

contains the data to be classified, or a training data set), “subset” - an optional 

vector specifying a subset of observations to be used in the fitting process, 

“na.action” - a function which indicates what should happen when the data contain 

NAs, “control” - an object of class Weka_control giving options to be passed to the 

Weka learner, and “options” - a named list of further options, or NULL (default). 

The use of the “J48()” function to build a decision tree for the “iris” dataset using 

the default parameters is demonstrated bellow: 

> m1 <- J48(Species~., data=iris) 
 

The function is called setting the “data” parameter to “iris”, thus instructing the 

algorithm that the dataset to classify is the “iris” dataset, and the “formula” 

parameter as “Species~.”, thus instructing the algorithm that the attribute that is 

desired to be predicted is the “Species” attribute, that the final outcome should be 

a categorization of the dataset objects by Species. 

It is also important to note the use of the “~.” characters in the “formula” 

parameter. The formula parameter, as mentioned before, instructs the algorithm 

about two different things: the first is the attribute which the objects will be 

classified as, and the second is the attributes which the objects will be classified 

by. These two attribute sets are separated by the “~” (tilde) character: The 

classification result attribute factor is placed before the tilde, and the classification 

attributes for the algorithm to take into account are placed after the tilde, separated 

using the “+” (plus) character. For example, if it was desirable that the objects 

were classified only regarding their sepal width and length, then the appropriate 

function call would be: 

> m1 <- J48(Species ~ Sepal.Length + Sepal.Width, data=iris) 
 

The rest of the “J48()” function parameters can be specified at will, depending on 

the desirable outcome of the algorithm. For example, the “control” parameter 

accepts a “Weka_control” object, which can set any of the options that Weka 

provides when building a decision tree. Some of the available options are the “M” 

option, which specifies the minimum number of instances per leaf that should be 

met, or the “U” option, which specifies whether the resulting tree will be unpruned. 

Two more options that can be useful when building a decision tree are the “t” 

option, which is used to specify a training dataset to be used (in “arff” format), and 

the “T” option, which is used to specify some test data to be used (in “arff” format). 

The above control options are passed to the “J48()” function as follows: 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 62 of 112 

> m1 <- J48(Species~., data=iris,  
+ control=Weka_control(M=2,U=T)) 
 

 

2.4.9 Pruning a decision tree 

 

One of the questions that arise in a decision tree algorithm is the optimal size of 

the final tree. A tree that is too large takes the risk of overfitting the training data 

and thus poorly generalizing the new data. On the other hand, a tree that is too 

small may miss important structural information about the sample space. However, 

it is hard to define the point at which a decision tree algorithm should stop, 

because it is impossible to predict if the addition of one extra node will dramatically 

decrease error. This problem is known as the horizon effect. A common 

workaround is to let the tree grow until each node contains a small number of 

instances, and then use pruning to remove nodes that do not provide additional 

information. 

Pruning is a technique in machine learning that reduces the size of decision trees 

by removing sections of the tree that provide little power to classify instances. The 

dual goal of pruning is reduced complexity of the final classifier as well as better 

predictive accuracy by the reduction of overfitting and removal of sections of a 

classifier that may be based on noisy or erroneous data [22]. 

In short, pruning a decision tree refers to the process of removing nodes and 

leaves of the tree that provide little or incorrect information – or no information at 

all. Pruning is based on certain criteria that the about-to-be-pruned nodes or 

leaves do not meet, such as the number of instances they hold (a node / leaf will 

not be partitioned further if the number of instances it holds is below a certain 

threshold), or their purity (a node / leaf will not be partitioned further if all induced 

splittings yield no significant impurity reduction). These criteria, though, need to be 

chosen very carefully, as a really low minimum of allowed instances per node / leaf 

will result in an oversized tree, whereas a really high threshold will cause the 

algorithm to omit useful splittings. 

In R, to instruct the algorithm to apply pruning on a tree, the “U” parameter 

(“Unpruned”) must be set to true. “U” is a Weka parameter, therefore it needs to be 

placed in the “control” parameter of the algorithm, thus: 

> m1 <- J48(Species~., data=iris, control=Weka_control(U=T)) 
 

Other (Weka) parameters devoted to the pruning control of the tree are the “C” 

parameter (“Confidence”), which is used to set a confidence threshold for pruning, 

or the “R” parameter (“Reduced”), which is used for reduced error pruning. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 63 of 112 

In general, pruning should reduce the size of a decision tree without reducing 

predictive accuracy as measured by a test set or using cross-validation. 

 

2.4.10 Visualizing the results 

 

After successfully building a decision tree using the “J48()” function, the resulting 

tree can be visually represented either in text form, where the tree structure is 

represented only by text, or in a graph form, where the tree is represented by a 

typical node graph. 

The tree can be visualized in text form by its R object name: 

> m1 <- J48(Species~., data=iris, control=Weka_control(U=T)) 
> m1 

J48 unpruned tree 
------------------ 
 
Petal.Width <= 0.6: setosa (50.0) 
Petal.Width > 0.6 
|   Petal.Width <= 1.7 
|   |   Petal.Length <= 4.9: versicolor (48.0/1.0) 
|   |   Petal.Length > 4.9 
|   |   |   Petal.Width <= 1.5: virginica (3.0) 
|   |   |   Petal.Width > 1.5: versicolor (3.0/1.0) 
|   Petal.Width > 1.7: virginica (46.0/1.0) 
 
Number of Leaves  :  5 
 
Size of the tree :  9 
 

As is easily perceived by this output, the root node of the tree is the “Petal.Width” 

attribute. All observations whose “Petal.Width” attribute value is less than or equal 

to 0.6 are classified as “setosa”. The rest are divided further, again by their 

“Petal.Width” – the ones that have a “Petal.Width” attribute value greater than 1.7 

are classified as “virginica” and the rest are once more divided, this time by their 

“Petal.Length” attribute. The ones with a “Petal.Width” attribute value less than 4.9 

are classified as “versicolor” and the rest are divided for the final time according to 

their “Petal.Width” attribute once again – the ones with a value less than or equal 

to 1.5 are classified as “virginica”, and the ones with a value greater than 1.5 are 

classified as “versicolor”. 

The resulting leaves are 5 in total, which means that the dataset observations can 

be grouped into five different “teams”, the attributes of each team having certain 

similarities with each other – for example, similar petal widths, or similar sepal 

lengths. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 64 of 112 

The attribute that was chosen by the algorithm to be the root node of the tree is 

the “Petal.Width” attribute. The reason behind this choice is found in what is called 

information gain. 

Information gain is a concept that measures the amount of information contained 

in a set of data. It gives the idea of importance of an attribute in a dataset. It is the 

mathematical tool that algorithm J48 uses to decide which variable fits better in 

each tree node, in terms of target variable prediction. 

The information gain calculation will answer the question of why the algorithm has 

decided to start with attribute “Petal.Width”. Information gain is calculated by the 

function “information.gain()”, included in the “FSelector” package: 

> library(“FSelector”) 
> information.gain(Species~.,data=iris) 

             attr_importance 
Sepal.Length       0.6522837 
Sepal.Width        0.3855963 
Petal.Length       1.3565450 
Petal.Width        1.3784027 
 

From the above output, it is easily perceived that the “Petal.Width” attribute is the 

one that has the highest information gain (1.3784027), and as such it is chosen by 

the J48 algorithm to be the root node of the decision tree. 

The same process is performed for each of the tree nodes. For example, once the 

root node has been set, every observation with a “Petal.Width” attribute value less 

than or equal to 0.6 is classified as “setosa” and the rest of the observations are to 

be further divided. Thus, the calculation of the second tree node is performed for a 

subset of the dataset – the one which includes only the observations that have not 

yet been classified: 

> subset <- subset(iris, Petal.Width > 0.6) 
> information.gain(Species~., data = subset) 

             attr_importance 
Sepal.Length       0.1605000 
Sepal.Width        0.0000000 
Petal.Length       0.6573738 
Petal.Width        0.6901604 
 

Observing the output above, it can be concluded that the “Petal.Width” attribute 

has again the highest information gain, and as such it will be the attribute chosen 

to inhabit the second tree node. 

 

Further on, to view the classification details and the confusion matrix of the 

constructed tree, the “summary()” function must be used: 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 65 of 112 

> summary(m1) 

=== Summary === 
 
Correctly Classified Instances         147               98      
% 
Incorrectly Classified Instances         3                2      % 
Kappa statistic                          0.97   
Mean absolute error                      0.0233 
Root mean squared error                  0.108  
Relative absolute error                  5.2482 % 
Root relative squared error             22.9089 % 
Coverage of cases (0.95 level)          98.6667 % 
Mean rel. region size (0.95 level)      34      % 
Total Number of Instances              150      
 
=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 50  0  0 |  a = setosa 
  0 49  1 |  b = versicolor 
  0  2 48 |  c = virginica 
 

The confusion matrix (also known as a contingency table or an error matrix) of a 

decision tree is a visual representation of the algorithm‟s performance in 

classifying the observations in the dataset. Its columns represent the classes into 

which the instances were classified, while its rows represent the classes to which 

the instances actually belong. Observation of the confusion matrix of a decision 

tree can provide knowledge about the accuracy of the algorithm‟s classification. 

For instance, observing the above output, it is perceivable that all of the 

observations that belong to the “setosa” class (represented by “a”) were correctly 

classified as belonging to that class, whereas the observations belonging to the 

“versicolor” class (represented by “b”) were not all classified correctly – one 

observation was classified as belonging to the “virginica” class. Similarly, two of 

the observations that belong to the “virginica” class (represented my “c”) were 

incorrectly classified as belonging to the “versicolor” class. Thus, the error 

percentage of the algorithm in this decision tree construction was 3/150 = 0.02 = 

2%. 

  

To visualize the resulting tree in a graph form, the “plot()” function needs be used. 

There are two types which the tree can be visualized as, specified by the “type” 

parameter – the “simple” type, which does not display all of the resulting leaves‟ 

details, and the “extended” type, which displays every detail and is the default 

setting. The “plot()” function needs to be used thus: 

> plot(m1) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 66 of 112 

 

Figure 2.4.10-1: Visual representation of the decision tree 

 

2.5 Conclusion 

 

In this chapter the data mining scope of R was introduced and detailed. Taking 

advantage of the wide extensionality possibilities range of R, the installation and 

use of external packages was described, along with two data mining examples. 

Clearly, R‟s data mining capabilities are vast – with just three or four commands it 

is possible to mine association rules or build decision trees. The storage location 

of the resulting association rules and decision trees, except from files, can also be 

a database – an option which provides more security, contributes in the data 

availability, and is generally preferable to storing data mining results in files. R‟s 

communication capabilities with a DBMS are described in the next chapter. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 67 of 112 

3. R to DBMS Connectivity 

3.1 Introduction 

 

A DBMS – Database Management System – is a specifically designed application 

to allow a user to manipulate and interact with a database. According to Wikipedia: 

Database management systems (DBMSs) are specially designed applications that 

interact with the user, other applications, and the database itself to capture and 

analyze data. A general-purpose database management system (DBMS) is a 

software system designed to allow the definition, creation, querying, update, and 

administration of databases [18]. 

Though DBMSs are very powerful and offer lots of features and database 

management tools, a typical DBMS has very limited numerical and statistical 

features. Metrics like quantiles and medians, easily calculated in a statistical 

analysis system, require complex and sophisticated SQL queries in order to be 

calculated in a DBMS. What is more, the numerical algorithms that use the basic 

SQL aggregate functions in order to perform statistical tasks do not have 

implementations to ensure numerical accuracy, and the wide range of the SQL 

data types may cause unexpected numerical roundings and errors when 

converting numbers from one type to another. For these reasons, it is preferable in 

most cases that statistical analysis (and in this case, data mining) tasks be 

performed in a statistical analysis software package, rather than a DBMS. 

This approach, however, introduces a compatibility issue, with regard to the data 

transferability: The data originating from the DBMS needs to somehow be 

transferred to the statistical analysis / data mining system. For this to be achieved, 

the data has to be exported by the DBMS in a way that is recognizable by the 

destination system – thus the DBMS needs to be able to export data in such a way 

– and then be imported in the destination system. This approach arises many 

issues that need to be taken into account, such as possible data alteration that 

may occur due to the export - import process, and, most importantly, the 

dependency of the whole process on the DBMS‟s capability to export the data in a 

format readable by the destination system. 

In order to avoid having to go through all of these issues and to minimize the risk 

of a data integrity alternation, an alternative approach to the manner would be to 

fetch the data required directly from the DBMS into the destination system, without 

having to go through the export – import process at all. And thankfully, R provides 

all the tools needed for the job. 

 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 68 of 112 

3.2 Required packages 

 

In order to be able to connect to a database from within the R environment, 

extension packages need to be installed. There is a separate package for almost 

every DBMS that R supports, due to the fact that each DBMS requires a different 

communication interface implementation. Most of the packages, however, depend 

on a base package, the “DBI” package, which contains an interface definition for 

communication between R and DBMS‟s – i.e. virtual / abstract classes, which 

need to be accordingly extended by the various DBMS communication package 

implementations. 

The DBMSs that will be covered in this thesis are “MySQL” and “PostgreSQL”. 

The required package for R to communicate with a MySQL DBMS is the 

“RMySQL” package, while the package required for R to communicate with a 

PostgreSQL DBMS is the “RPostgreSQL” package. Both are available from the 

CRAN package repository, and instructions regarding their installation can be 

found in chapter 2.3.7 “Package installation in R”. 

 

3.3 MySQL 

3.3.1 A short history of MySQL 

 

MySQL is (as of July 2013) the world's second most widely used open-source 

relational database management system (RDBMS) [20]. 

It was created by a Swedish company, MySQL AB, founded by David Axmark, 

Allan Larsson and Michael "Monty" Widenius. The first version of MySQL 

appeared on 23 May 1995. It was initially created for personal usage from mSQL 

based on the low-level language ISAM, which the creators considered too slow 

and inflexible. They created a new SQL interface, while keeping the same API as 

mSQL.  

In January 2008, Sun Microsystems bought MySQL for $1 billion, and in April 

2009, Oracle Corporation entered into an agreement to purchase Sun 

Microsystems, then owners of MySQL copyright and trademark. 

In August 2012, TechCrunch's Alex Williams reported that Oracle was holding 

back MySQL Server test cases, a move that he concluded indicated that Oracle is 

attempting to kill the product. Since the final quarter of 2012, several Linux 

distributions and some important users (like Wikipedia and Google) started to 

replace MySQL with MariaDB [20]. 

 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 69 of 112 

3.3.2 Connecting R to MySQL 

 

To connect from R to a MySQL DBMS, one should go through a procedure like the 

following: 

 Install the “DBI” and “RMySQL” packages to R 

 Load both packages 

 Create a “MySQLDriver” object 

 Create a “MySQLConnection” object 

After installing the “DBI” and “RMySQL” packages, they need to be loaded: 

> library(“RMySQL”) 

Loading required package: DBI 
 

If the above output is displayed, the packages have been successfully loaded into 

R. 

Next, a “MySQLDriver” object needs to be created, which specifies the 

communication interface that is going to be utilized, via the “dbDriver()” function. In 

this case, the target system is a MySQL DBMS, so the driver to be instantiated 

should be the driver for communicating with a MySQL DBMS, which is called 

“MySQL”: 

> drv <- dbDriver("MySQL") 
> drv 

<MySQLDriver:(1921)> 
 

Once a driver object has been successfully created (i.e. an output like the above is 

displayed, and no errors come up), the system is ready to initiate a connection to 

the MySQL DBMS. For this, a “MySQLConnection” object needs to be created, 

using the “dbConnect()” function. The function parameters are: “host”, which 

specifies the database server (if not specified, it is assigned the default value of 

“localhost”), “dbname”, which defines the target database, “user”, which defines 

the database username, and “password”, which defines the user‟s password: 

> con <- dbConnect(drv,dbname="testdb",user="root", 
+ password="",host=”localhost”) 
> con 

<MySQLConnection:(1921,2)> 
 

In the case an output like the one above is displayed, the connection to the 

MySQL DBMS has succeeded, and R is now ready to send SQL queries to it and 

fetch data from it. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 70 of 112 

3.3.3 Issuing MySQL queries from R 

 

To issue a MySQL query to the MySQL DBMS from R, a variety of functions are 

available by the “DBI” package. Some of the most basic functions are the 

following: 

 dbWriteTable – Create a new remote table in the target database. 

 dbRemoveTable() – Drop a remote table.dbListTables() – List remote 

tables, fields of a remote table, opened connections and pending 

statements in a connection. 

 dbListFields () – List the fields of a remote table 

 dbExistsTable() – Check whether a remote table in the database exists. 

 dbSendQuery() – Submits and executes an arbitrary SQL statement on a 

specific connection. Also, clears (closes) a result set. 

 dbGetQuery() - Submits and executes an arbitrary SQL statement on a 

specific connection, and fetches the result. Also, clears (closes) a result set. 

 dbCommit() – Commit SQL transactions. (provided that the target system‟s 

MySQL version supports the transactions management feature). 

 dbRollback() – Rollback SQL transactions (provided that the target system‟s 

MySQL version supports the transactions management feature). 

 

The following examples demonstrate the basic usage of some of the above 

functions: 

– Create a new remote table using “dbWriteTable()”. Parameters: the database 

connection, the name of the table, and a data frame (or an object coercible to a 

data frame) which contains the table‟s rows. 

> table.contents <-  
+ data.frame(id=c(1,2,3),name=c("John","Mary","Jane")) 
> dbWriteTable(con,name="mytable",value=table.contents) 

[1] TRUE 
 

– Drop the table: 

> dbRemoveTable(con,"mytable") 

[1] TRUE 
 

– List the fields of the table: 

> dbListFields(con,"mytable") 

[1] "row.names" "id"        "name" 
 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 71 of 112 

Though the fields specified upon the creation of the table were “id” and “name”, 

the table has been created with an extra field named “row_names”, which contains 

the row names of the table. Creating a “row_names” field is the default behavior of 

the “dbWriteTable()” function, and if such a field is not desirable, the 

“dbWriteTable()” function should be called with the parameter “row.names” set to 

FALSE, thus: 

> dbRemoveTable(con,”mytable”) 
> dbWriteTable(con,name="mytable",value=table.contents, 
+ row.names=FALSE) 

[1] TRUE 
 

– Check if a remote table exists: 

> dbExistsTable(con,”mytable”) 

[1] TRUE 
 

– Submit an SQL query: 

> res <- dbSendQuery(con,”INSERT INTO mytable(id,name)  
+ VALUES(2,‟George‟)”) 
> res 

<MySQLResult:(1921,2,59)> 
 

The result of the “dbSendQuery()” function should always be stored in an object, in 

order to be able to use it to fetch the result records or close the result set. 

– Submit an SQL query, and also fetch the result: 

> dbGetQuery(con,"SELECT * FROM mytable") 

  id name 
1  1 John 
2  2 Mary 
3  3 Jane 
 

The “dbGetQuery()” function sends a query to the DBMS and also fetches the 

result set back (as opposed to “dbSendQuery()”, which only sends the query to the 

DBMS). If the query is not a query that will produce a result set (for example, an 

INSERT or an UPDATE statement), then the returned result set will be NULL. 

 

 

Contrary to sending information to a MySQL database, the procedure to fetch 

information from it implies the use of some of the following functions: 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 72 of 112 

 dbReadTable() – Reads a remote table. 

 fetch() – Fetches records from a result set. 

 dbGetStatement() – Returns the statement that produced a result set. 

 dbGetRowCount() – Returns the number of rows fetched from a result set. 

 dbGetRowsAffected() – Returns the number of the affected rows of a 

statement. 

 dbColumnInfo() – Returns the result set data types. 

 dbHasCompleted() – Returns TRUE if are there more rows to fetch from a 

result set, false if there are not. 

 

The following examples give an idea of the basic usage of some of the above 

functions: 

– Read the newly created table‟s contents using “dbReadTable()”: 

> dbReadTable(con,“mytable”) 

  id name 
1  1 John 
2  2 Mary 
3  3 Jane 
 

– Get the statement that produced a result set: 

> res <- dbSendQuery(con,"DELETE FROM mytable WHERE id=5") 
> dbGetStatement(res) 

[1] "DELETE FROM mytable WHERE id=5" 
 

– Get the number of rows fetched: 

> res <- dbSendQuery(con,"SELECT * FROM mytable") 
> fetch(res,-1) 
> dbGetRowCount(res) 

[1] 3 

 

3.3.4 Fetching information from a MySQL database to R 

 

Given such a wide range of available database handling functions, what is left to 

discuss is how can the information fetched from a database be stored somewhere 

(for example, in an R object) so that it can be further manipulated by the statistical 

analysis / data mining system. 

Most of the functions mentioned above return any fetched data from the DBMS as 

a data frame. Therefore, pretty much any information fetched from a DBMS can be 

stored in a data frame, and thus be further manipulatable by R. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 73 of 112 

Below is a small example demonstrating the procedure of connecting to a MySQL 

DBMS, fetching information from a database and storing it into an R data frame: 

> library(“RMySQL”) 
> drv <- dbDriver("MySQL") 
> con <- dbConnect(drv,db="testdb",user="root",password="") 
> res <- dbGetQuery(con,”SELECT * FROM mytable”) 
> class(res) 

[1] "data.frame" 

> res 

  id name 
1  1 John 
2  2 Mary 
3  3 Jane 
 

Thus, the contents of the remote table “mytable” are now stored in the object “res”. 

 

3.4 PostgreSQL 

 

PostgreSQL, often simply Postgres, is an open source object-relational database 

management system (ORDBMS) with an emphasis on extensibility and standards 

compliance. It is released under the PostgreSQL License, a free/open source 

software license. PostgreSQL is developed by the PostgreSQL Global 

Development Group. It implements the majority of the SQL:2011 standard, is 

ACID-compliant, is fully transactional (including all DDL statements), has 

extensible updateable views, data types, operators, index methods, functions, 

aggregates, procedural languages, and has a large number of extensions written 

by third parties. PostgreSQL is available for many platforms including Linux, 

FreeBSD, Solaris, Microsoft Windows and Mac OS X [21]. 

 

3.4.1 A short history of PostgreSQL 

 

PostgreSQL evolved from the Ingres project at the University of California, 

Berkeley. In 1982, the project leader, Michael Stonebraker, left Berkeley to make a 

proprietary version of Ingres. He returned to Berkeley in 1985 and started a post-

Ingres project to address the problems with contemporary database systems that 

had become increasingly clear during the early 1980s. The new project, 

POSTGRES, aimed to add the fewest features needed to completely support 

types. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 74 of 112 

In 1994, Berkeley graduate students Andrew Yu and Jolly Chen replaced the 

Ingres-based QUEL query language interpreter with one for the SQL query 

language, creating Postgres95. The code was released on the web. 

In July 1996, Marc Fournier at Hub.Org Networking Services provided the first 

non-university development server for the open-source development effort. Along 

with Bruce Momjian and Vadim B. Mikheev, work began to stabilize the code 

inherited from Berkeley. The first open-source version was released on August 1, 

1996. 

In 1996, the project was renamed to PostgreSQL to reflect its support for SQL. 

The first PostgreSQL release formed version 6.0 in January 1997. Since then, the 

software has been maintained by a group of database developers and volunteers 

around the world, coordinating via the Internet. 

The PostgreSQL project continues to make major releases (approximately 

annually) and minor "bugfix" releases, all available under the same license. Code 

comes from contributions from proprietary vendors, support companies, and open-

source programmers at large [21]. 

 

3.4.2 Connecting R to PostgreSQL 

 

The procedure of connecting to a PostgreSQL DBMS from R is identical to the 

procedure that should be followed to connect to a MySQL DBMS from R, 

described in chapter 3.3.2 “Connecting R to MySQL”, differing only in that the 

driver that needs to be instantiated for the database connection is the 

“RPostgreSQL” driver, instead of the “MySQL” one. Apart from that, the procedure 

is the same: 

> drv <- dbDriver("PostgreSQL") 
> con <- dbConnect(drv,db="testdb",user="root",password="", 
+ host=”localhost”) 
 

3.4.3 Issuing queries to a PostgreSQL DBMS from R 

 

Since all of the R database querying functions are part of the “DBI” package, 

which both “RMySQL” and “RPostgreSQL” packages depend on, the functions 

used and the way they are meant to be used are identical, either querying a 

MySQL DBMS, or querying a PostgreSQL DBMS. Therefore, the procedure of 

issuing queries to a PostgreSQL DBMS from R is identical to that of issuing 

queries to a MySQL DBMS from R, described in chapter 3.3.3 “Issuing MySQL 

queries from R”. 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 75 of 112 

3.4.4 Fetching information from a PostgreSQL database to R 

 

The R functions used for fetching data from a DBMS are also part of the “DBI” 

package, on which, as mentioned before, the packages “RMySQL” and 

“RPostgreSQL” depend. Consequently, fetching information from a PostgreSQL 

DBMS to R is identical to fetching information from a MySQL DBMS to R, 

described in chapter 3.3.4 “Fetching information from a MySQL database to R”. 

Below is a small example demonstrating the procedure of connecting to a 

PostgreSQL DBMS, fetching information from a database and storing it into an R 

data frame: 

> library(“RPostgreSQL”) 
> drv <- dbDriver("PostgreSQL ") 
> con <- dbConnect(drv,db="testdb",user="postgres", 
+ password="") 
> res <- dbGetQuery(con,”SELECT * FROM mytable”) 
> class(res) 

[1] "data.frame" 

> res 

  id name 
1  1 John 
2  2 Mary 
3  3 Jane 

 

3.4.5 Conclusion 

 

It can easily be concluded that R is perfectly capable of sufficiently handling the 

communication with a DBMS, as it provides functions for all of the major 

operations of a DBMS – using only two extension packages and three commands, 

R is set up and ready to communicate with a DBMS. With this information in mind, 

the system on which the case studies for the sakes of this thesis were conducted 

will be set up, a process described in the next chapter. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 76 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 77 of 112 

4. R installation to the dbTech.net Virtual Machine 

4.1 Introduction and purpose 

 

In this chapter, the setting up of the system on which the case studies for the 

sakes of this thesis were conducted will be described. The software that will finally 

be present in the system is: 

 Debian Linux, version 6.0.7 (Squeeze), Kernel Version 2.6.32-5-686 

(installed beforehand) 

 PostgreSQL Server, version 8.4 

 pgAdmin, version 1.10.5 (Aug 1 2010) 

 MySQL, version 5.6.12 (installed beforehand) 

 R, version 3.0.2 (2013-09-25) 

 R package “arules” , version 1.1-0 

 R package “arulesViz”, version 0.1-7 

 R package “scatterplot3d”, version 0.3-34 

 R package “vcd”, version 1.3-1 

 R package “colorspace”, version 1.2-4 

 R package “igraph”, version 0.6.6 

 R package “DBI”, version 0.2-7 

 R package “RPostgreSQL”, version 0.4 

 R package “gclus”, version 1.3.1 

 R package “seriation”, version 1.0-11 

 R package “TSP”, version 1.0-8 

 R package “rjava”, version 0.9-5 

 R package “RWeka”, version 0.4-21 

 R package “FSelector”, version 0.19 

 R package “partykit”, version 0.1-6 

All system packages will be installed from the default aptitude repositories, where 

possible. All R packages will be installed from the CRAN package repository, 

where possible. To perform the following actions, root access to the system is 

required. 

In the case that a package installation from the default aptitude repositories or the 

CRAN package repository fails, official mirrors will be used alternatively. 

 

4.2 The DBTechNet Virtual Machine 

 

The case studies were conducted in a Virtual Machine environment using a Virtual 

Machine image provided by DBTechNet. The allocated memory to it was 1536MB, 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 78 of 112 

the processor core allocated to it belonged to an Intel Core 2 Duo Q6600 

processor, clocked at 2,4GHz, and the software used to operate the virtual 

machine was Oracle VM VirtualBox, version 4.2.18. 

DBTechNet is an initiative of European higher education institutions and IT-

companies to set up a transnational collaboration scheme of higher level 

educational establishments, IT enterprises and vocational training centers that will 

collaborate in order to achieve a three-fold goal, namely: 

 Developing efficient Internet based tools (like a Web-based IT terminology 

encyclopedia, universal database access terminal, etc.) which will organize 

worldwide access to database technology resources and 

educational/training material and references 

 Design and develop virtual workshop type course modules on selected 

database topics that will address the wide spectrum of new trends, backed 

by online support from a network of educational and IT professional experts 

 Promote entrepreneurship by developing a business plan of operation, 

which will make it possible for the collaboration scheme in question to 

evolve into a self-sustained consortium that will function within the new 

emerging reality of education and vocational training in today‟s information 

and communication technology driven society. [1] 

 

4.3 Necessary pre-software installation actions 

 

After successfully importing and booting the virtual machine, the first thing that 

needs to be done is an aptitude update, in order to make sure that the package 

information is up to date, and thus the latest versions of each package will be 

downloaded. 

To initiate an aptitude update, the “apt-get update” command needs to be entered 

in a system terminal. In Debian Linux version 6.0.7, a terminal window can be 

opened by using the operating system‟s top menus and navigating to the 

“Applications” menu – “Accessories” – “Terminal”. 

Once a terminal window is open, root access to the system is required to be 

gained, which is achieved using the “su” command and entering the root 

password. 

Once root access to the system has been obtained, prior to updating the aptitude 

repositories a CRAN repository needs to be added in the repositories list file. For 

the sakes of this thesis, the Greek CRAN repository was used. The adding of the 

repository to the repositories list file is achieved thus: 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 79 of 112 

# echo 'deb http://cran.cc.uoc.gr/bin/linux/debian squeeze-

cran3/' >> /etc/apt/sources.list 

After successfully inserting the repository to the repositories list file, the aptitude 

update is in order: 

# apt-get update 

The system will now scan all of the mirrors specified in “/etc/apt/sources.list”. The 

moment the scan is complete, the system‟s aptitude package related information is 

up to date. 

 

4.4 R setup 

 

Obviously, the software installation process will begin with the installation of the R 

language. R can be installed from the aptitude repositories: 

# apt-get install r-base r-base-dev 

The total size of the r-base package and its dependencies (i.e. the packages 

required to be installed in order for “r-base” to work correctly) is about 85 

megabytes, thus they will take some time to download. 

To ensure that R was successfully installed, it can be executed by using the “R” 

command in the terminal window: 

# R 

 

4.5 Installation of PostgreSQL 

 

After successfully installing R, it is time for PostgreSQL to be installed. The 

packages that need to be installed are: “postgresql”, “postgresql-client”, 

“pgadmin3”, and “postgresql-server-dev-all”. 

 

# apt-get install postgresql postgresql-client pgadmin3 

postgresql-server-dev-all postgresql-server-dev-8.4 

 

4.6 Installation of required packages 

 

After a successful installation of R and PostgreSQL, the packages required for the 

conduction of the case studies of this thesis need to be installed. All of the 

necessary packages are previously mentioned in chapter 4.1 “Introduction and 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 80 of 112 

purpose”. The preferred source to install a package is an official CRAN mirror; 

however, in many cases the package cannot be installed from a mirror, thus an 

alternative source is used. 

 

Installation of the “RPostgreSQL” package (includes the installation of the “DBI” 

package): 

# R 

> install.packages("RPostgreSQL") 

 

Installation of the “arulesViz” package (includes the installation of the “arules”, 

“igraph”, “TSP”, “scatterplot3d”, “vcd”, “colorspace”, “gclus” and “seriation” 

packages): 

> install.packages("arulesViz") 

 

Installation of the “RWeka” package (includes the installation of the “rjava” 

package): 

# R CMD javareconf 

# R 

> install.packages("RWeka") 

 

Installation of the “party” package (includes the installation of the “coin”, “zoo”, 

“sandwich” and “strucchange” packages): 

> install.packages("party") 

 

Installation of the “partykit” package: 

> install.packages("partykit") 

 

Installation of the “FSelector” package: 

# R CMD javareconf  /*only if not previously performed*/ 

# R 

> install.packages("FSelector") 

 

4.7 Conclusion 

 

After successfully installing the software and the required packages, the system is 

set up and ready. To verify the successful installation of every package, each 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 81 of 112 

package must be loaded into R using the “library()” function for each one, as 

described in chapter 2.3.8 “Verification of a package installation in R”. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 82 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 83 of 112 

5. Case Studies 

 
This chapter is devoted to the case studies that were conducted for the sakes of 

this thesis. Two case studies will be demonstrated and detailed: The first case 

study demonstrates how association rules are mined in R from a supermarket 

transactions dataset, how these rules are visualized and evaluated, and how they 

can be stored in a DBMS database for permanent storage and further processing. 

The algorithm used to extract the association rules is the Apriori algorithm. 

Furthermore, it demonstrates the creation of a product recommender system to 

the customers of a supermarket. The second case study is conducted on a dataset 

which contains information about the passengers of the Titanic, the British 

passenger liner that sank in the North Atlantic Ocean in 1912, and demonstrates 

the use of a classification method in R in order to classify the passengers 

according to their survival or not. The classification method used is the 

construction of a Decision Tree using the C4.5 algorithm. 

 

5.1 Mining association rules from supermarket transactions 

5.1.1 Introduction 

 

The first case study demonstrates how association rules are mined from a dataset 

using R and the Apriori algorithm. The dataset contains 247535 records consisting 

of 2037 items contained in 33701 transactions of a supermarket, and is the 

dataset used in IBM‟s data mining tutorial “Mining your business in retail with IBM 

DB2 Intelligent Miner”[3]. Each row of the dataset refers to one item. The objective 

of the case study was to extract useful information about the items by finding 

significant relations among items so that the supermarket can rearrange its 

marketing strategies accordingly. 

Following is a short insight into the steps taken in order to carry out the association 

rule mining: 

 Loading the required packages in R 

 Pre-processing - reading the transactions into R 

 Pre-processing - extracting the transactions information that will be used in 

the association rules mining process 

 Performing the association rules mining 

 Visualizing and evaluating the results 

 Storing the results in a database, for permanent storage and further 

processing 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 84 of 112 

5.1.2 Loading the required packages into R 

 

Beginning the procedure, the first thing required to do is to load all of the packages 

that are going to be used. All of those packages are dependency packages of the 

“arulesViz” package, thus when “arulezViz” is loaded, every package required by it 

is loaded as well. Therefore, the action needed to be taken is to load the 

“arulesViz” package: 

> library(“arulesViz”) 

Loading required package: arules 
Loading required package: Matrix 
Loading required package: lattice 
 
Attaching package: „arules‟ 
 
The following object is masked from „package:base‟: 
 
    %in%, write 
 
Loading required package: scatterplot3d 
Loading required package: vcd 
Loading required package: grid 
Loading required package: seriation 
Loading required package: cluster 
Loading required package: TSP 
Loading required package: gclus 
Loading required package: colorspace 
 
Attaching package: „seriation‟ 
 
The following object is masked from „package:lattice‟: 
 
    panel.lines 
 
Loading required package: igraph 
 
Attaching package: „igraph‟ 
 
The following object is masked from „package:gclus‟: 
 
    diameter 
 
 
Attaching package: „arulesViz‟ 
 
The following object is masked from „package:base‟: 
 
    abbreviate 
 

If an output like the above is displayed and no errors occur, the packages have 

been successfully loaded into R. 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 85 of 112 

5.1.3 Pre-processing - reading the transactions into R 

 

After successfully loading the required packages, the transaction data needs to be 

read by R in order to be able to process it further. The transactions dataset is 

located in a csv file named “pos_data.csv”. In order to read it, two possible 

functions can be used – the “read.csv()” function and the “read.table()” function. 

Though “read.csv()” seems the more appropriate choice in this case, the 

“read.table()” is actually a better option, because it offers much more control over 

the data import than “read.csv()” does. 

To read the transactions, the following command needs to be issued: 

> transactions.table <-  read.table("pos_data.csv", 
+ header=F,sep="|",quote="",dec=".",col.names=c("customer_id", 
+ "trans_id","item_id","trans_date", "trans_time","quantity","price", 
+ "promotion"), colClasses=c("numeric","numeric","numeric","character", 
+ "numeric", "numeric","numeric","numeric"),strip.white=T, 
+ blank.lines.skip=T,comment.char="",allowEscapes=F) 
 

Parameters explanation: 

 „header=F‟ – instructs the function that it should not regard the first line of 

the dataset as a line containing the column names, as this is not the case in 

this dataset. 

 „sep="|"‟ – instructs the function that the character used to separate the 

entries in the dataset is not the comma character (“,”) but the “|” (“vertical 

bar”) character instead. 

 „quote=""‟ – instructs the function that quoting of the read data is not 

desired. 

 „dec="."‟ – instructs the function that the character used for decimal points is 

the dot (“.”) character. 

 „col.names=c(…)‟ – used to give a name to each column of the dataset. 

 „colClasses = c(…)‟ – used to define the class as which each column will be 

read. 

 „strip.white=T‟ – instructs the function to strip any leading and trailing white 

space from unquoted character entries. 

 „blank.lines.skip=T‟ – instructs the function to not regard blank lines as 

records. 

 „comment.char=""‟ – instructs the function that no character should be 

regarder as reserved for commenting. 

 „allowEscapes=F‟ – instructs the function that no character sequence 

should be regarded as escape characters (for example, character 

sequences like “\n” or “\t”). 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 86 of 112 

5.1.4 Pre-processing - extracting the transactions information that will be used 

in the association rules mining process 

 

Once successfully reading the transaction data, the next step to take is to extract 

only the information needed for the association rules mining process. As 

mentioned in the case study description, each row of the dataset contains 

information about one item, and not about a complete transaction. Thus, every 

record consists of information about the item – its ID, its price, its being a 

promotional item or not, the quantity in which it was purchased, the date and time 

it was purchased, the ID of the customer that purchased it, and the ID of the 

transaction it belongs to. While all of this information is certainly useful to know, 

nevertheless it is not needed in its entirety in the association rules mining process 

– the only part of a transaction that is relevant for an association rules mining 

process is the item ID and the transaction ID to which this item belongs to. 

Consequently, the item and transaction IDs need to be extracted from the dataset, 

and placed into a separate object, which will then be used by the association rules 

mining algorithm: 

> transactions <- transactions.table[c("trans_id","item_id")] 
 

In this case study, the items themselves are not going to be used in the 

association rules mining process, but rather the category they belong to is. The 

information about the category that each item belongs to is held in the 

“article_categories.csv” file, while the category names are held into the 

“articles.csv” file. Thus, the aim is to create a new relational table which will hold 

the information about the categories of the items purchased in each transaction. 

This table is named “items_to_categories”. This can be achieved using SQL: 

Firstly, the tables “articles” and “article_categories” need to be created, which will 

hold the information of the “articles.csv” and “article_categories.csv” files 

respectively, so that the “items_to_categories” table can be created afterwards. 

> articles <- read.table("articles.csv",header=F,sep="|",quote="", 
+ dec=".",col.names=c("item_id","cat_id"),colClasses=c("numeric", 
+ "numeric"),strip.white=T,blank.lines.skip=T,comment.char="", 
+ allowEscapes=F) 
> dbWriteTable(con.postgresql,name="articles",value=articles) 
> article_categories <- 
read.table("article_categories.csv",header=F,sep="|",quote="", 
+ dec=".",col.names=c("cat_id","cat_desc"),colClasses=c("numeric", 
+ "character"),strip.white=T,blank.lines.skip=T,comment.char="", 
+ allowEscapes=F) 
> dbWriteTable(con.postgresql,name="article_categories", 
+ value=article_categories) 
 

After creating the two tables, the “items_to_categories” table can be created. To 

create this table, it is required that all of the transactions are scanned, the 

categories of the items each transaction contains are determined, and a record is 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 87 of 112 

placed in the new table containing the transaction ID and the items‟ categories 

names: 

> con.postgresql <- dbConnect(dbDriver("PostgreSQL"),dbname="postgres", 
+ user="postgres",password="my$q7",host="localhost") 
> for (i in 1:length(transactions$item_id)) { 
+  cat_desc <- dbGetQuery(con2,paste("SELECT cat_desc AS cd FROM  
+  article_categories AC INNER JOIN articles A ON A.cat_id =  
+  AC.cat_id WHERE A.item_id = '",transactions$item_id[i],"'", 
+  sep="")) 
+ dbGetQuery(con.postgresql,paste("INSERT INTO  
+  items_to_categories(trans_id,item_id)  
+  VALUES('",transactions$trans_id[i],"','",cat_desc$cd,"')")) 
+ } 
 

After successfully creating the “items_to_categories” table, the transactions are 

ready to be read from it by R: 

> transactions <- dbReadTable(con.postgresql,"items_to_categories") 
> dbDisconnect(con.postgresql) 
 

After reading the transactions from the newly created table, the new dataset 

(which is a “data.frame” class object) needs to be converted into a “transactions” 

class object. In order to achieve this, it needs to be written in a file which will then 

be read by the “read.transactions()” function, which reads a dataset containing 

transactions and creates a “transactions” object out of it: 

> #write the transactions to a file: 
> write.table(transactions,file="trans_file",row.names=F,quote=F) 
 

Parameters explanation: 

 „transactions‟ – the source dataset. 

 „file="trans_file"‟ – the destination file. 

 „row.names=F‟ – instructs the function to not append an extra column to the 

file, containing the row names of the dataset. 

 „quote=F‟ – instructs the function to not quote the entries. 

 
> #create a “transactions” object from the file: 
> transactions.final <- read.transactions("trans_file",format="single", 
+ cols=c("trans_id","item_id"),rm.duplicates=T) 
 

Parameters explanation: 

 „"trans_file"‟ – the file to read the transactions from. 

 „format="single"‟ – instructs the function that the transactions are stored in 

the dataset using the “single” format, which indicates that each row contains 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 88 of 112 

a single item and the transaction to which it belongs, and not a complete 

transaction. 

 „cols=c("trans_id","item_id")‟ – shows the algorithm which columns of the 

dataset are to be regarded as the transaction ID column and the item ID 

column, respectively. 

 „rm.duplicates=T‟ – instructs the algorithm to remove duplicate entries. 

 

5.1.5 Performing the association rules mining 

 

After having read the transactions in a “transactions” class object, the data pre-

processing phase is completed, and the transactions are ready to be mined for 

association rules. The rule are mined using the “apriori()” function. The acceptable 

rules need to have a support measure greater than 0.02, a confidence measure 

greater than 0.02 and a minimum item length of 2: 

> rules <- apriori(transactions.final,parameter=list(supp=0.02, 
+ conf=0.02,minlen=2)) 

parameter specification: 
 confidence minval smax arem  aval originalSupport support minlen maxlen 
target   ext 
        0.3    0.1    1 none FALSE            TRUE    0.1       2     10  
rules FALSE 
 
algorithmic control: 
 filter tree heap memopt load sort verbose 
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE 
 
apriori - find association rules with the apriori algorithm 
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt 
set item appearances ...[0 item(s)] done [0.00s]. 
set transactions ...[71 item(s), 33701 transaction(s)] done [0.01s]. 
sorting and recoding items ... [13 item(s)] done [0.00s]. 
creating transaction tree ... done [0.01s]. 
checking subsets of size 1 2 3 done [0.00s]. 
writing ... [26 rule(s)] done [0.00s]. 
creating S4 object  ... done [0.00s]. 

 

5.1.6 Visualizing and evaluating the results 

 

Thus, the association rules have been mined. Observing the output of the 

“apriori()” function, information about its progress can be gained – for example, the 

total different items contained in the transactions were 71, the transactions added 

up to a total of 33701, and the rules mined were 26. 

To see the mined rules, the “inspect()” function is used: 

> inspect(rules) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 89 of 112 

   lhs                             rhs                            
support   confidence     lift 
1  {PROCESSED FOOD(EXC. SOUPS)} => {MILK,CHEESE,EGGS}           
0.1105902  0.7965377 2.176785 
2  {MILK,CHEESE,EGGS}           => {PROCESSED FOOD(EXC. SOUPS)} 
0.1105902  0.3022219 2.176785 
3  {COFFEE,TEA,CACAO,TOBACCO}   => {MILK,CHEESE,EGGS}           
0.1058722  0.6001682 1.640145 
4  {BACKED GOODS}               => {FRESH MEAT,SAUSAGES,FISH}   
0.1013620  0.5650017 2.284752 
5  {FRESH MEAT,SAUSAGES,FISH}   => {BACKED GOODS}               
0.1013620  0.4098872 2.284752 
6  {BACKED GOODS}               => {MILK,CHEESE,EGGS}           
0.1368505  0.7628184 2.084637 
7  {MILK,CHEESE,EGGS}           => {BACKED GOODS}               
0.1368505  0.3739864 2.084637 
8  {BEER,ALCH. FREE DRINKS}     => {CONFECTIONERY}              
0.1112430  0.4264589 1.379279 
9  {CONFECTIONERY}              => {BEER,ALCH. FREE DRINKS}     
0.1112430  0.3597889 1.379279 
10 {BEER,ALCH. FREE DRINKS}     => {MILK,CHEESE,EGGS}           
0.1261684  0.4836765 1.321795 
11 {MILK,CHEESE,EGGS}           => {BEER,ALCH. FREE DRINKS}     
0.1261684  0.3447940 1.321795 
12 {SOUPS,SPICES,SPREAD}        => {FRESH MEAT,SAUSAGES,FISH}   
0.1049227  0.5638654 2.280157 
13 {FRESH MEAT,SAUSAGES,FISH}   => {SOUPS,SPICES,SPREAD}        
0.1049227  0.4242861 2.280157 
14 {SOUPS,SPICES,SPREAD}        => {CONFECTIONERY}              
0.1016884  0.5464838 1.767471 
15 {CONFECTIONERY}              => {SOUPS,SPICES,SPREAD}        
0.1016884  0.3288868 1.767471 
16 {SOUPS,SPICES,SPREAD}        => {MILK,CHEESE,EGGS}           
0.1457227  0.7831287 2.140141 
17 {MILK,CHEESE,EGGS}           => {SOUPS,SPICES,SPREAD}        
0.1457227  0.3982322 2.140141 
18 {FRESH MEAT,SAUSAGES,FISH}   => {CONFECTIONERY}              
0.1230824  0.4977202 1.609757 
19 {CONFECTIONERY}              => {FRESH MEAT,SAUSAGES,FISH}   
0.1230824  0.3980806 1.609757 
20 {FRESH MEAT,SAUSAGES,FISH}   => {MILK,CHEESE,EGGS}           
0.1862556  0.7531797 2.058296 
21 {MILK,CHEESE,EGGS}           => {FRESH MEAT,SAUSAGES,FISH}   
0.1862556  0.5090010 2.058296 
22 {CONFECTIONERY}              => {MILK,CHEESE,EGGS}           
0.1815376  0.5871401 1.604542 
23 {MILK,CHEESE,EGGS}           => {CONFECTIONERY}              
0.1815376  0.4961077 1.604542 
24 {CONFECTIONERY,                                                                            
    FRESH MEAT,SAUSAGES,FISH}   => {MILK,CHEESE,EGGS}           
0.1042106  0.8466731 2.313796 
25 {FRESH MEAT,SAUSAGES,FISH,                                                                 
    MILK,CHEESE,EGGS}           => {CONFECTIONERY}              
0.1042106  0.5595029 1.809579 
26 {CONFECTIONERY,                                                                            
    MILK,CHEESE,EGGS}           => {FRESH MEAT,SAUSAGES,FISH}   
0.1042106  0.5740438 2.321316 
 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 90 of 112 

At first glance, it is perceivable that all of the rules have low support values, which 

leads to the conclusion that this transactions dataset does not include any highly 

significant relationship between any of its contained items. Nevertheless, the 

confidence measure of most of the rules ranges from ~0.3 to ~0.84, which means 

that the conditional probability of a transaction containing the items in the body of 

the rule to also contain the item on the head of the rule ranges from ~30% to 

~84%, which is not at all bad. Finally, the lift measures of the rules range from 

~1.3 to ~2.32, thus indicating little importance in the mined rules. One of the most 

important rules of this mining is rule number 24 {CONFECTIONERY, FRESH 

MEAT,SAUSAGES,FISH} => {MILK,CHEESE,EGGS}), because of its relatively 

high confidence measure compared to the rest of the rules, which means that the 

conditional possibility of a customer buying confectionary and meat/fish products 

to also buy milk/cheese/eggs kind of products is ~84%. Other important rules are 

rule number 20 ({FRESH MEAT,SAUSAGES,FISH} => {MILK,CHEESE,EGGS}), 

because of its comparatively high lift value (~2.06), its high support measure 

compared to the rest of the rules (~0.19) and its high confidence value (~0.75), or 

rule number 6 ({BACKED GOODS} => {MILK,CHEESE,EGGS}), with a support of 

~0.14, a confidence of ~0.76 and a lift of ~2.08, or rule number 16 

({SOUPS,SPICES,SPREAD} => {MILK,CHEESE,EGGS}), with a support of ~0.15, 

a confidence of ~0.78 and a lift of ~2.14, or rule number 1 ({PROCESSED 

FOOD(EXC. SOUPS)} => {MILK,CHEESE,EGGS}), with a support value of ~0.11, 

a relatively high confidence value of ~0.80, and a relatively high lift value of ~2.18. 

These results can become clearer to the eye by using a visualization method to 

display them. For example: 

> plot(rules,measure=c("confidence","lift"),shading="support") 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 91 of 112 

 
 

Figure 5.1.6-1: Visual representation of the rules via scatter plot 

 

In this graph, it is clear that the rule located on the top right of the graph is rule 

number 24 {CONFECTIONERY, FRESH MEAT,SAUSAGES,FISH} => 

{MILK,CHEESE,EGGS}), because of its comparatively high lift and confidence 

values but its poor support value. Likewise, the other 4 rules located to the top 

right region and underneath rule number 24 are some of the most important ones, 

among which are rule number 20 ({FRESH MEAT,SAUSAGES,FISH} => 

{MILK,CHEESE,EGGS}), rule number 6 ({BACKED GOODS} => 

{MILK,CHEESE,EGGS}), rule number 16 ({SOUPS,SPICES,SPREAD} => 

{MILK,CHEESE,EGGS}) and rule number 1 ({PROCESSED FOOD(EXC. 

SOUPS)} => {MILK,CHEESE,EGGS}),  all of which were mentioned previously. 

 

5.1.7 Storing the results in a database, for permanent storage and further 

processing 

 

After evaluating the rules, it may be desired that they are permanently stored 

somewhere for further processing or just for their availability in case of future 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 92 of 112 

reference. A database in a DBMS can be considered such a place, due to the 

DBMSs emphasis on many aspects regarding data integrity, security and 

availability. In this case study, a PostgreSQL DBMS database named “rulesdb” is 

used, hosted locally and accessed by the root user using the password 

“password”. 

To store the rules in a database, the first thing needed to be made is a connection 

to the database: 

> library("RPostgreSQL")  #load the appropriate communication package 
> con.postgresql <- dbConnect(dbDriver("PostgreSQL"),dbname="rulesdb", 
+ user="root",password="password",host="localhost") 
 

After successfully connecting to the database, the data can be inserted to it. In this 

case study, the rules are inserted to a table named “rules”, created during insertion 

time with the use of the “dbWriteTable()” function: 

> dbWriteTable(con.postgresql,name=rules.tablename, 
+ value=as(rules,"data.frame")) 
 

Parameters explanation: 

 „con.postgresql‟ – the database connection 

 „name=”rules”‟ – the name of the table to insert the data into 

 „value=as(rules,”data.frame”)‟ – the data source to be inserted to the table, 

“on the fly” converted from a “transactions” class object to a “data.frame” 

class object 

To make sure that the data was inserted in the database successfully, the table 

content is printed using the “dbReadTable()” function: 

> dbReadTable(con.postgresql,”rules”) 

                                                            rules   
support confidence     lift 
1              {PROCESSED FOOD(EXC. SOUPS)} => {MILK,CHEESE,EGGS} 
0.1105902  0.7965377 2.176785 
2              {MILK,CHEESE,EGGS} => {PROCESSED FOOD(EXC. SOUPS)} 
0.1105902  0.3022219 2.176785 
3                {COFFEE,TEA,CACAO,TOBACCO} => {MILK,CHEESE,EGGS} 
0.1058722  0.6001682 1.640145 
4                    {BACKED GOODS} => {FRESH MEAT,SAUSAGES,FISH} 
0.1013620  0.5650017 2.284752 
5                    {FRESH MEAT,SAUSAGES,FISH} => {BACKED GOODS} 
0.1013620  0.4098872 2.284752 
6                            {BACKED GOODS} => {MILK,CHEESE,EGGS} 
0.1368505  0.7628184 2.084637 
7                            {MILK,CHEESE,EGGS} => {BACKED GOODS} 
0.1368505  0.3739864 2.084637 
8                     {BEER,ALCH. FREE DRINKS} => {CONFECTIONERY} 
0.1112430  0.4264589 1.379279 
9                     {CONFECTIONERY} => {BEER,ALCH. FREE DRINKS} 
0.1112430  0.3597889 1.379279 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 93 of 112 

10                 {BEER,ALCH. FREE DRINKS} => {MILK,CHEESE,EGGS} 
0.1261684  0.4836765 1.321795 
11                 {MILK,CHEESE,EGGS} => {BEER,ALCH. FREE DRINKS} 
0.1261684  0.3447940 1.321795 
12            {SOUPS,SPICES,SPREAD} => {FRESH MEAT,SAUSAGES,FISH} 
0.1049227  0.5638654 2.280157 
13            {FRESH MEAT,SAUSAGES,FISH} => {SOUPS,SPICES,SPREAD} 
0.1049227  0.4242861 2.280157 
14                       {SOUPS,SPICES,SPREAD} => {CONFECTIONERY} 
0.1016884  0.5464838 1.767471 
15                       {CONFECTIONERY} => {SOUPS,SPICES,SPREAD} 
0.1016884  0.3288868 1.767471 
16                    {SOUPS,SPICES,SPREAD} => {MILK,CHEESE,EGGS} 
0.1457227  0.7831287 2.140141 
17                    {MILK,CHEESE,EGGS} => {SOUPS,SPICES,SPREAD} 
0.1457227  0.3982322 2.140141 
18                  {FRESH MEAT,SAUSAGES,FISH} => {CONFECTIONERY} 
0.1230824  0.4977202 1.609757 
19                  {CONFECTIONERY} => {FRESH MEAT,SAUSAGES,FISH} 
0.1230824  0.3980806 1.609757 
20               {FRESH MEAT,SAUSAGES,FISH} => {MILK,CHEESE,EGGS} 
0.1862556  0.7531797 2.058296 
21               {MILK,CHEESE,EGGS} => {FRESH MEAT,SAUSAGES,FISH} 
0.1862556  0.5090010 2.058296 
22                          {CONFECTIONERY} => {MILK,CHEESE,EGGS} 
0.1815376  0.5871401 1.604542 
23                          {MILK,CHEESE,EGGS} => {CONFECTIONERY} 
0.1815376  0.4961077 1.604542 
24 {CONFECTIONERY,FRESH MEAT,SAUSAGES,FISH} => {MILK,CHEESE,EGGS} 
0.1042106  0.8466731 2.313796 
25 {FRESH MEAT,SAUSAGES,FISH,MILK,CHEESE,EGGS} => {CONFECTIONERY} 
0.1042106  0.5595029 1.809579 
26 {CONFECTIONERY,MILK,CHEESE,EGGS} => {FRESH MEAT,SAUSAGES,FISH} 
0.1042106  0.5740438 2.321316 

Therefore, the rules were successfully inserted into the database, into a newly 

created table called “rules” and consisting of 4 fields: “rules”, “support”, 

“confidence” and “lift”. 

 

5.1.8 Creating a recommender system 

 

After mining the association rules from a supermarket transactions dataset, a wise 

marketing strategy would be for the supermarket to use the information gained 

from the association rules mining process to be able to recommend items to 

customers depending on what they are buying, the moment they are buying it. To 

achieve this, the supermarket needs to build what is called a “recommender 

system” – a system that recommends items to a customer depending on what they 

are buying at the moment. The recommendations are, of course, based on the 

supermarket‟s records of other customers‟ past transactions. Using this system, 

the supermarket will be able to know which items a customer is more likely to 

purchase along with those they already intend to. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 94 of 112 

For the sakes of this case study, an IBM‟s tutorial to guide application designers 

and application developers through the process of gaining insight from data mining 

analysis to applying it in end user applications was used, titled “Mining your 

Business in Retail with IBM DB2 Intelligent Miner” [3]. In this tutorial, IBM presents 

how to apply data mining techniques using IBM DB2 Intelligent Miner Modeling to 

automatically generate real-time product recommendations for customers in a 

possible e-commerce shop environment. The tutorial is carried out using IBM DB2 

Intelligent Miner. This case study demonstrates how R can be used instead, in 

order to mine association rules from a supermarket transactions dataset and use 

them to create a recommender system – a system which generates real-time 

product recommendations for its customers – identical to the one created in IBM‟s 

tutorial. 

In order to create a recommender system, the supermarket first needs to know the 

associations that exist among itemsets that customers purchase. In other words, 

the supermarket needs the association rules for the transactions conducted by its 

customers. After having mined the association rules, the recommended items for 

each transaction are going to be the items contained in the heads of the itemsets 

whose body consists of the items of the transaction in question. Clarifying the 

matter, if a customer is purchasing items x and y, and association rules of the 

forms “{x,y} => {z}” OR “{x} => {z}” OR “{y} => {z}” exist, and have sufficient 

association rule metrics, then item z is a prudent recommendation regarding this 

transaction. 

For the sakes of this case study, the transaction(s) for which recommendations are 

going to be produced are contained in a database table named 

“new_transactions”, and the transaction(s) data is contained in a data frame 

named “new_transactions”. Three transactions are going to be processed: The 

first transaction consists of items “DIET FOOD”, “MILK/CHEESE/EGGS” and 

“FRESH FRUITS/VEGETABLES”, the second transaction consists of items 

“BACKED GOODS” and “COFFEE/TEA/CACAO/TOBACCO”, and the third 

transaction consists of items “FROZEN FOOD/ICE CREAM” and “SOAP/BODY 

CARE PROD.”. The “new_transactions” table and data frame are created as 

follows: 

# create the transactions table that contains the transaction(s) for  
+ which recommendations are going to be produced: 
> new_transactions <- data.frame(transid=c(0),itemid=c(0)) 
> new_transactions <- new_transactions[-1,] 
> for(i in 1:length(trans)) { 
>  new_trans_id <- dbGetQuery(con.postgresql,"SELECT max(trans_id) AS  
+     transid FROM transactions")[1] + i 
>  new_transactions <- rbind(new_transactions,data.frame( 
+     transid=c(new_trans_id[1]),itemid=trans[[i]],row.names=NULL)) 
> } 
> if(dbExistsTable(con.postgresql,"new_transactions")) 
>  dbRemoveTable(con.postgresql,"new_transactions") 
> dbWriteTable(con.postgresql,name="new_transactions", 
+ value=new_transactions) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 95 of 112 

> dbGetQuery(con.postgresql,'ALTER TABLE new_transactions DROP COLUMN  
+ "row.names"') 
 

In order to proceed with the recommender system creation, the rules‟ bodies and 

heads need to be able to be scanned separately. Right now the rules exist in a 

“{body} => {head}” form, and are contained in a single column in a database table, 

therefore the bodies and heads of each rule need to be separated from each 

other. Using the database table in which the association rules were stored 

previously (assuming it is called “rules”), five more columns need to be added, 

which will contain each rule‟s body and head, plus an ID number for each body, 

the item ID that each head consists of, and the rule length: 

> dbGetQuery(con.postgresql,paste("ALTER TABLE ",rules.tablename," ADD 
COLUMN bodytext VARCHAR(2500)",sep="")) 
> dbGetQuery(con.postgresql,paste("ALTER TABLE ",rules.tablename," ADD 
COLUMN headname VARCHAR(2500)",sep="")) 
> dbGetQuery(con.postgresql,paste("ALTER TABLE ",rules.tablename," ADD 
COLUMN bodyID INTEGER",sep="")) 
> dbGetQuery(con.postgresql,paste("ALTER TABLE ",rules.tablename," ADD 
COLUMN head INTEGER",sep="")) 
> dbGetQuery(con.postgresql,paste("ALTER TABLE ",rules.tablename," ADD 
COLUMN length INTEGER",sep="")) 
 

After altering the rules table appropriately, the splitting of the heads and bodies of 

the rules needs to take place: 

# split the head and body: 
> rules.column <- dbGetQuery(con.postgresql,paste("SELECT rules FROM ", 
+ rules.tablename,sep="")) 
> rules.separated <- do.call('rbind',strsplit(rules.column[,1],"=>", 
+ fixed=T)) 
> rules.bodies <- rules.separated[,1] 
> rules.heads <- rules.separated[,2] 
> for (i in 1:length(rules.bodies)) { 
>  dbGetQuery(con.postgresql,paste("UPDATE ",rules.tablename,"  
+  SET headname='",rules.heads[i],"',bodytext='",rules.bodies[i],"'  
+  WHERE rules='",rules.bodies[i],"=>",rules.heads[i],"'",sep="")) 
> } 

After splitting the heads and bodies, bodies need to be given an ID number which 

shall be placed in the “bodyid” column, and each head‟s item needs to be 

determined – and placed in the „head‟ column: 

# Give IDs to the bodies, get the IDs of the items in the heads: 
> cat("Giving IDs to the heads and bodies... ") 
> distinct.bodies <- dbGetQuery(con.postgresql,paste("SELECT DISTINCT  
+ bodytext FROM ",rules.tablename,sep="")) 
> distinct.heads <- dbGetQuery(con.postgresql,paste("SELECT DISTINCT  
+ headname FROM ",rules.tablename,sep="")) 
> distinct.bodies$body_id <- c(1:length(distinct.bodies$bodytext)) 
> for (i in 1:length(distinct.heads$headname)) { # for each (unique)  
+ head, determine the cat_id that the head's item belongs to: 
>  distinct.heads$headname[i] <- sub(x=distinct.heads$headname[i], 
+  pattern="{",replacement="",fixed=T) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 96 of 112 

>  distinct.heads$headname[i] <- sub(x=distinct.heads$headname[i], 
+  pattern="}",replacement="",fixed=T) 
>  distinct.heads$headname[i] <- gsub(pattern="^ ",replacement="", 
+  x=distinct.heads$headname[i],fixed=F) 
>  distinct.heads$head_id[i] <- dbGetQuery(con.postgresql,paste(" 
+  SELECT cat_id FROM article_categories WHERE cat_desc LIKE  
+  '%",distinct.heads$headname[i],"%'",sep=""))$cat_id[1] 
> } 
# insert each head and body id to its proper place in the rules table: 
> for(i in 1:length(distinct.bodies$bodytext)) { 
>  dbGetQuery(con.postgresql,paste("UPDATE ",rules.tablename," SET  
+  bodyid='",distinct.bodies$body_id[i],"' WHERE bodytext =  
+  '",distinct.bodies$bodytext[i],"'",sep="")) 
> } 
> for(i in 1:length(distinct.heads$headname)) { 
>  dbGetQuery(con.postgresql,paste("UPDATE ",rules.tablename," SET  
+  head='",distinct.heads$head_id[i],"' WHERE headname LIKE  
+  '%",distinct.heads$headname[i],"%'",sep="")) 
> } 
 

Finally, the rule lengths need to be calculated and placed in the “length” column: 

# calculating length of each rule: 
> for(i in 1:length(rules.bodies)) { 
>  rule.length <- length(do.call('rbind',strsplit(rules.bodies[i], 
+  split=",",fixed=T))) + 1 # +1 because the rule length is  
+ length(body) + length(head), and we know that head length is 1. 
>  dbGetQuery(con.postgresql,paste("UPDATE ",rules.tablename,"  
+  SET length='",rule.length,"' WHERE bodytext =  
+  '",rules.bodies[i],"'",sep="")) 
> } 
 

The recommendations are now ready to be created. For the sakes of creating the 

recommendations, one table and four views are going to be created, which will 

contain the information needed in order to create the recommendations: the 

“rulebodies” table, which contains the body (or bodies) that each item belongs to, 

the “bodysizes” view, which shows the size of each body, the “bodies” view, which 

shows the body (or bodies) that the items belong to and the size of each body, the 

“bodies_trans” view, which shows the transaction and body (or bodies) that each 

item belongs to and the size of each body, and the bodies_trans_size view, which 

shows the transaction and body (or bodies) that each item belongs to, the size of 

each body, and how many items of each body that an item belongs to are 

contained to each transaction that the item in question belongs to. 

The “rulebodies” table is created as follows: 

> if(dbExistsTable(con.postgresql,"rulebodies")) 
>  dbRemoveTable(con.postgresql,"rulebodies") 
> dbGetQuery(con.postgresql,"CREATE TABLE rulebodies(bodyID  
+ INTEGER,ITEMNAME VARCHAR(2500),ITEM INTEGER)") 
> rulebodies.data <- dbGetQuery(con.postgresql,paste("SELECT DISTINCT  
+ bodyid,bodytext FROM ",rules.tablename,sep="")) 
> for(i in 1:length(rulebodies.data$bodyid)) { 
>  current.rule.items <- do.call('rbind', 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 97 of 112 

+  strsplit(rulebodies.data$bodytext[i],split=",",fixed=T)) 
>  for(j in 1:length(current.rule.items)) { 
>   #trim '{}' and ending space from rule in order to search the  
+   article_categories table for it: 
>   current.rule.items[j] <- sub(x=current.rule.items[j], 
+   pattern="{",replacement="",fixed=T) 
>   current.rule.items[j] <- sub(x=current.rule.items[j], 
+   pattern="}",replacement="",fixed=T) 
>   current.rule.items[j] <- gsub(pattern=" $", 
+   replacement="",x=current.rule.items[j],fixed=F) 
>   #end trimming 
>   item.details <- dbGetQuery(con.postgresql,paste("SELECT  
+   cat_id,cat_desc FROM article_categories WHERE cat_desc LIKE  
+   '%",current.rule.items[j],"%'",sep="")) 
>   itemname <- item.details$cat_desc 
>   item_id <- item.details$cat_id 
>  dbGetQuery(con.postgresql,paste("INSERT INTO  
+   rulebodies(bodyID,ITEMNAME,ITEM) VALUES('" 
+   ,rulebodies.data$bodyid[i],"','",itemname,"', 
+   '",item_id,"')",sep="")) 
>  } 
> } 
 

The “bodysizes” view is created as follows: 

>  dbGetQuery(con.postgresql,"CREATE VIEW bodysizes(bodyid, bodysize)  
+  AS (select bodyid, count(*) from rulebodies group by bodyid)") 
 

The “bodies” view is created as follows: 

> dbGetQuery(con.postgresql,"CREATE VIEW bodies(bodyid, bodyitem,  
+ bodysize) AS (select rb.bodyid, item, bodysize from rulebodies rb,  
+ bodysizes bs where rb.bodyid=bs.bodyid)") 
 

The “bodies_trans” view is created as follows: 

> dbGetQuery(con.postgresql,"CREATE VIEW bodies_trans(trans_id, bodyid,  
+ bodyitem, bodysize) as (select transid, bodyid, bodyitem, bodysize  
+ from bodies, new_transactions where bodyitem = itemid)") 
 

The information gained by the “bodies_trans” view can result in a first set of 

recommendations: the bodies having a bodysize of 1 consist only of the item being 

purchased by the transaction to which the recommendations are intended, 

therefore the heads of the bodies which bodysize is 1 comprise recommendations 

for that transaction. 

After having recommended the heads of the rules whose bodies consist only of the 

item being purchased by the transaction to which the recommendations are 

intended, the rules containing more items need to be examined. This is achieved 

by creating the “bodies_trans_size” view. This way, information regarding how 

many items of each body are included in each transaction can be obtained. 

Therefore, the more items of a body a transaction contains, the more important 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 98 of 112 

that rule is for that transaction, thus its head comprises a recommendation for that 

transaction. 

The “bodies_trans_size” view is created as follows: 

> dbGetQuery(con.postgresql,"CREATE VIEW bodies_trans_size(transid,  
+ bodyid, bodysize, bodytranssize) as (select trans_id, bodyid,  
+ max(bodysize), count(*) from bodies_trans group by bodyid, trans_id)") 
 

Via the “bodies_trans_size” view, information about the rules whose bodies 

contain more than one item can be gained. The higher the value of the 

“bodytranssize” column, the more items of the transaction are included in the body 

of the rule, thus the more accurate recommendation the head of that rule is. 

The final step is to gather all of the recommendations in one table. This way they 

can afterwards be further processed in whichever way the supermarket desires, 

for example they can be ordered by their lift metric value or their support metric 

value. The table is named “product_recommendations” and is constructed as 

follows: 

> if(dbExistsTable(con.postgresql,"product_recommendations")) 
>  dbRemoveTable(con.postgresql,"product_recommendations") 
> dbGetQuery(con.postgresql,"CREATE TABLE product_recommendations  
+ (transid INTEGER,recomm_item VARCHAR(30),support FLOAT,confidence  
+ FLOAT,lift FLOAT)") 
> dbGetQuery(con.postgresql,"insert into product_recommendations select  
+ transid, headname, ar.support, ar.confidence, ar.lift from  
+ bodies_trans_size bts,rules ar where ar.bodyid = bts.bodyid and  
+ bts.bodysize = bts.bodytranssize") 
 

Using the “product_recommendations” table the supermarket can henceforth 

accurately recommend items to customers, and therefore ensure a sufficiently high 

possibility of increment in its profit. 

 

5.1.9 Discussion 

 

Concluding, the relation among the items of the categories CONFECTIONERY, 

FRESH MEAT,SAUSAGES,FISH and MILK,CHEESE,EGGS seems to be highly 

important. Also, the items belonging to the categories FRESH 

MEAT,SAUSAGES,FISH, BACKED GOODS, SOUPS,SPICES,SPREAD and 

PROCESSED FOOD(EXC. SOUPS) seem to be highly related to the items of the 

category MILK,CHEESE,EGGS due to the fact that four of the most important 

rules of the mining contain MILK,CHEESE,EGGS in their RHS. 

Comparing the results with the results produced in IBM‟s tutorial [3], it is easily 

perceived that R can accurately produce the same results as IBM DB2 Intelligent 

Miner, since the results are exactly the same in both studies. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 99 of 112 

The association rules mined can be put to very many effective uses. A good and 

simple example of such a usage is the recommendation system demonstrated 

previously. Using a simple and logical statistical means, a supermarket can greatly 

increase its income by effectively and cleverly using information gained from an 

association rules mining process. 

 

5.2 Classifying Titanic passengers using a decision tree 

5.2.1 Introduction 

 

The second case study demonstrates how classification of a dataset using the 

C4.5 algorithm to build a decision tree is performed in R. The dataset classified 

contains information about the passengers of Titanic, the British passenger liner 

that sank in the North Atlantic Ocean in 1912, and was retrieved from the datasets 

provided by “Data for Evaluating Learning in Valid Experiments” (DELVE) project 

of the Computer Science department of the University of Toronto [13]. The 

passengers are classified as whether they survived the tragedy or not, and the 

classification is made according to the passengers‟ sex, age and economical 

status (represented in this dataset by their ticket class) 

 

5.2.2 Loading the required packages into R 

 

To begin the classification procedure, the first thing required to do is to load all of 

the packages that are going to be used: 

> library("RWeka") 
> library("party") 
> library("partykit") 
> library("FSelector") 

Loading required package: zoo 
 
Attaching package: „zoo‟ 
 
The following object is masked from „package:base‟: 
 
    as.Date, as.Date.numeric 
 
Loading required package: sandwich 
Loading required package: strucchange 
Loading required package: modeltools 
Loading required package: stats4 
 
Attaching package: „modeltools‟ 
 
The following object is masked from „package:igraph‟: 
 
    clusters 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 100 of 112 

 
The following object is masked from „package:arules‟: 
 
    info 
 
 
Attaching package: „partykit‟ 
 
The following object is masked from „package:party‟: 
 
    ctree, ctree_control, edge_simple, node_barplot, node_boxplot, 
node_inner, node_surv, node_terminal 
 

If an output like the above is displayed and no errors occur, the packages have 

been successfully loaded into R. 

 

5.2.3 Reading the passengers information into R 

 

The second step to take is to read the dataset information into R: 

> titanic.dataset <-  
+ read.table("Dataset.data",header=F,sep=",",quote="", 
+ stringsAsFactors=T,blank.lines.skip=T,allowEscapes=F, 
+ colClasses=c("factor","factor","factor","factor"), 
+ col.names=c("class","age","sex","survived")) 
 

All of the function parameters are explained in the previous case study, except for 

the „stringsAsFactors‟ parameter, which instructs the function to store any 

character data read from the dataset in a factor. And since all of the data in this 

case is categorical, is needs to be stored in factors – as indicated in the 

„colClasses‟ parameter. 

 

5.2.4 Building the decision tree 

 

Once having successfully read the data from the dataset, the decision tree is 

ready to be built. To build it, the „J48()‟ function is used: 

> tree <- J48(survived~.,data=titanic.dataset) 
 

Parameters explanation: 

 „survived~.‟ – instructs the algorithm to classify the data into classes of the 

“survived” factor, and to categorize the data according to all of the other 

attributes (expressed with “.”). The tilde (“~”) symbol is used merely as a 

delimiter between the factor to categorize as and the factors to categorize 

by. 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 101 of 112 

 „data=titanic.dataset‟ – indicates the data source. 

 

5.2.5 Visualizing and evaluating the results 

 

Once successfully building the decision tree, its results can be viewed by the 

name of the object that the tree was stored into: 

> tree 

J48 pruned tree 
------------------ 
 
sex = female 
|   class = 1st: yes (145.0/4.0) 
|   class = 2nd: yes (106.0/13.0) 
|   class = 3rd: no (196.0/90.0) 
|   class = crew: yes (23.0/3.0) 
sex = male 
|   class = 1st 
|   |   age = adult: no (175.0/57.0) 
|   |   age = child: yes (5.0) 
|   class = 2nd 
|   |   age = adult: no (168.0/14.0) 
|   |   age = child: yes (11.0) 
|   class = 3rd: no (510.0/88.0) 
|   class = crew: no (862.0/192.0) 
 
Number of Leaves  :  10 
 
Size of the tree :  15 
 

Observing the resulting decision tree, it can be concluded that the attribute picked 

by the algorithm to be placed in the root node was the “sex” attribute, because it 

has the highest information gain among the 3 attributes: 

> information.gain(survived~.,data=titanic.dataset) 

      attr_importance 
class     0.059287937 
age       0.006410718 
sex       0.142391195 
 

It is perceivable that the female passengers are not classified by age, as are the 

male passengers. The error rates of this decision tree can be viewed in its 

confusion matrix: 

> summary(tree) 

=== Summary === 
 
Correctly Classified Instances        1740               79.055  % 
Incorrectly Classified Instances       461               20.945  % 
Kappa statistic                          0.4334 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 102 of 112 

Mean absolute error                      0.3089 
Root mean squared error                  0.393  
Relative absolute error                 70.6078 % 
Root relative squared error             84.0339 % 
Coverage of cases (0.95 level)          99.8183 % 
Mean rel. region size (0.95 level)      96.3426 % 
Total Number of Instances             2201      
 
=== Confusion Matrix === 
 
    a    b   <-- classified as 
 1470   20 |    a = no 
  441  270 |    b = yes 
 

Observing the above output, among a total of 2201 instances the tree correctly 

classified 1740 of them, which correspond to a percentage of 79.055% of the total 

instances, whereas it incorrectly classified 461 instances, which correspond to a 

percentage of 20.945% of the total instances. Observing the confusion matrix, it 

seems that the tree has real trouble in correctly classifying the survivals, since it 

has classified more than half of them as non-survivals. 

 

An alternative representation of the same tree, where the error rates for each leaf 

are visible: 

> as.party(tree) 

Model formula: 
survived ~ class + age + sex 
 
Fitted party: 
[1] root 
|   [2] sex in female 
|   |   [3] class in 1st: yes (n = 145, err = 2.8%) 
|   |   [4] class in 2nd: yes (n = 106, err = 12.3%) 
|   |   [5] class in 3rd: no (n = 196, err = 45.9%) 
|   |   [6] class in crew: yes (n = 23, err = 13.0%) 
|   [7] sex in male 
|   |   [8] class in 1st 
|   |   |   [9] age in adult: no (n = 175, err = 32.6%) 
|   |   |   [10] age in child: yes (n = 5, err = 0.0%) 
|   |   [11] class in 2nd 
|   |   |   [12] age in adult: no (n = 168, err = 8.3%) 
|   |   |   [13] age in child: yes (n = 11, err = 0.0%) 
|   |   [14] class in 3rd: no (n = 510, err = 17.3%) 
|   |   [15] class in crew: no (n = 862, err = 22.3%) 

 

Number of inner nodes:     5 

Number of terminal nodes: 10 

 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 103 of 112 

To create a visual representation of the resulting decision tree, the “plot()” function 

needs to be used. And because the tree contains multi-way splits, it needs to be 

coerced into a “party” class object in order to be plotted successfully: 

> plot(as.party(tree)) 

 

Figure 5.2.5-1: Detailed visual representation of the decision tree 

 

As is easily perceived, the 3rd class passengers have the lowest survivability, while 

the female passengers in general have the highest. Another interesting fact is that 

all of the 1st and 2nd class children survived. Passengers belonging to the 3rd class 

seem to be the most doomed – out of 706 people, 528 died. 

 

5.2.6 Discussion 

 

Observing the outputs, it can be concluded that most of the crew didn‟t make it 

(only 212 survivals out of 885 crew members) and about half of the children didn‟t 

survive as well (57 survived out of a total of 109 children). Regarding the rest of 

the passengers, a total of 296 women survived out of 402, but only 146 male 

passengers made it out of a total of 805. Also, the higher the class, the higher the 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 104 of 112 

survival rate tends to be (about more than half of the passengers of the 1st and 2nd 

classes survived, while only 178 3rd class passengers survived out of 706). 

Regarding the decision tree performance in classifying the passengers, the error 

rate was ~21%. 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 105 of 112 

6. Epilogue 
 

This study was conducted in order to explore the capabilities of the R language 

with regards to data mining and to connecting to, and exchanging information with, 

popular DBMSs such as MySQL and PostgreSQL. After thoroughly studying the 

language and its capabilities and conducting two case studies in which the data 

mining capabilities of the language using the association rules mining and 

classification methods were examined and evaluated, the can conclusion that can 

be drawn is that the R programming language‟s scalability with regards to data 

mining is great, as is its extensionality ability and also the speed it achieves when 

performing complex data mining calculations and model constructions. With little 

effort, a thorough statistical analysis and many data mining techniques can be 

accurately performed on information stored in databases, the results of which can 

be sufficiently visualized in order to allow information to be obtained by them and 

permanently stored outside the R environment, thus becoming available for further 

processing and manipulation even after the R session is ended. 

Finally, as a suggestion on the continuation of the case studies conducted for the 

sakes of this thesis, a clustering analysis using the “Nearest Neighbor” algorithm 

could be performed, in order to observe whether an unsupervised categorization of 

the data will be as accurate as the supervised categorization conducted in the 

second case study of this thesis using the “Classification” data mining method and 

utilizing the “C4.5” decision tree constructing algorithm. 

 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 106 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 107 of 112 

7. References 
 

[1] DBTechNet. Retrieved November, 2013, from http://dbtechnet.org/ 

[2] Genolini, C. (2008), “A (not so) short introduction to S4: Object 

Programming in R”. Retrieved November, 2013, from http://cran.r-

project.org/doc/contrib/Genolini-S4tutorialV0-5en.pdf  

[3] IBM, “Mining your Business in Retail with IBM DB2 Intelligent Miner”. 

Retrieved November, 2013, from http://www.ibm.com/developerworks/edu/dm-dw-

dm-retail_tutorial-i.html  

[4] Kumar, R et al (2012), "Classification Algorithms for Data Mining: A 

Survey", Department of Computer Science and Engineering, Jind Institute of Engg. 

& Technolog, Jind, Haryana, India, August 2012. Retrieved November, 2013, from 

http://ijiet.com/wp-content/uploads/2012/09/2-1.pdf 

[5] Palace, B. (1996), “Data Mining, a technology note prepared for 

Management 274A, Anderson Graduate School of Management at UCLA, Spring 

1996”. Retrieved November, 2013, from 

http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/data

mining.htm 

[6] The Comprehensive R Archive Network, “arules: Mining Association Rules 

and Frequent Itemsets”. Retrieved November, 2013, from http://cran.r-

project.org/web/packages/arules/index.html  

[7] The Comprehensive R Archive Network, “arulesViz: Visualizing Association 

Rules and Frequent Itemsets”. Retrieved November, 2013, from http://cran.r-

project.org/web/packages/arulesViz/index.html  

[8] The Comprehensive R Archive Network, “Kickstarting R”. Retrieved 

November, 2013, from http://cran.r-project.org/doc/contrib/Lemon-

kickstart/kr_rfunc.html  

[9] The Comprehensive R Archive Network, “Mining Association Rules and 

Frequent Itemsets”. Retrieved November, 2013, from http://cran.r-

project.org/web/packages/arules/arules.pdf 

[10] The R Project for Statistical Computing, “What is R?”. Retrieved November, 

2013, from http://www.r-project.org/about.html  

[11] Togaware, “Rattle: A Graphical User Interface for Data Mining using R”. 

Retrieved November, 2013, from http://rattle.togaware.com/ 

[12] Torgo, L. (2011), “Data Mining With R: Learning with case studies”. 

Published November 19, 2010, by Chapman & Hall/CRC. Retrieved April, 2013, 

from http://irandataminer.ir/files/book/DataMining-with-R-English.pdf 

http://dbtechnet.org/
http://cran.r-project.org/doc/contrib/Genolini-S4tutorialV0-5en.pdf
http://cran.r-project.org/doc/contrib/Genolini-S4tutorialV0-5en.pdf
http://www.ibm.com/developerworks/edu/dm-dw-dm-retail_tutorial-i.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-retail_tutorial-i.html
http://ijiet.com/wp-content/uploads/2012/09/2-1.pdf
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://cran.r-project.org/web/packages/arules/index.html
http://cran.r-project.org/web/packages/arules/index.html
http://cran.r-project.org/web/packages/arulesViz/index.html
http://cran.r-project.org/web/packages/arulesViz/index.html
http://cran.r-project.org/doc/contrib/Lemon-kickstart/kr_rfunc.html
http://cran.r-project.org/doc/contrib/Lemon-kickstart/kr_rfunc.html
http://cran.r-project.org/web/packages/arules/arules.pdf
http://cran.r-project.org/web/packages/arules/arules.pdf
http://www.r-project.org/about.html
http://rattle.togaware.com/
http://irandataminer.ir/files/book/DataMining-with-R-English.pdf


Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 108 of 112 

[13] University of Toronto, Department of Computer Science, “Data for 

Evaluating Learning in Valid Experiments”. Retrieved November, 2013, from 

http://www.cs.utoronto.ca/~delve/ 

[14] Wikibooks, open books for an open world, “R Programming/Introduction”. 

Retrieved November, 2013, from 

https://en.wikibooks.org/wiki/R_Programming/Introduction  

[15] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “Apriori algorithm”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Apriori_algorithm 

[16] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “Association rule learning”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Association_rule_learning  

[17] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., "Data mining”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Data_mining  

[18] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “Database”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Database  

[19] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “Lift (data mining)”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Lift_(data_mining)  

[20] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “MySQL”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/MySQL  

[21] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “PostgreSQL”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/PostgreSQL  

[22] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “Pruning (decision trees)”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Pruning_(decision_trees) 

[23] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “R (programming language)”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/R_(programming_language)  

[24] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “Rattle GUI”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Rattle_GUI  

http://www.cs.utoronto.ca/~delve/
https://en.wikibooks.org/wiki/R_Programming/Introduction
https://en.wikipedia.org/wiki/Apriori_algorithm
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Lift_(data_mining)
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Pruning_(decision_trees)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Rattle_GUI


Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 109 of 112 

[25] Wikipedia: The free encyclopedia. (2013, November). FL: Wikimedia 

Foundation, Inc., “Supervised learning”. Retrieved November, 2013, from 

https://en.wikipedia.org/wiki/Supervised_learning  

[26] Williams, G. (2009), “Rattle: A Data Mining GUI for R”. Retrieved 

November, 2013, from http://journal.r-project.org/archive/2009-2/RJournal_2009-

2_Williams.pdf  

[27] Wing, K. et al (2013), "Data Mining: An Introduction", University of North 

Carolina at Chapel Hill. Retrieved November, 2013, from 

http://www.unc.edu/~xluan/258/datamining.html  

[28] Yau, C. (2013), “R Tutorial An R Introduction to Statistics”. Retrieved 

November, 2013, from http://www.r-tutor.com/r-introduction/data-frame 

[29] Zhao, Q et al (2003), “Association Rule Mining: A Survey”, Nanyang 

Technological University, Singapore. Retrieved November, 2013, from 

http://sci2s.ugr.es/keel/pdf/specific/report/zhao03ars.pdf 

[30]  Zhao, Y. (2012), “R and Data Mining: Examples and Case Studies”. 

Retrieved November, 2013, from 

http://www.rdatamining.com/docs/RDataMining.pdf  

  

https://en.wikipedia.org/wiki/Supervised_learning
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://www.unc.edu/~xluan/258/datamining.html
http://www.r-tutor.com/r-introduction/data-frame
http://sci2s.ugr.es/keel/pdf/specific/report/zhao03ars.pdf
http://www.rdatamining.com/docs/RDataMining.pdf


Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 110 of 112 

  



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 111 of 112 

9. Appendix 

9.1 Rattle 

 

Rattle GUI is a free and open source software package providing a graphical user 

interface (GUI) for performing data mining using R. It is currently used around the 

world in a variety of situations – currently 15 different government departments in 

Australia and around the world use Rattle in their data mining activities, and also 

as a statistical package. Rattle provides considerable data mining functionality by 

exposing the power of the R Statistical Software through a graphical user interface 

[24]. 

Its purpose is to ease the use of data mining in R, simplifying many of the actions 

needed to be taken in order for R to be able to perform data mining on a dataset. 

The aim is to provide an intuitive interface that takes you through the basic steps 

of data mining, as well as illustrating the R code that is used to achieve this. Whilst 

the tool itself may be sufficient for all of a user's needs, it also provides a stepping 

stone to more sophisticated processing and modeling in R itself, for sophisticated 

and unconstrained data mining [11]. 

Rattle is also used as a teaching facility to learn the R language as well. There is a 

code tab which replicates the R code for any activity undertaken in the GUI, which 

can be copied and pasted. 

Rattle can also be used for statistical analysis or model generation. It allows the 

dataset to be partitioned into training, validation and testing. The dataset can be 

viewed and edited within the Rattle GUI [24]. 

Its interface is tab-oriented; Rattle accepts input from files, and its capabilities 

include the following: Calculation of statistical metrics, capability of carrying out 

various statistical tests, ability of performing data mining methods such as 

clustering or classification, ability of visualizing the results and constructing the 

relevant models (such as decision trees, for example), ability of building graphical 

charts such as histograms or bar charts to effectively represent these results.  

Rattle uses the Gnome graphical user interface as provided through the RGtk2 

package (Lawrence and Lang, 2006). It runs under various operating systems, 

including GNU/Linux, Macintosh OS/X, and MS/Windows [26]. 

 

9.2 Core (most useful / mostly used) functions 

 

The following is a list of some of the most common functions that are mostly used 

in R: 

 seq() – generates a sequence (for example, a mathematical sequence) 



Data Preperation And Preprocessing For Data Mining Using R 

Pazaras Christos  Page 112 of 112 

 rep() – repeats a supplied pattern 

 length() – returns the length of an object 

 mean() – calculates and returns the arithmetic mean of the components of 

an R object 

 var() – calculates and returns the variance of the components of an R 

object 

 dim() – prints the dimensions of an object 

 typeof() – prints the type of an object 

 class() – prints the class of an object 

 str() – prints the internal structure of an R object 

 library() – loads a package 

 factor() – transforms a vector into a factor 

 example() – very useful function, prints an example of the appropriate 

usage of the specified command or function 


