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Περίληψη

Στόχος  της  παρούσας  πτυχιακής  εργασίας  ήταν  η  μελέτη  της  ιστορίας,  των

βασικών  χαρακτηριστικών,  καθώς  και  των  χρήσεων  του  self-healing  –

συγκεκριμένα, σε σχέση με το IoT. Το self-healing έγινε γνωστό, αρχικά, ως μία

από τις ιδιότητες των αυτόνομων συστημάτων. Πολλά χρόνια έχουν περάσει από

τότε,  και  το  self-healing  έχει  γίνει,  πλέον,  ανεξάρτητο  ενώ  εξακολουθεί  να

εξελίσσεται μέχρι και σήμερα. Για αυτό και κρίναμε σημαντικό να μελετήσουμε και

να συγκρίνουμε διαφορετικές, γνωστές αρχιτεκτονικές που χρησιμοποιούνται στον

τομέα του Self-healing στο IoT. Αυτό που καταλάβαμε ήταν ότι κάθε αρχιτεκτονική

διαφέρει  και  μπορεί  να  είναι  χρήσιμη  σε  διαφορετικές  περιστάσεις  και  με

διαφορετικούς  τρόπους.  Δεν  υπάρχει  μία  και  μοναδική  «τέλεια»  αρχιτεκτονική,

καθώς  όλες  έχουν  τους  περιορισμούς  τους,  αλλά  κάθε  μια  από  αυτές  είναι

κατάλληλη  για  να  εντοπίζει  και  να  αντιμετωπίζει  διαφορετικά  προβλήματα.

Επομένως, μπορούμε με βεβαιότητα να πούμε πως το Self-healing, ανεξαρτήτως

μορφής, δύναται να να ενισχύσει το IoT, από άποψη ασφάλειας, ανθεκτικότητας

και αποδοτικότητας. 
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Abstract

The goal of this thesis was to study the history, the main features, as well as the

uses of Self-healing – specifically those in IoT. Self-healing was firstly introduced

as a property of autonomic systems.  Many years have passed since then, and

Self-healing has become independent and is, still, making progress today. For that

purpose,  we  deemed worthwhile  to  examine  and  compare  several  well-known

architectures  that  are  being  used  in  the  field  of  Self-healing  in  IoT.  What  we

understood  was  that  every  architecture  differs  and  can  be  useful  in  different

situations and ways. There isn’t a single perfect architecture, since they all show

limitations,  but  each  one  is  suitable  for  detecting  and  dealing  with  different

problems. Thus, we can safely tell that Self-healing, in all of its forms, will help IoT

level up in terms of security, durability and efficiency.
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Introduction

Internet of Things (IoT) refers to the expansion of Internet technologies so as to

include wireless sensor networks (WSNs). We will mainly talk about WSNs, since

it  is  a  sub-technology  of  IoT.  WSNs  are  largely  used  for  the  military,  on

smartphones, for intelligent environments and ubiquitous applications. In most of

the  cases,  WSNs  are  composed  of  hundreds  of  elements,  which  are  able  to

collect,  process,  disseminate  and  store  data.  The  elements  perceive  the

environment,  monitor  different  parameters,  collect  data  and,  afterwards,  they

transfer these data to the base stations. In military operations, WSNs are always

placed in a hostile area, which renders them vulnerable to physical contact. Thus,

it is of utmost importance to have some kind of protection.

WSNs are usually deployed to operate for a long period of time, which means that

they have to be available the whole time they are “out” there. Because of this, it is

important  and  even  a  requirement  nowadays,  to  be  self-managed  and  fault

tolerant.  This means that,  whenever a software or hardware error occurs, they

have  to  be  automatically  available.  Self-healing  and  autonomic  systems  have

come to solve this problem. We will now describe how autonomic systems work

and which is the main purpose of self-healing.

Self-healing in Internet of Things is quite a hot topic these days, thanks to the

growth rate of IoT. Bearing in mind how big the need to be self-managed and self-

sustained is, we have to find ways to create a better IoT with devices that will be

available for the whole time they are in production. In the present text we will give

the reader the basic idea of self-managed systems and self-healing systems and

how this can be implemented in IoT.

In section 1, we describe autonomic systems and their core functionalities, self-

healing  being  one  of  them.  Next,  in  section  2  we  talk  about  the  history  of
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autonomic  systems and we see some self-management  projects.  Moreover,  in

section 3 we dive into the self-healing and its core functionalities like self-healing

loop, self-healing states, self-healing policies, failure classification and we also talk

a look on existing self-healing applications. In section 4 we see self-healing in

internet of things and we describe in detail the architectures that are being used

for self-healing networks and we compare them. In section 5 we make a case

study of self-healing network and in section 6 we talk about our plans for future

work and last we conclude our work.
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Section 1: Autonomic Systems

Computing  systems  have  reached  a  level  of  complexity,  where  humans  can’t

interfere whenever there is a problem on the system. So, extra effort is needed  in

order to get the systems up and running again. This also includes increased costs

to maintain such complex systems, based on data from Performance Engineering

and Measurement Strategies. Figure 1 shows the millions lost per hour due to  the

systems being down. The main goal is to design and develop systems that will

adapt to changes in their environment on their own.

Autonomic  Computing  was  first  introduced  by  IBM in  2001 (Horn,  2001).  The

autonomic concept is inspired by the human body’s autonomic nervous system. By

analogy, humans have good mechanisms for adapting to changing environments

and repairing  minor  physical  damages.  Automatic  Computing  tries  to  integrate

those properties of the human body into the computing systems.

An autonomic  system is  self-managing,  meaning that  it  is  self-protecting,  self-

configuring, self-optimizing and self-healing  (Abbas,  Andersson, & Loewe  2010).

Those are the main properties and they are described as self-* properties.

Figure 1: millions of $ revenue/hour lost
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1.1 Self-Management

The general idea of self-management consists around the intention to free specific

complex systems, such as databases,  from system administrators and still allow

them to run around the clock. The autonomic system can continually monitor its

own  use,  and  check  for  component  upgrades,  for  example.  If  it  deems  the

advertised  features  of  the  upgrades  worthwhile,  the  system  will  install  them,

reconfigure itself  if  necessary, and run regression test to make sure all  is well.

When it detects errors, the system will revert to an older “image”. Figure 2 shows

how this process can be done in an accounting system. The journey toward fully

autonomic computing will take many years, but there are several important and

valuable milestones along the path.

1.2 Self-Configuration

Autonomic  systems  with  self-configuration  property  will  configure  themselves

automatically  in  accordance  with  high-level  policies,  which  are  representing

business-level objectives. When a component is introduced, it will incorporate itself

seamlessly, and the rest of the system will adapt to its presence, much like a new

cell  in  the  body  or  a  new person  in  a  population.  For  example,  when a  new

component is introduced into an autonomic accounting system, as in Figure 2, it

will automatically be informed about it and take into account the composition and

configuration of the system. It  will  register itself  and its capabilities so that the

other components can either use it or modify their own behavior appropriately.

1.3 Self-Optimization

Complex systems like databases may have hundreds of tunable parameters that

must be set for the system to perform optimally. Yet, few people know how to tune
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them.  Autonomic systems will continually seek ways to improve their operation to

make  themselves  more  efficient.  Just  as  muscles  become  stronger  through

exercise.  Autonomic systems will  monitor,  experiment  with,  and tune their  own

parameters and will learn to make appropriate choices. They will seek to upgrade

their functionality by finding, verifying and applying the latest updates.

1.4 Self-Healing

Autonomic computing systems with self-healing properties will  detect,  diagnose

and  repair  localized  problems  resulting  from  bugs  or  failures  in  software  and

hardware, perhaps through a regression tester, as in Figure 1. Using knowledge

about the system configuration, a problem-diagnosis component would analyze

information  from  log  files,  possibly  supplemented  with  data  from  additional

monitors  that  it  had  previously  requested.  The  system  would  then  match  the

diagnosis  against  known  software  patches,  install  the  appropriate  patch,  and

retest.

1.5 Self-Protection

Despite the existence of firewalls and intrusion detection tools, humans must  now

decide how to protect the systems from malicious attacks. Autonomic systems with

self-protection property will be self-protecting in two senses. On one hand, they

will defend the system as a whole against large-scale, correlated problems arising

from  malicious  attacks  or  cascading  failures  that  remain  uncorrected  by  self-

healing measures. On the other hand, they will anticipate problems based on early

reports from sensors and take the required steps to avoid mitigating them.
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Figure  2:  Problem  diagnosis  in  an  autonomic  system  upgrade
(accounting system)

Those properties are summarized in table 1.

Property Description

Self-

configuration

Automated configuration of components.

Self-

optimization

Components and systems continuously seeking different ways

to improve their performance.

Self-healing System automatically detects software and hardware problems.

Self-

protection

System automatically defends against malicious attacks.

Table 1: self-* properties
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Section 2: A Brief History

Before going into more detail about autonomic computing, self-healing, and what

makes them so necessary for our modern systems,  we first have to take a look at

the early stages of autonomic computing and its applications.  

One  of  the  early  self-managing  projects  was  initiated  by  Defense  Advanced

Research Projects Agency (DARPA) for military application in 1997. The project

was called the “Situational Awareness System” (SAS), and was part of the broader

Small Units Operations (SUO) program. The purpose of this project was to provide

the soldiers with better communication and location devices on the battleground.

Soldiers could create status reports, for instance regarding the discovery of enemy

tanks, on their personal device and have this information spread out among all the

other soldiers. This kind of information could turn out extremely helpful when a

soldier is entering an enemy area. Collected and transmitted data includes voice

messages, as well as data from unattended ground sensors and unmanned aerial

vehicles.  The  difficulty  with  these  personal  devices  is  that  they  have  to

communicate  with  each  other  under  ambiguous  situations,  possibly  while  an

enemy is jamming the equipment in operation, and they must at the same time

minimize any enemy interception. The latter is addressed by using multihop ad-

hoc routing. This is a device that sends its data only to the nearest neighbors,

who,   then,  forward  the  data  to  their  own neighbors,  until,  finally,  all  devices

receive  the data.  This  is  a  form of  decentralized peer-to-peer  mobile  adaptive

routing,  which has been approved as a challenging self-management problem,

especially because of the need to achieve a latency below 200 milliseconds from

the time a soldier begins speaking until the message is received. This problem is

solved by enabling the devices to transmit in a wide band of possible frequencies,

20-2,500 MHz, with bandwidths ranging from 10bps to 4 Mbps. For example, when

the next soldier is many miles away, communication can only be achieved at low
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frequencies, which translates in low bandwidth, which, then, may still be enough to

provide a brief but crucial status report.

Another project by DARPA related to self-management,  is the DASADA, which

started  in  2000.  The  objective  of  the  DASADA program was  to  research  and

develop a technology that  would  enable  mission critical  systems to  meet  high

assurance, dependability, and adaptability requirements. Specifically, it dealt with

the  complexity  of  large  distributed  software  systems,  a  goal  similar  to  IBM’s

autonomic computing initiative.

In  2001,  IBM introduced  the  concept  of  autonomic  computing.  Horn  (2001)  is

comparing complex computing systems with the human body, in the sense that it is

an autonomic system, but has an autonomic nervous system that takes care of

most of the bodily functions, thus relieving the body from the task of consciously

coordinating them. IBM proposed that complex computing systems should also

have  autonomic  properties  that  should  be  able  to  take  care  of  the  regular

maintenance. 

In 2004, DARPA started another project called “Self-Regenerative Systems” which

aims to “develop technology for building military computing systems that provide

critical functionality at all times, in spite of damage caused by unintentional errors

or attacks” (Adger  & Hughes, 2004). There are four key aspects to this project.

First,  the  software  generates  a  large  number  of  versions  that  have  similar

behavior, but slightly different implementation. With this technique the software is

rendered resistant to attacks and errors. Second, modifications to the binary code

can be performed, such as pushing randomly sized blocks onto the memory stack

that make it harder for attackers to exploit vulnerabilities. Third, a scalable wide-

area intrusion-tolerant replication architecture is being worked on, which should

provide  accountability  for  authorized  but  malicious  client  updates.  Fourth,

technologies are being developed that supposedly allow their system to estimate

the probability of a military system operator “hurting” the system and to prevent an

attack on the system.
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In  2005,  NASA joined the  game of  autonomic  computing  with  a project  called

“Autonomous Nanotechnology Swarm” (ANTS).  As an exemplary mission,  they

plan to launch into an asteroid belt a swarm of 1000 small  spacecrafts from a

stationary factory ship in order to explore the asteroid belt in detail. Since the 60-

70% of the swarm is expected to be lost, the surviving crafts must work together.

This is achieved by forming small  groups of workers (craft)  with a coordinating

ruler, which uses data gathered from workers to determine which asteroids are of

interest and to issue instructions.  Furthermore,  messenger craft  will  coordinate

communications between the members of the swarm and ground control. In table

2 we summarize all the projects that we discussed.

SAS

Situational Awareness

System

1997 DARPA Decentralized self-adaptive (ad-hoc) 

wireless network of mobile nodes that

adapt routing to the changing 

topology of nodes and adapt 

communication frequency and 

bandwidth to environmental and node

topology conditions.

DASADA

Dynamic Assembly for

Systems Adaptability,

Dependability, and

Assurance

2000 DARPA Introduction of gauges and probes in 

the architecture of software systems 

for monitoring the system. An 

adaptation engine then uses this 

monitored data to plan and trigger 

changes in the system.
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Autonomic Computing 2001 IBM Compares self-management to the 

human autonomic system, which 

autonomously performs unconscious 

biological tasks.

SPS

Self-Regenerative

Systems

2003 DARPA Self-healing (military) computing 

systems that react to unintentional 

errors or attacks.

ANTS

Autonomous

NanoTechnology Swar

2005 NASA Architecture consisting of 

miniaturized, autonomous, 

reconfigurable components that form 

structures for deep-space and 

planetary exploration.

Table 2: A Brief Chronology of Influential Self-Management Projects
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Section 3: Self-healing

IBM, (IBM Corporation, 2005) has included self-healing as one of the main four

properties that are defined in an autonomic system. Ghosh et al. (2006) provide a

more recent definition of self-healing systems:

“…a self-healing system should recover from the abnormal (or “unhealthy”) state

and  return  to  the  normative  (“healthy”)  state,  and  function  as  it  was  prior  to

disruption.”

One might argue that self-healing systems are just subordinates of fault-tolerant

systems.  They  are,  indeed,  similar  and Ghosh,  Sharman,  Rao,  Raghav,  and

Upadhyaya (2006) admit that self-healing systems are, in some cases, secondary.

“Survivable” systems are generally handling the malicious behavior by containing

failing components and securing the essential services. However, self-healing is

not  that  simple.  Those  systems  are  implementing  methods  for  stabilizing,

replacing, securing, isolating but more essentially methods to prevent and repair

faults.

The main reason to enhance a system with self-healing is to achieve continuous

availability (Psaier & Dustdar, 2010). Currently, self-healing techniques are mostly

in charge for the  maintenance of health.  Enduring continuity  includes resilience

against  intended,  necessary  adaptations  and unintentional  behavior.  Also,  self-

healing implementations use detecting disruptions, diagnosing failure and deriving

a remedy, and then recovery with a sound strategy. Moreover, it is essential for the

fast detection of the system misbehavior.  This is only possible by continuously

analyzing the sensed data. The system design leads to a control loop, which is a

set  of  policies  and  guidelines  to  implement  self-healing  in  a  system.  We  will

describe control loop in the next sub-section.

In figure 3 we see the origins of the self-healing property and its properties.
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3.1 Self-healing loop

Earlier  we described the main properties of the autonomic manager.  The main

design of an autonomic manager is also based on a loop, which is called MAPE-K

(Monitor, Analyze, Plan, Execute, Knowledge) loop and consists of five functions.

The  collaboration  of  those  functions  assembles  the  work  of  the  autonomic

manager.

The idea of a continuous multi-state processing loop is also implemented in the

self-healing loop. In self-healing design, the five autonomic processes are reduced

into three main stages in a loop. There are many implementations of these three

stages and they have been given several different names. For example, Kephart

and Chess, (2003), identify them as “detection, diagnosis, and repair”. Salehie and

Tahvildari,  (2009),  call  them  “a  sum  of  self-diagnosing  and  self-repairing  with

discovery,  diagnosing,  and  reacting  stages”.  Markus,  Huebscher  and  McCann,
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(2008), define them as  “detect, diagnose and fix actions”. Looking at all of the

researched work, it is safe to say that the first stage, detection is the most ample

definition.  Detection is  the act  of  uncovering or  revealing an alternating of  the

normal  behavior.  Analysis  and  planning functions  are  included  in  the  stage of

Diagnosis  in  the  self-healing loop implementations.  A set  of  rules  and policies

support Diagnosis in planning. The last stage of the loop is Recovery. Although this

stage is considered just as extended, it is not always entirely successful. Figure 5

shows the form of the self-healing loop with the dataflow among the three stages.

Detecting:  Filters any suspicious status information received from samples and

reports detected degradations to diagnosis, (Psaier & Dustdar, 2010).

Diagnosing: Includes root cause analysis and calculates an appropriate recovery

plan with the help of a policy base.

Recovery: Carefully applies the planned adaptations meeting the constraints of the

system capabilities and avoids any unpredictable side effects. 
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3.1.1 Autonomic Manager

The  autonomic  manager  is  a  component  that  implements  the  MAPE-K  loop,

(Sterrit  & Bustard, 2003). For a system component to be self-managing, it must

have automated methods to collect the details it needs from the system, as well as

analyze these details and, in case something has changed, it has to be able to

create a plan or a series of steps/actions which it will then have to perform. When

these actions are automated, a control loop is formed.

To perform all these actions, the component is separated in four parts that share

information-knowledge  with  each  other.  Those  four  parts  cooperate  with  each

other to provide the MAPE-K loop functionality (Sterrit & Bustard, 2003).

In figure 5 we see how the autonomic manager is formed.

Figure 5: Autonomic Manager
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3.1.2 Monitor

The monitor function is responsible for collecting the details from the managed

resources. These details may include topology information, metrics, configuration

property settings and so on. The kind of the data varies:  some data can be static,

other  can  be  changing  slowly  and  some  may  even  be  dynamic  and  change

through  time.  The  monitor  function  correlates  and  filters  these  details  until  it

determines a symptom that needs to be analyzed. Afterwards, this symptom is

passed onto the analyze function. The monitor function is a crucial phase of the

autonomic manager because it must collect and process a large amount of data,

as well as organize and make sense of those data.

3.1.3 Analyze

The analyze function provides mechanisms to  correlate,  observe,  and analyze

complex situations. Also, it tries to determine if any changes are needed to be

made to the managed resource. If any changes are, in fact, required, the analyze

function  generates  a  change  request  and  passes  it  to  the  plan  function.  This

request describes the modification that the analyze component deems necessary

or desirable.

3.1.4 Plan

The plan function creates or selects a procedure to execute a desired change in

the managed resource. A change plan, which represents a set of changes for the

managed resource, is created and then passed to the execute function.
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3.1.5 Execute

The  execute  function  provides  the  mechanisms  to  schedule  and  perform  the

necessary changes to the system. This function is responsible for the execution of

the change plan that was generated from the plan function

3.1.6 Knowledge

The knowledge is usually stored in a knowledge source, which  might be a registry,

a dictionary, a database or any other repository that is capable of storing data. This

Data is used by the autonomic manager’s four functions (monitor, analyze, plan,

execute) and stored as a shared knowledge. Those data might be different from

one another.

3.2 Self-healing states

The robustness of the self-healing must not depend on a single element, but the

system  as  a  whole  should  be  able  to  recover  from  failures  (White,  Hanson,

Whalley, Chess, & Kephart 2004). So, single element failures should not affect the

whole system. In many cases there is no fine line clearly separating acceptable

from  unacceptable  state.  Instead,  there  is  momentary  transmission  zone  in

between.

The  most  recent  model  is  represented  by  Ghosh  et  al.  (2006).  Specifically,  it

shows  a  fuzzy  transition  zone  with  an  unclear  “Deprecated  State”.  This  state

reflects the fact that adverse conditions of a system cause self-healing systems to

still be in an acceptable state, but, closer to the failure. This concept regards the

fact that large systems usually do not stop all the operations when a failure occurs,

keep the operations going, keep the operations performing, although more poorly.

This provides the time that the system needs to apply the recovery techniques and
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allows is to bring the system back on track without complete disruption. The model

we described is shown in figure 6. 

3.2.1 Maintenance of Health

The system should check for faults periodically, in order to continue monitoring its

health.  Additionally,  when  a  system  recovers  from  a  malfunction,  different

approaches may apply to keep the functionality of the system up to a normal level.

There are different strategies used to maintain the health of the system, such as

maintaining redundancy of components, probing into the system and assessing

the state of the system, building diversity, etc. as shown in figure 7.
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3.2.1.1 Maintaining redundancy

Cloning components to maintain redundancy is a standard choice for maintaining

a  the  system  health.  However,  there  are  various  redundancy  strategies  that

someone could choose from. Figure 8 shows some of those strategies and they

are, also, briefly described in table 3.
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Strategy Description

Self-assembly, 

(Nagpal, 

Kondacs, & 

Chang, 2003)

Describes the biological cells and demonstrates the ability of

the system to survive failures based on a cell division model.

Cell division,  

(George, Evans, 

& Marchette, 

2003)

All cells start with an initial configuration and follow transition

rules  like  a  finite  state  machine.  Self-healing  provides:

evidences, localization, adaptation, adequate redundancy and

the unique distinction of awareness towards the environment.

Multi-agent 

decision making, 

(Huhns, 

Holderfield, & 

Gutierrez 2003)

Redundant agents are used to keep the system running with

different algorithms to provide a better software solution.

Table 3: maintaining redundancy strategies

3.2.1.2 Maintaining by probing

Probing is another mechanism, which is generally used to get information from the

system, in order to monitor its health. Figure 9 shows the different strategies that

exist to get these information from the system. Table 4 shortly describes those

strategies.
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3.2.1.3 System monitoring architecture model

The  architecture  of  a  system  is  always  difficult,  and  self-healing  is  not  an

exception. Many steps have been taken towards the right direction but we still

have a long road ahead. In this subsection we will describe some implementations

of Architectural  Description Language (ADL) and another implementation called

“Component relation & regularities”. ADLs are being utilized to define the system

architectures and components that are, comprise a necessary part of self-healing.

Georgiadis, Magee and Kramer, (2002), examine an implementation that depends

on Darwin ADL and Jackson’s alloy language in association with a monitoring tool

to view the runtime structure of a distributed system. This implementation retrieves

the configuration from the components and tries to keep it the same when update

events are (being) broadcasted.  Dabrowski and Mills (2002), suggest that Java

programming will make it simpler and easier for system implementers to determine

the  self-healing  properties  of  their  code.  Java  being  on  the  background,  they

believe that they can design a ubiquitous architecture where components must

typically self-heal in response to changes. Another approach by Dashofy,  Hoek

and Taylor (2002), defines the architecture of the system as represented by xADL

2.0 an extensive XML-based ADL. Dabrowski and Mills, (2002), have proposed an
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architecture-based adaptation in a service discovery system. Discovery protocols

in general help the components of the system to find each other over a network. 

The other categories of monitoring architecture are representing regularities in a

system  and  providing  a  relational  model  of  the  system.  Usually,  those  two

architectures  are  represented  as  one category  called  “component  relation  and

regularities”. In De Lemos and Fiadero (2002) the strategy which is used is based

on  faulty  components  and  the  reconfiguration  of  the  system.  Their  system

architecture may apply numerous layers for doing the following:

1) Computation between the components of the system.

2) Coordination between interactions of components.

3) Configuration — which decides when and how components and connectors link

up.

Every system that is likely going to change should have regularities, as pointed out

by Minsky, (2003). Distributed systems often “carry” components that are built on

different software and hardware, and he pointed out the desire that these systems

have to include desired regularities among the components. These regularities are

achieved thanks to  the artificial laws. Law Governing Interaction (LGI) is one of

them and is  used to  form those laws.  LGI  is  a  message mechanism between

distributed components of  a system. An LGI law has a basic function and this

function is used to regulate the exchange of messages in a community. LGI law

has an exceptional feature: it can be defined over events occurring only for some

members  in  the  community.  Grishikashvili  (2001),  pointed  out  that  appropriate

control  laws  governing  communication  must  exist  for  any  system  to  remain

functional in a changing environment. Raz, Koopman and Shaw. (2002) came up

with a template design mechanism to lower the requirements of human.  
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Stategy Description

Grid adaptation / 

Coording SM (Cheng, 

Garlan, Schmerl, 

Steenkiste, & Hu, 

2002)

Different software architecture & monitoring infrastructure

that can be maintained on runtime and can be used for

system  configuration.  It  consists  of  three  layers:  task,

system-monitoring  or  “probes”  and  information.  Probes

incorporate  the  lowest  level  of  abstraction.  In  the

information  layers  meters  are  being  used  to  report

information via bus (also known as reporting-bus).

Decision & control 

layer (Inveraldi, 

Mancinelli, & Marinelli,

2002)

A similar architecture to the previous. It introduces a new

layer  called  “decision  &  control”  which  receives

information  from  the  reporting  bus  and  optimizes  the

metrics.  Moreover,  it  reconfigures  the  system  by

introducing new modules.

Feedback control loop

(Shaw, 2002)

Data  instrumented with  probes,  which  reports  raw data

into the probe bus and is used for software adaptation.

Adaptive mirroring 

(Cheng, Huang, 

Garlan, Schmerl, & 

Steenkiste 2004)

This  approach  is  based  on  the  utilization  of  probes  to

intercept a system workflow and circumnavigate data and

control through a different path.

Sensors gathering 

data from functional 

layer (Merideth & 

Narasimhan  2003)

In this strategy, two types of sensors are used. The ones

called  State  Sensors  (SS)  that  gather  information  from

functional layer and the other Analysis Sensors (AS) and

those that collect messages flowing through the system.

Table 4: Maintaing by probing strategies
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3.2.1.4 Diversity in system

Diversity  is  an  important  foundation  of  robustness  in  biological  organisms.  In

comparison  with  computer  systems,  a  lack  of  diversity  is  noticeable;  this

sameness between the systems makes them vulnerable to attacks, because the

attacker may replicate the same attack in different systems and still be successful.

Sharman et al., (2004), have proposed a novel paradigm for security functionality-

based systems. Healing is not performed in the system, but in the functionality that

the system has. Diversity is created by designing a single function which will run

on  different  systems.  As  the  systems are  designed  independently,  it  becomes

difficult for any intruder to break through all of them. Forrest, Somayaji and Ackley

(1997), have come up with a design model where the main strategy is to limit the

consistency  in  software,  thus  will  make  the  intrusion  much  more  difficult  to

replicate.  For  this  design,  Forrest  et  al.,  (1997),  have  given  guidelines  to

implement it,  such as adding/deleting nonfunctional codes, reordering the basic

blocks of compiled codes in random order, etc. Inverardi et al. (2002), mentioned

that identifying critical parts in the source code is important for providing different

alternatives. Figure 10 depicts the different strategies using system diversity for

maintaining  the  system health.  The  root  node of  the  tree  structure  used  here

illustrates  the  concept  as  a  whole,  while  the  leaf  nodes  represent  different

strategies.
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3.2.1.5 Performance log analysis

Knop, Schopf and Dinda, (2002), propose a scheme for the analysis of data on the

performance measures of the system, which can be used for the diagnosis  of

faults, the detection of an intrusion and the facilitation of the healing process. They

built  a library called “Watchtower”,  based on Windows NT/2000, which monitors

the command lines, the console and any streaming operations. Event Log analysis

is  another  approach,  which uses different  time-series techniques for  predicting

rare events and can also be used to predict target events  (Sahoo et al., 2002),

across a computer network.  Hong,  Chen, Li and Trivedi  (2002), propose a Finite

Automata scheme to describe the aging and rejuvenation states of software. This

model  contains elements (converters)  that  detect  software aging by monitoring

periodically for typical symptoms. Figure 11 shows all the strategies that are being

used for using performance log analysis to maintain system health.

Below we summarize the models and the strategies.

33 of 107

Figure 11: Performance log analysis



BSc Thesis of Petros Stergioulas

Models Strategy

Maintaining redundancy Self-assembly, (Nagpal et al., 2003)

Cell division, (George et al., 2003)

Multi-agent decision making, (Huhns  et

al., 2003)

Maintaining by probing Grid adaptation / Coording SM, (Cheng

et al., 2002)

Decision & control layer, (Inveraldi et al.,

2002)

Feedback control loop, (Shaw, 2002)

Adaptive mirroring, (Cheng et al., 2004)

Sensors gathering data from functional

layer, (Merideth & Narasimhan, 2003)

ADL Approach Darwin  ADL  and  Jackson's  alloy  for

runtime view, (Georgiadis et al., 2002)

ArchJava  language  with  Java  for

ubiquitous  computing,  (Dabrowski  &

Mills, 2002)

XADL 2.0, (Dashofy et al., 2002)

Rapide for service discovery, (Aldrich et

al., 2002)
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Component relation & regularities Isolation  of  faulty  component,  (De

Lemos & Fiadeiro, 2002)

Regularities  in  architecture,  (Minsky,

2003)

Artificial  law  cybernetic  foundation,

(Grishikashvili, 2001)

Template design, (Raz et al., 2002)

Diversity in system Functionality-based  healing,  (Sharman

et al., 2004)

Diversity  in  vulnerable  places,  (Forrest

et al., 1997)

Identification of critical path, (Inveraldi et

al., 2002)

Performance log analysis Monitoring  and  reducing  performance

data, (Knop et al., 2002)

Predicting events (Sahoo et al., 2002)

FSA for  system rejuvenation  (Hong  et

al., 2002)

Table 5: Summarized view of the different strategies to maintain system health
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3.2.2 Detection of System Failure

Failure detection is another major field of research. The expectation is that any

secured  system should  easily  find  a  failure  or  the  presence  of  any  malicious

software.  It  must  be  smart  enough to  gauge the  degree of  malfunction  in  the

system and estimate whether the system actually needs recovery or not. As in

biological systems, the system should recover exactly as the body recovers from a

wound leaving the other functions unaltered. Similarly, if a module in the system is

under threat, the other modules should function properly, as before. In this section

we will discuss about policies that are being used to encounter failure detection.

Figure 12 demonstrates the different policies.

3.2.2.1 Something amiss

In this subsection, we discuss about strategies whose job is to detect if something

is missing from the normal behavior of the system. Nagpal et al. (2003) proposed

a strategy in which the agents are always about their neighbors. So, if they sense

that any neighbor is missing, they are able to replicate him. Similarly,  George et al.

(2003), point out that in the DWFS paradigm, any failure is sensed by the absence
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of messages. Aldrich et al. (2002), in their gardening module, use a simple policy

to detect failures. It senses a defect when responses to a query are not received.

Dabrowski  and  Mills  (2002), proposed  that  failure  in  receiving  scheduled

announcements may reveal that the component has failed. Jini,  (Apache, 2012-

2015), provides broadcast messages about the accessibility of resources. Figure

13 shows the different strategies for detecting failure by sensing something amiss

from regular behavior of a system.

3.2.2.2 System monitoring model

This subsection deals with policies suitable for architectures where the system

monitors components by probing. Garlan  and Schmerl (2002), have mentioned

that  monitored  values  can  be  abstracted  and  related  to  these  architectural

properties of the model. This is the typical model representation scheme adopted

by most ADLs. Cheng et al. (2002) propose that, for Grid architecture, the probes

and  gauges  report  low  level  monitoring  information  that  is  used  for  triggering

events.
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3.2.2.3 Notification of foreign element

In this subsection we will talk about the different existing approaches for detecting

system  failure  by  distinguishing  foreign  elements. Merideth  and  Narasimhan

(2003), point out that notifying about foreign element plays a significant role in

proactive  containment  strategy.  Faulty  processes  generally  attempt  some

communication; this scheme tries to limit this action whenever it is possible. Thus,

this  method tracks  all  possible  avenues (secure  and covert)  to  determine if  a

malice replica in  a group of  processes is  affecting processes of  other  groups.

Dashofy et al. (2002), seek to depict the differences between two architectures

specified by xADL 2.0 in the form of an architectural difference document, called

“diff”.  This document shows the differences between the two architectures and,

therefore,  can also recognize the presence of  foreign elements in  the system.

Figure 14 depicts those two strategies.
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3.2.3 System Recovery

In this section we look closely on the different healing techniques that are being

used to return in a healthy state. Τhe most important factor in self-healing are the

components that are dealing with the actual healing. It is, therefore, when a self-

healing system detects the abnormality that it should readily apply its policies for

healing.  Those  policies  may  consist  of  redundancy  techniques  like  producing

replicating components, applying repair strategies or use the Byzantine recovery

and those are the policies that we will talk about here. Figure 14 depicts these

policies.

3.2.3.1 Redundancy techniques for healing

Nagpal et al., (2003) suggest that, for the model involving the self-assembly of the

components, the system could self-repair and, also, regenerate. By regenerating,

the  agents  can  replicate  components  to  replace  the  neighbors  that  are  not

available (dead neighbors) and thus recreate the entire structure. Regeneration

can be used even if a large part of the system is destroyed, as long as the system

has enough reference points. George et al. (2003), approach the healing process

as if it was used by a biological system: the system produces as much cell as it
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can, in order to combat the intrusion, so that it  can survive in some way. The

Recovery-Oriented  Computing  research  project  [35]  is  also  utilizing  a  similar

approach  to  affect  the  isolation  of  faulty  components  and  provide  redundancy

techniques for safe recovery.

3.2.3.2 Architecture models and repair strategies

The usual  exception catching mechanisms are often tightly  integrated with  the

application and coupled with the source code. Those mechanisms are good for

handling runtime problems, but they may not be able to find the true source of the

problem.  Also,  these  methods  are  not  recommended  if  the  system  presents

abnormalities,  such  as  performance  degradation.  Garlan  and  Schmerl (2002),

proposed that, for a system to be self-healing, it should be able to adapt in any

situation that might fall outside of the system usual behavior. Different repair plans

can be used so that the system can come back on its normal performance levels.

In  Figure  17  we  demonstrate  the  repair  plans  that  exist  and,  shortly,  we  will

discuss them.
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As we discussed above, the repair strategies are crucial for the system to return to

its normal state again. Cheng et al. (2002), proposed an architecture which uses

the system information that are provided by gauges. In this architecture, the repair

strategies first try to find out how the problem occurred and, then, appraise how to

repair  it.  In  the  first  place,  the  repair  strategies  may  form  a  sequence  of

preconditioned Repair Tactics that locate the problem and determine applicability.

Then, the tactics have to choose which repair script to execute depending upon

the  tactic  chosen.  Every  module  that  implements  self-healing  has  to  be

coordinated  with  the  other  modules  to  maintain  consistency  in  information

acquisition.  In a similar manner, regarding the architecture, the application of high

level repair action plans has been suggested by Valetto and Kaiser (2002), along

with a feedback control loop in a targeted system for software adaptation/for the

software to be able to adapt.

Combs  and  Vagle,  (2002),  introduced  an  architecture  and  it  is  described  as

Service  and  Contract  (S+C)  protocol,  which  can  dynamically  replace  a  failed

service with a healthy one.

Dashofy  et  al.,  (2002)  have  proposed  an  event-based  configuration  in  which

specific steps have to be followed for the repair plan to be executed. Those steps

are:

1. Components  and  connectors  that  are  about  to  be  removed  can  do  the

following actions:

a. Clean up

b. Save their state

c. Send a final message

1. Components  that  are  in  an  unhealthy  state  are  being  prevented  from

sending messages.

41 of 107



BSc Thesis of Petros Stergioulas

2. Components, connectors and links are removed and added as required.

3. The components from the unhealthy state come back online again.

Component interaction-based healing covers a wide area of techniques and here

we will discuss about:

1. Computer binding to satisfy architectural constraints,

2. soft state and application recovery,

3. isolution of faulty components.

Figure 18 depicts the above techniques and then we discuss about them.

Another proposal for a system architecture has been put forward by Georgiadis et

al.,  (2002).  Specifically,  when current  configuration  undergoes a  change,  each

configuration  manager,  not  only  computes  the  binding  needed  to  satisfy  the

architectural  constraints  for  each  required  port,  but  it/he  evaluates  a  set  of

configuration rules and reevaluates the selector factors. Only after all the required
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ports are bound/ secured, the system stabilizes. In short, the system is able to

remain true to its specifications through the addition and removal of components.

Dabrowski  and  Mills (2002),  proposed  a  service-discovery-based  architecture,

where  the  system makes  use  of  two  recovery  techniques:  soft-state  recovery

techniques and application level persistency. In the first one, the system makes

periodic announcements about the current state of the system. As for the second

one, it is guided by typical application level policies for recovery.

De  Lemos  and  Fiadeiro (2002),  emphasize  more  the  isolation  of  the  faulty

components and the reconfiguration of the system. Through the externalization of

all communications, the healing of faults occurring at the level of an element to the

connectors through which that element interacts with the rest of the organization

can  be  restricted.  For  fault  treatment,  this  approach  strongly  depends  on  the

dynamic  reconfiguration  of  the  system architecture.  In  our  case,  the  proposed

solution would achieve such a system reconfiguration after performing a series of

atomic operations, until the final attainment of a stable system state.
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Aldrich et al. (2002) and Dashofy et al., (2002),  are the ones who tried to create

systems that are event-based. Aldrich et al. (2002), created a gardening system in

which any component can self-heal itself in a response of changes. A gardening

module stays in a specific life cycle if it fails to receive any query within a fixed

time  limit.  Likewise,  Dashofy  et  al.  (2002),   propose  another  event-based

architecture which used two xADL 2.0. The one will be the current architecture and

the other will be the architecture that will be used after the repair plan is activated.

With the help of ArchMerge we can merge two architectures, since this tool can

spot the differences between the two architectures and merge them into one.

3.2.3.3 Voting methods for healing/Byzantine agreement

In this section we will talk about methods that are based on a voting mechanism.

Merideth and Narasimhan (2003),  proposed the restriction of a  malicious fault,

using active replication along with  a voting technique,  the system can tolerate

processor and process level faults, as well as arbitrary faults. This method can find

ways to figure out if a replica in a group of processes affects the other processes

of  other  groups.  Byzantine  agreement1 is  used  to  spot  a  malicious processor,

using active replication with majority voting. If a group of processes is infected with

a  malicious  fault,  by  using  the  voting  algorithm to  test  the  output  results  that

produced the processes, faults can be detected and tolerated.2

1. Lamport, Shostak and Pease, (1982), proposed to achive reliability among the replica of system
(or  component)  to  take  the  majority  voting  among  them.  To  accomplish  this  technique  two
conditions have to be met: (a) all non-faulty components must have the same input value and (b) if
the unit is non-faulty, then all non-faulty components use the same input.

2. The weakness with this strategy is that the a faulty component can provide correct input values
and whenever its outputs are going to count on the vote, so it  could avoid the Byzantine fault
detection.
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3.3 Self-healing policies

Influenced  by  AI  research  on  human  behavior,  Norman,  Ortony  and  Russell

(2003), proposed a three-level model based on reaction, routine and reflection.

Then, Kephart and Walsh (2004) based on Norman’s research (2003), defined a

framework  which  uses  the  above  principles.  This  framework  is  called  Unified

Framework  and  has  three  different  types  of  policies:  Action,  Goal  and  Utility

Function. We will describe the three types of policies in the next sub-section.

3.3.1 The Unified Framework

The unified framework is based upon the notions of states and actions that are

quite  familiar  in  the  computer  science  field,  particularly  in  the  realm  of  AI.  In

general, we can describe a system or its components being in a state S at a given

moment in time. Typically, the state S can be described as a vector of attributes,

each of  which  is  either  measured directly  by a sensor,  or  perhaps inferred  or

synthesized from lower-level sensor measurements. A policy defines an action a to

be taken, the result of which is that the system will make a transition to new state

σ2. This sequence of events is described in figure 19.
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.We  present  the  policies  from  the  lowest  to  the  highest  level  of  behavioral

specifical.

1. Action policies. This type of policy is the most simple. This policy dictates

the action that has to be taken when the system is in a given current state.

Typically  this  takes  the  form  of  IF  (Condition) THEN  (Action),  where

Condition  specifies  a  state  or  a  set  of  possible  states  that  satisfy  the

Condition.  Note  that  the  state  that  will  be  reached  it  is  not  specified

explicitly.  Probably,  the  author  knows which  state  will  be  reached  upon

taking the recommended action, and deems this state more desirable than

the states that would be reached via other actions.

2. Goal policies. Action policies are good for simple systems, but sometime

the system will need stateless actions instead of predefined. Here comes

the Goal policy. Rather than specifying exactly what to do in the current

state S, Goal policies specify either a single desired state σ, or one or more

criteria that characterize an entire set of desired states. Any member of this

set is equally acceptable. Thanks to Goal policies the system does not rely

on human explicitly  in  order  to  define  the  action  to  be  taken when  the

system is in the current state. The system is responsible for computing an

action a that will cause the system to make a transition t from the current

state  S to some desired state  σ. This policy permits greater flexibility and

frees  the  human  policy  makers  of  knowing  low-level  details  of  system

function.

3. Utility Function Policies. A Utility Function policy is an objective function

that  expresses the value of each possible state.  Utility  Function policies

generalize Goal policies. Goal policies are performing a binary classification

between desirable and undesirable states. Meanwhile, what Utility Function

policy does, is giving a real value on each state, without the desired state

being  specified  in  advance.  Utility  Function  policies  provide  more  fine-

grained  and  flexible  specifications  of  behavior  than  Goal  and  Action
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policies.  In  situations where Goal  policies would conflict,  Utility  Function

policies allow for unambiguous, rational decision making by specifying the

appropriate trade-off.  In many cases, Utility  Functions can require policy

authors to specify multi-dimensional set of preferences.

It is instructive to compare our broad definition of policy to the standard definition

used in AI, namely that a policy specifies a mapping from any state to the action

that should be taken in that state, (Russel, 2003). In our definition, policy is a set of

Action policies, in which the Conditions fully cover the state space and in which

each state is mapped to a unique action. In the AI definition, there are no policy

conflicts,  and the policy is a single coherent,  consistent mapping from state to

action  (Russel  and  Norvig,  2003). However,  in  any  autonomic  system  or

component an Action policy must be defined for every state and provide a single

unique action for each one. Sadly, conflicts are possible in autonomic systems,

because Action policies are created manually by people.

Alternatively, action can be automatically come from the other forms of policies.

Figure 20 depicts the relationship between the different types of policies in the

unified  framework.  Goal  policies  are  translated  into  actions  during  the  system
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operation  by  one  out  of  a  variety  of  methods  including  generating  planning,

(Russel  and Norvig 2003). This method of generating a sequence of actions in

order to achieve the desired goal, takes into account the results of performing an

action.

Implementing Utility Function policies requires optimization algorithms. Given that

Utility Functions are a function of states, it might appear easy and natural to use

optimization to directly identify the most  desirable state as a Goal,  from which

actions  can  then  be  derived  via  planning  and/or  modeling.  In  many  dynamic

autonomic computing scenarios, Utility Function policies would do the optimization

online to determine the best action for the current state. Usually, Utility Function

policies  are  viewed  by  people  as  generalizations  of  Goal  policies.  Indeed,

conceptually,  a  utility  function  can be defined by  specifying  a  complete  set  of

disjoint goals and assigning values to them. On the other hand, although Action

policies  are  computed  by  optimizing  Utility  Function  policies,  there  is  no

meaningful sense in which Utility Function policies can derive from Action policies

because  Action  policies  are  defined  over  the  current  state  space  and  Utility

Function policies are defined over the desired state space.

Although not shown, there may also be self-loops in Figure 20. For example, Utility

Functions may be translated  into  other  forms of  Utility  Functions for  usage in

multiple levels of decision making. In this case, Utility Functions correspond to the

same  value  system  translated  into  other  state  spaces.  For  instance,  a  Utility

Function at one level could specify the relative value of different service levels—to

be used for optimizing the performance of a stream of transactions in one part of

the system—while a Utility Function at another level could specify the value for

obtaining different amounts of computational resources—to be used for optimally

allocating  resources  throughout  the  system.  Generally,  to  derive  some  Utility

Function B from Utility Function A, a procedure must compute, for each state in the

space of  B,  the  optimal  value  that  could  be  obtained in  the  space of  B.  This

requires  optimization  algorithms  and  a  model  of  how  available  actions  can
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transform the  state  space of  B to  the  state  space of  A.  The next  section  will

demonstrate  via  a  simple  example  how  a  service-level  utility  function  by  one

autonomic component can be transformed into a resource-level function so as to

be  used  by  another  autonomic  component.  One  can  easily  imagine  other

examples in which Goal policies at one level can be transformed into Goal policies

at another level.

3.4 Failure classification

Failure classification is always a hard task in computer networks with a complex

structure. Βoth Classification and identification failure can help to choose the right

recovery  strategy  for  our  system.  Generally,  a  failure  can  occur  in  the  whole

system or in one of its components. The occurrence of a failure is defined as an

event at runtime, where the system behavior is different from the expected one.

Ghosh  (2006), provides  a  comprehensive  fault  classification  for  fault-tolerant

systems.  Coulouris,  Dollimore  and  Kindberg (1999) provide  a  classification  of

faults  in  regard  to  distributed  systems.  Table  6  represents  a  summary  of  the

identified classes relevant to self-healing research.

Another fault classification is provided by Kopetz, (2011), which partitions failures

into  dependent  on  value  or  timing  by  nature.  A  failure  can  be  recognized

consistently  by  all  affected  parts  of  the  system.  Byzantine  failure  is  another

approach which is also called the two-faced type and can only be recognized by

3k + 1 components (k is the number of the tolerated failures). A system can deal

with the effects of a benign failure, whilst a malign failure exceeds the recovery

capabilities and may cause total failure. Finally, a failure can be identified by the

number of  occurrences in  a given time interval.  Permanent failures occur  only

once  and  remain  in  faulty  state  until  repair.  Transient  failures  recover  by

themselves and can appear repeatedly.
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While the system is getting larger and more complex, the failure detection and

immediate classification is becoming harder and not such a straightforward task.

Class Affects Description Possible 

detection 

Possible 

resolution

Crash failure Process Externally 

undetectable

interruption of a 

process

execution

Local detection

methods

State recovery 

and restart

Fail-stop Process Execution is 

deliberately

inhibited on a failure 

and detected by 

other processes

Halt on failure

property

Stable storage 

status 

reconstruction 

and partition of

remaining work

Omission Process 

or

channel

Message loss 

generally

caused by lack of 

buffer

space

Timeout, 

checksum

Re-route,

re-transmission

Transient Process 

or

channel

The instantaneous

transparent presence

of

various self 

recovering

faults disturbing other

parts of the system

Only side effects Recovery of

side effects
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Timing and

Performance

Process 

or

channel

Constrained 

distributed

synchronous 

execution

of tasks by a specific

amount of time

Timeout Re-assignment 

of task

Security Process 

or

channel

The system is

compromised by

adversary implied

malicious behavior

Behavior

dependent

Behavior 

dependent

Byzantine Process

or

channel

Any type of failure 

may

occur. A process

confuses the 

neighbors

by providing 

constantly

individual consistent

but contradicting

information. A

communication 

channel

may deliver corrupted

or duplicate 

messages

Process: 

redundant

resend 

communication

Reconstruction,

resend and 

ignore

Table 6: Failure classes
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3.5 Self-healing applications

Though most of the self-healing concepts aren’t still fully developed, there are a lot

of ways that those concepts can be applied. We will briefly talk about the come up

applications of self-healing. These applications implement the concepts of  self-

healing in their decision support systems, so as to increase the system capability

and  assist  in  its  recovery  from  the  broken  state  to  the  normal  state.  Grid

computing,  software agents,  middleware computing are some of  the promising

applications  that  cater  to  the  needs  of  the  industry.  The  goal  is  for  these

applications to be coupled with the self-healing concepts,  so that the decision-

making capability  will  be raised.  Also,  by enhancing the  applications  with  self-

healing concepts, the systems would not need any human intervention and could

take their own decisions for their healing.  Last but not least we should note that

the procedure of bringing the system back to normalcy from the broken state, will

significantly decrease maintenance time.

3.5.1 Grid computing

Grid  computing  by  its  nature  has  to  self-adapt  dynamically  to  changing

environments. The heterogeneous nature of the network and the running modules,

the dynamic load balancing requirements,  and the ever-changing needs of  the

user, make adaptation a necessity for grid applications. Cheng et al., (2002), have

proposed  a  unique  software  architecture  for  Grid  Computing.  Its  architecture

allows the system to be maintained at runtime and can be used as a basis for

system  configuration  adaptation.  System  monitoring  by  using  “probes  and

gauges”,  error  detection and an adaptation scheme of  this  have already been

discussed.
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3.5.2 Software agent-based self-healing architecture

Huhns et al., (2003), presented the concept of multi-agent redundancy assemble

software adaptation.  Multi-agent  systems can be used to  support  conventional

systems or traditional software engineering techniques. Using agents as building

blocks for software are able to build all the unknown components till runtime. Also

agents can be added to a system at run time and software can be customized over

its lifetime, even by the end-users too. This can produce more robust systems.

3.5.3 Distributed Wireless File Service application

Distributed Wireless File  Service (DWFS) is  an application for peer-to-peer file

sharing service and it is based on a programming model inspired by biology. It’s

designed based on the paradigm of the cell division approach (Cheng et al., 2002).

This approach is too application-dependent; if  the application needs to transmit

data, this model holds-up well. Though designing real life complex projects is not

possible only by a system state diagram, work is  continuing in the process of

producing a robust self-healing system that can accomplish a complex task.

3.5.4 Service discovery systems

Service discovery system is used to “discover” the components of the system in

different  network  conditions.  Dabrowski  and  Mills (2002),  have  proposed  an

architecture based on adaptation in a service discovery system. The protocol of

emerging service discovery systems provides the base for finding components in

the  system,  organizing  themselves,  and  adapting  themselves  to  changes  in

system topology. This module can help in consistency maintaining mechanisms

and failure detection and recovery techniques.
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3.5.5 Reflective middleware

Middleware exists in between the operating system and the application level, such

as  the  software  that  enables  the  input/output  devices  that  are  used  today  to

interact with our personal computers. Technologies like JAVA, C++, C# and other

programming  languages  are  some  examples  of  industry  standard  middleware

technologies.  Using these technologies, we are able to hide from the user the

technical detail of network communication and other system operations. Usually

the codes that run on top of the middleware are portable and the users do not

bother about the operating system or network detail.

Some  applications  that  run  on  top  of  the  middleware  can  enhance  their

performance if they are aware of the facts in the underlying details. For example,

in a client-server architecture, if the system is aware of the resource utilization or

the  middleware’s  request  scheduling  process,  it  can  improve  the  load  of  the

system or create replicas of its most used services.

Kon,  Costa,  Blair  and Campbell (2002),  have  a  reflective  middleware  model.

Unlike the traditional  middleware,  it  is  represented as a compilation of  various

components that are reconfigurable. With this model we can change the network

protocols, the security policies and other mechanisms to improve the performance

of the application without “touching” the interfaces of the middleware. In the next

subsections we will discuss about approaches on reflective middleware.

3.5.5.1 dynamicTAO

dynamicTAO, (Kon et al., 2002), was created to enable the reconfiguration of the

TAO ORB. The Component Configurators here are the typical C++ objects, and

they store the relation between ORB components and application components as

a  list  of  references.  dynamicTAO supports  the  dynamic  reconfiguration  of  the

middleware  components.  Whenever  a  request  for  a  component  turns  up,  the
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system  inspects  the  Component  Configurators  object,  in  order  to  check  the

dynamic  dependencies  between  the  component,  the  middleware  and  other

application components. This architecture makes  the dynamic load and unload of

modes  easy,  through  changing  the  ORB’s  configuration.  dynamicTAO  offers

support for the interceptor, which is a part of TAO. We will discuss the interceptor

approach to a reliable system later.

3.5.5.2 Open ORB

The  Open  ORB,  (Blair et  al.,  2002)  project  architecture,  allowing  the/its

components to remain identifiable, manages to expedite runtime configuration. As

for the levels of this architecture, one can clearly see the distinction between them/

between  the  base  and  the  Meta  levels.  On  the  one  hand,  the  base  level  is

responsible for the usual middleware services, whereas, on the other hand, the

Meta level  deals with (the facilitation of)  the reflective actions,  adaptation,  etc.

Furthermore,  the  Open  ORB  supports/promotes  behavioral  reflection  by

supporting/promoting  different  meta-models,  including  interception  and  the

resource meta-model.

3.5.5.3 Interceptor-based approach

The Eternal system, (Narasimhan, Moser,&  Melliar-Smith, 2002), is a CORBA 2.0

compliant system, that boosts the fault tolerance nature of CORBA with replication.

Narasimhan,  Moser  and Melliar-Smith  (1997)  have  proposed  the  Eternal

architecture, based on the interception approach, by capturing Internet Inter-ORB

Protocol (IIOP) specific system calls made by the ORB. The interceptor calls were

originally directed by ORB to TCP/IP, but are now mapped onto a reliable ordered

multicast group’s communication system. In the Eternal system, a replicated object
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enables any client object to address the replicas of a server object as a whole,

using a unique object group's identifier.

3.5.6 GRACE approach

The goal of the GRACE project is to develop an integrated cross-layer adaptive

system, where the hardware and all the applications will be able to adapt to the

ever-changing demands of the system resource constraints on energy, time and

bandwidth,  while  also  providing  the  best  possible  Quality  of  Service.  The

architecture proposes that all system layers will be able to adapt in response to

any system or application changes.  Adve et al., (2002), suggest that the various

layers of a system such as hardware, the operating systems, the scheduler layer

and network protocols can be coordinated to adapt when the system changes,

even  if  change  occurs  in  its  resources  or  in  its  applications  demands.  This

architecture  is  mostly  used  on  applications  running  on  resource  constrained

systems. Mobile devices are the ideal candidates for this architecture.

3.5.7 Clustering

Clustered  systems  are  showing  interest  in  self-healing  strategies.  In  order  to

manage application inter-dependencies, in Adger and Hughes (2004), a scheme is

suggested,  which  ensures  the  allocation  of  various  resources  to  the  running

systems, as and when needed, with no service interruption. This scheme differs in

many aspects from the current available clusters such as Solaris, HPUX or AIX, in

that the latter are fault-tolerant but not self-healing and, most of the time, they are

not secure.

In this section, we generally discussed about Self-healing. We briefly talked about

the Self-healing loop and the whole idea behind it,  as well  as about  the Self-
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healing  states,  and  what  strategies  are  being  used  in  order  to  ensure/verify

whether a state is acceptable. Afterwards, we focused on Self-healing policies that

specify what is to be done if a condition/situation is met. Moreover, we reviewed

Classification failure and how it can be identified in the realm of Self-healing. Last

but not least, we presented some already existing Self-healing applications.

In the next section we will look deeper into the world of the Internet of Things and

we  will  talk  about  how  self-healing  can  help  Internet  of  Things  become  self-

sustained.
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Section 4: Self-healing in IoT

In the previous chapter we discussed about self-healing and all of its components

(self-healing loop,  self-healing policies,  self-healing states,  failure classification)

and as well as they all work together to keep the system up and running. In this

chapter we will talk about and compare different self-healing architectures that are

are being developed and used in Wireless Sensor Networks (WSNs) and Internet

of Things (IoT).

WSNs are usually used for the military, smart homes, intelligent environments, or

other ubiquitous applications and are usually deployed to operate for a long period

of time. The goal that are WSNs are trying to achieve is to sense some events and

carry these sensory data to a base station. Thus, availability is very important for a

long-term use of WSNs.

Moore’s  law,  (Moore,  1965)  predicted  that  the  number  of  transistors  in  a  cost

effective  chip  and  therefore,  the  processing  or  storage  capacity  of  that  chip,

doubles every year. Following that pattern up until 2019 will result in making the

vision of the smart dust, (Kahn,  Katz,  &  Pister 2000), a reality. Mark Weiser has

already stated back in 1991 that “In the 21st century the technology revolution will

move into the everyday, the small  and the invisible...”  and “The most profound

technologies are those that disappear. They weave themselves into the fabric of

everyday life until they are indistinguishable from it.”

Today there is a need for sensors to be fault-tolerant and it able to be deployed to

inaccessible  areas  such  as  the  battlefield,  where  maintenance  would  be

inconvenient or even impossible. There are usually two ways, (Römer & Mattern,

2004), for those sensors to be deployed in such environments: 
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● Sensors can be positioned far from the actual phenomenon, i.e., something

known by as sense perception. In this approach, large sensors that use

complex techniques to distinguish the targets from environmental noise are

required.

● Several sensors that only perform sensing can be deployed. The positions

of the sensors and the communications topology are carefully engineered.

They transmit time series of the sensed phenomenon to the central nodes

where computations are performed and data are fused.

Normally a common sensor network is composed of a hundreds of thousands of

sensor nodes that are placed very close to the area of action. The position of the

nodes should be in a totally manner. This means that the algorithms that run on

those  nodes  have  to  be  able  to  possess  self-organizing  capabilities,  because

deploying and maintaining the nodes must remain inexpensive.

4.1 Autonomic Wireless Sensor Networks

In most cases, sensor nodes of a wireless sensor network are deployed on remote

areas  where  maintenance  and  administration  are  impracticable.  The  size  of  a

node varies from a box of a shoe box to a tiny particle (e.g. for military applications

where  sensor  nodes  should  be  almost  invisible).  Likely,  its  cost  ranges  from

hundreds of Euros to a few cents. Each device is composed by a computational

unit, a wireless communication unit, a sensing unit (one or more sensors), a logic

unit (software) and a power unit. As we already mentioned, the maintenance in the

most of the cases is  impartible, so, changing or recharging the batteries is not

possible. Depending on the application, these sensors may last a couple of hours

or several years.

The design  and development  of  energy efficient  systems in  environments  that

impose  severe  restrictions  is  not  a  trivial  task.  Considering  the  given
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characteristics, the system should be as autonomic as possible, meaning that the

wireless  sensor  network  should  manage  itself  with  the  least  or  no  human

intervention. Being autonomic is not an easy task. That’s why WSNs have adapted

the concept of the autonomic manager that we discussed earlier. The autonomic

manager  provides  self-management  services  using  monitoring,  planning,

analyzing and executing modules.

AWSNs  have  the  base  properties  of  the  autonomic  manager  like  self-

management, self-configuration, self-optimization, self-healing and self-protection.

However, it also introduces some new properties like self-service, self-awareness,

self-knowledge and maintain (Ruiz et al., 2004).

• Self-awareness: allows the entity to know its environment and its activities

context and act accordingly. It finds and generates rules to best interact with

its neighbor entities.

• Self-knowledge: the management service that enables an entity to know

itself.  For  example,  an  entity  that  governs  itself  should  know  its

components,  current  state,  capacity,  and  all  its  connections  with  other

entities. It needs to know the extension of its resources that can be lent and

borrowed.

• Self-maintain: allows an entity to monitor its components and fine-tune itself

to achieve pre-determined goals.

AWSNs autonomic manager uses the same functions that already were discussed

at the chapter 3.1.1. These functions are the monitor function, analyze function,

plan function and execute function. 
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4.2 Architectures

In this section we will talk about different architectures that are being developed in

the field of Self-healing in Internet of Things. We will look into each architecture as

a different sub-chapter and we will try to understand the results of the experiments

that have been done.

4.2.1 Service Management System For Self-healing

The system that  we will  describe  next,  tries  to  detect  and identify  failure  and

proposes adjusts to the network infrastructure, in order to maintain the service

availability.

4.2.1.1 Architecture Description

Sensor  nodes  have  strong  hardware  and  software  restrictions  in  terms  of

processing  power,  memory  capability,  power  supply,  and  communication

throughput. The power supply is the most critical restriction, given that it is typically

not  rechargeable.  That  is  why faults  are  likely  to  occur  frequently  and not  as

isolated events. Besides, large-scale deployment of cheap individual nodes means

that node failures from fabrication defects will not be uncommon.

In military applications, where these networks are deployed in open spaces or

enemy territories, adversaries can manipulate the environment (so as to disrupt

communication, for example by jamming), but also have physical access to the

nodes.  At  the  same  time,  ad-hoc  wireless  communication  by  radio  frequency

means that  adversaries can easily put themselves in the networks and disrupt

infrastructure  functions  (such  as  routing)  that  are  performed  by  the  individual

nodes themselves. Finally, the sensor nodes are exposed to natural phenomena

like  rain,  fire,  or  even  falling  trees  since  they  are  commonly  used  to  monitor
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external environments. Therefore, failure detection and fault management plays a

crucial role in wireless sensor networks. If, in addition to detecting a failure, the

management  application  can  also  determine  the  reasons  of  the  failure  and

distinguish between malicious and non-malicious origins,  it  can trigger  security

management services or,  in case it  is  an accidental  or natural  failure,  activate

“backup nodes”.

In  certain  applications  such  as  measuring  the  humidity,  temperature  these

applications are called environmental and the sensor nodes will be programmed to

send back their  measurements at  regular  intervals.  These networks are called

programmed and continuous. We also have the event-driven applications where

the  network  sends  back  the  measurements  when  a  “special”  events  occurs.

Event-driven  networks  are  really  attractive  solution,  because  they  reduce  the

transfer  of  the  unnecessary  messages.  This  results  in  reducing  the  energy-

consumption.  The  drawback  of  event-driven  networks  it  is,  that  its  harder  to

implement,  a logic that will  recognize a failure. In event-driven networks, if  the

management application stops receiving data from certain nodes or entire regions

of the network, it cannot distinguish whether a failure has occurred or whether no

event has occurred.

Ruiz  et  al.,  (2004),  use  a  homogeneous  hierarchical  network.  The  nodes  are

grouped into clusters, while there is a special node called cluster head. A cluster

head node has more resources and, thus, is more powerful  than the common

nodes.  Furthermore,  cluster  heads are responsible  for  sending data to a base

station.  The base station communicates with  the observer,  which is  a  network

entity or a final user that wants to have information about the data collected from

the  sensor  nodes.  During  their  implementation,  the  management  agents  are

execute in the cluster heads where aggregation of management and application

data is performed. This mechanism decreases the information flow and energy

consumption as well. A manager is located externally to the sensor network where
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it has a global vision of the network and can perform complex tasks that would not

be possible inside the network.

The failure detection in such a sensor network can be done in the following way:

1. In the installation phase, that occurs when the nodes are deployed in the

network, each node finds out its position in the network area and reports it

and its energy level to the agent located in the cluster head.

2. In the operational phase, during which the nodes are “working” - collecting

and sending data, management activities take place. One of these activities

is energy level monitoring that plays a central role. This information is also

transmitted  to  the  manager,  which  can  then  recalculate  the  energy  and

topology  maps.  Also,  operations  can  be  sent  to  the  agents  in  order  to

execute  the  failure  detection  management  service.  The  manager  sends

GET operations in order to retrieve the node state. The GET-RESPONSEs

are used to build the network audit map. If an agent or a node does not

answer to a GET operation, the manager consults the energy map to verify

if it has residual energy. If so, the manager detects a failure and sends a

notification to the observer.

Assunção,  Ruiz  and Loureiro (2006),  proposed an extension of this model. The

extension  was  an  autonomic  manager,  located  outside  the  network,  and  it  is

responsible for mapping the Service Level  Agreement (SLA) into the so called

“policies” for the network nodes, to monitor the service quality and availability and,

if necessary, to renegotiate the SLAs. These policies are stored in the knowledge

bases  and  the  autonomic  manager  located  in  the  sensor  node  uses  this

information to start the monitor, analyze, plan and execute functions. Autonomic

managers  on  cluster  head  nodes  guarantee  that  the  service  level  is  being

attended inside the cluster and adjust the network components to attend these

levels.
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Common nodes autonomic managers are used to keep track of the resources, to

optimize the nodes functioning, to detect unusual behavior, to analyze events and

to adjust the nodes configuration in order to reduce the risk of faults.

Assunção  et  al.  usee  some concepts  of  IT  Infrastructure  Library  (ITIL)  in  the

definition of four autonomic managers with the purpose of creating a self-healing

wireless sensor networks, namely:

• Autonomic Service Level Manager: An autonomic manager that keeps track

of the SLA using manual manager and policies. This kind of manager has to

guarantee the fulfillment of the SLAs. Also, it can redefine them.

• Availability  Autonomic Manager:  The autonomic  manager  that  plans and

manages  the  service  availability  through  monitoring  of  the  IT  service

availability.

• Continuity Autonomic Manager: This autonomic manager is responsible for

identifying  network  risks  and  possible  failures.  Moreover  it  can  create

recover and risk reduction plans.

• Capacity Autonomic Manager: The autonomic manager that monitors nodes

resources and identifies demands. In case of a current or future insufficient

capacity this manager is responsible to reallocate resources and anticipate

new resources.

• Each  one  of  these  managers  employs  concepts  of  Service  Support

disciplines to accomplish the monitor, analyze, plan and execute function,

considering the self-healing service. See figure 21.
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4.2.1.2 Experiments

The experiments that are will now be presented for this architecture are the two

most common problems that wireless sensor networks face. The first experiment

that runs is that an unexpected event puts the nodes out of operation and the

second deals with the problems caused by traffic congestion and energy loss.  The

aim of the experiments in the first part is to evaluate the impact of management

functions over the wireless sensor network, analyzing the management costs and

identify the effectiveness of the management architecture in detecting failures. The

experiments  in  the  second  part  are  used  to  investigate  the  impact  of  service

management regarding the power consumption and data flow.

In the first experiment, three scenarios are simulated. In scenario 1 and scenario 2

the network is simulated with all of its fault management functionality, but in the

scenario 2 the failure detection function was removed. Finally, in scenario 3 the

network  is  simulated  without  any  fault  management  functionality.  During  the

simulation, 32 nodes are located at the center of the network, when an unexpected
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event causes their failure. The event occurs at 45 s of simulation (100 simulation

time). In figure 22 we see network hierarchy.
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Figure  22:  Hierarchical  network  comprised  of
common nodes, cluster heads and a base-station

Figure 23: Delivery rate of message
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As we take a closer look at figure 23, we notice the delivery rate that measures the

ratio of the messages that received by the nodes in the network. As expected the

delivery rate is similar in all scenarios, since the messages are transmitted over

the same wireless network. Neither the limited functionality in scenario 2, nor the

removal of the management has any influence.
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Figure 24: Energy consumption

Figure 25: Detection effectiveness for centered failures (scenario 1)
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Figure 24 illustrates the energy consumption of common nodes and cluster heads.

It is observed that, as long as the detection of failure is deactivated, the energy-

consumption  of  common-nodes with  management  appears  to  be  increased by

18% for the cluster heads and 29.45% for the nodes. When the failure detection

functionality  was  available  the  management  energy  consumption  increased  by

101.2% for the cluster heads and 129.45% for the nodes.

According to Lanthaler (2008), this is an expected result since the transmitting and

receiving messages is an expensive action.

Figure 25 depicts the detection of failures in scenario 1. The x-axis is the time that

the manager reports the availability of nodes. It can be observed that there were

some detection failures in time 50s, although at this time the nodes code was not

perceived because the drop of GET request/response messages. This caused the

manager to be misled and to produce false positives. What happens is that, after

the unexpected event occurs, some common nodes, which were not harmed, lost

their cluster heads if they are located inside the damaged region. Consequently,

these common nodes stop receiving the GETs from the manager, since they are

sent  to  them through  the  agents.  As  a  result,  the  manager  does  not  receive

answers from these common nodes provoking false positives. In this scenario the

“orphan” nodes were 8. Scenario 5 has similar results as scenario 1.

Scenario Description

1 32 nodes (20% of the network, composed of 3 cluster heads and 29

common nodes)  located  at  the  center  of  the  network  are  harmed.

These nodes have x and y coordinates between 30 and 90.

2 41 nodes (25.63% of the network, composed of 4 cluster heads and

37 common nodes) located near the base station are harmed. These

nodes have x and y coordinates between 0 and 60.

3 39 nodes (24.37% of the network, composed of 4 cluster heads and
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35  common nodes)  located  far  from the  base  station  are  harmed.

These nodes have x and y coordinates between 60 and 120.

4 14 nodes (8.75% of the network, composed of 1 cluster head and 13

common nodes)  located  at  the  center  of  the  network  are  harmed.

These nodes have x and y coordinates between 40 and 80.

5 62 nodes (38.75% of the network, composed of 6 cluster heads and

56 common nodes) located at the center of the network are harmed.

These nodes have x and y coordinates between 20 and 100.

Table 7: Description of each scenario

Figure 26 shows the results of the scenario 2. At first glance it seems that it is the

same as the scenario 1. In a way it is. The results at the time of 50 s are pretty

much the same. However, as far as points 75 and 100 are concerned, it is possible

to  observe  considerable  dissimilarities.  The  number  of  false  positives  has

decreased to 10.26% (point 75) and 10.36% (point 100) of the detections. The

reason is that in this experiment the number of orphan nodes is only 4, i.e., two

times less than the number of orphan nodes for scenario 1. The results for the

scenarios 3 and 4 are very similar to these results.
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In the second part  of  the experiments they evaluate the impact of  the service

management on restoring the network from the failure. The experiment will test the

system on communication problems due to traffic congestion and energy loss. The

system has to detect the root of those failures and restore them.

The knowledge source of the autonomic manager is updated whenever it receives

messages or the configuration parameters are changed. The cluster heads nodes

(that contains the manager) store in the knowledge source their local information

and some replied information of each node of the cluster.

In this experiment two scenarios were implemented. Scenario 1 was the service

management system for self-healing wireless  sensor  networks  and  all  its

functionality is activated and scenario 2 where all the functionality of management

system is missing. All the characteristics of the simulation are represented at table

8.

Parameter Value

No. of nodes 24 (20 common nodes and 4 cluster heads)
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the base station (scenario 2)
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Cluster size 5 nodes

Simulation time 155 s

Number of simulations 33

Coverage area 50 m × 50 m

Environment conditions Variations in the environment and noise are not 

considered

Initial energy available 

in each node

5 Joules in common nodes and 100 J in cluster head 

nodes

Network type Heterogeneous

MAC protocol IEEE 802.11

Energy spent in 

transmission 

(reception)

36 mW (24 mW) for common nodes and 600 mW (300 

mW) for cluster head nodes

Transmission range 40 m for common nodes and 250 m for cluster head 

nodes

Processing 

consumption

24 mW in common nodes and 360 mW in cluster head 

nodes

Node capacity Space for 10 messages in common nodes and 100 

messages in cluster head nodes

Energy spent in 

sensing

15 mW
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Sensing and 

disseminate type

Programmed

Node mobility Stationary

Table 15: Characteristics of the simulations

In every application of wireless sensor networks energy is the most crucial part of

the network. If the node is not powered enough this leads to network productivity

reduction.

In scenario 2 the sensor nodes exhaust their energy at 75 s and then have a

communication problem for 25 s. On the other hand in scenario 1 the nodes that

implement the self-management system were able to survive through the whole

simulation and having support the communication for all the 60 s. From the figure

26 we see that the scenario 2 had more power consumption than the scenario 1.

This happened because the nodes detected that messages are being lost and

diminish their production. Also, in figure 27 we see that has similar consumption,

although in scenario 1 the cluster head nodes were delivered more messages.
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In scenario 1 the data sent by the common nodes of scenario 1 is 10.8 times

greater than the scenario 2. However, the amount of data received is only 1.3

times greater. Nevertheless, the number of messages delivered to the cluster head

node is bigger if compared to the one of scenario 2. This demonstrates that the

number of dropped messages in the network was reduced. The amount of data

sent by the cluster head nodes to the base station in scenario 1 is 2.16 times

greater than in scenario 2. Also, the amount of dropped messages in scenario 2 is

84 times greater than in scenario 1. That is obvious given the fact that,  in the

scenario  2  there  is  not  any  implementation  of  detecting  the  communication

problems.

In scenario 1 the data sent by the common nodes of scenario 1 is 10.8 times

greater than the scenario 2. However, the amount of data received is only 1.3

times greater. Nevertheless, the number of messages delivered to the cluster head

node is bigger if compared to the one of scenario 2. This demonstrates that the

number of dropped messages in the network was reduced. The amount of data

sent by the cluster head nodes to the base station in scenario 1 is 2.16 times

greater than in scenario 2. Also, the amount of dropped messages in scenario 2 is

84 times greater than in scenario 1. That is obvious given the fact that,  in the
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scenario  2  there  is  not  any  implementation  of  detecting  the  communication

problems.

4.2.2  A Self-managing  Fault  Management  Mechanism  for  Wireless

Sensor Networks

Asim,  Mokhtar  and Merabti, (2010)  previously proposed a cellular (self-healing)

approach for fault-detection and recovery. Now, they are extending this approach

to make use of a fault management mechanism, in order to take care of fault-

detection and recovery.

4.2.2.1 Architecture Description

This architecture can be divided in two phases: 

• Fault detection & diagnosis

• Fault recovery

Fault-detection can be accomplished by two mechanisms:

• self-detection (or passive-detection)

• active-detection

Fault-detection  can  be  accomplished  by  two  mechanisms,  self-detection  and

active-detection as shown in figure 28. In self-detection, the nodes periodically

monitor  their  energy  and  identify  any  potential  failures.  In  the  proposed

architecture, battery depletion is considered as the main reason for the sudden

death of the nodes. A node is marked as “failing” when its energy drops below a

threshold value. When this happens, the “failing” node sends a message to its cell

manager informing it that it is going into sleep mode due to lack of energy. It’s not
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possible for the nodes to self-recover from this failure, so there are no recovery

steps. Self-detection is a local computational process of sensor nodes, and does

not require full network communication to preserve the nodes energy. In addition, it

also reduces the response delay of the management system towards the potential

failure of sensor nodes.

The  proposed scheme uses  an  active  detection  mode  to  efficiently  detect  the

sudden death of the node. In active detection, the cell manager asks from its cell

members to send their updates on a regular basis. The cell manager sends “get”

requests to the associated common nodes on regular basis and, in return, the

nodes  send  their  updates.  This  is  called  the  in-cell  update  cycle.  The  update

message consists of the node ID, energy and location information. Figure 27 also

depicts  the  exchange  of  update  messages  that  takes  place  between  the  cell

manager  and  its  cell  members.  Unless  the  cell  manager  receives  the  update

message,  it  sends an instant  message to  the node acquiring  its  status.  If  the

manager does not receive any message once again, then it declares the node as

faulty  and  passes  this  information  onto  the  remaining  nodes.  Cell  managers

concentrate only on their cell members and inform only the group manager if the

network performance of its small region has reached a critical level.

A cell manager also employs the self-detection approach and regularly monitors its

residual energy status. All sensor nodes start with the same residual energy. If the

node becomes less than or equal to 20% of the battery life, then it is ranked as

“low energy node” and it becomes liable to put to sleep. If the energy is above or

equal  to 50%, it  is  ranked as “high energy node” and it  becomes a promising

candidate for the cell manager. Thus, if a cell manager is ranked as a “low energy

node”,  it  then triggers an  alarm,  and notices the  cell  members  and the  group

manager of its low energy and appoints a new cell manager to replace it. Every

cell manager sends health status information to its group manager. This is called

an out-cell  update cycle and is less frequent  than an in-cell  update cycle.  If  a

group manager does not hear from a particular cell manager during the out-cell
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update cycle, it sends a quick reminder to the cell manager and enquires about its

status. If  the group manager does not hear from the same cell manager again

during second update cycle, it then declares the cell manager faulty and informs

its  cell  members.  This  approach is  used to  detect  the  sudden death  of  a  cell

manager. A group manager also monitors its health status regularly and responds

when  its  residual  energy  drops  below  the  threshold  value.  It  notifies  its  cell

members and neighboring group managers of its low energy status and sends an

indication to appoint a new group manager. The sudden death of a group manager

can be detected by the base station. If the bases station does not receive any

traffic from a particular group manager, it then consults the group manager and

asks  for  its  current  status.  If  the  base  station  does  not  receive  any

acknowledgment, it then considers the group manager faulty (sudden death) and

forwards this information to its cell managers. The base station primarily focuses

on the existence of the group managers from their sudden death. Meanwhile, the

group  managers  and  cell  managers  take  parts  mostly  in  passive  and  active

detection in the network.

Figure 29: Fault detection and diagnosis process

Fault recovery refers to the process taking place after nodes failure detection (as a

result of self-detection or active detection). Sleeping nodes can be awaken so as
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to cover the required cell density or, alternatively, mobile nodes can be moved to

fill the coverage-hole. Cell managers and secondary cell managers are known to

their cell members. If the cell manager energy drops below the threshold value, it

sends  a  message  to  its  cell  members  and  its  secondary  cell  manager.  This

message also acts as a hint for the secondary manager to start operating as the

main cell manager, while the existing cell manager becomes a common node and

goes  into  a  low  computational  mode.  Common  nodes  will  start  treating  the

secondary manager as the main cell manager and the new cell manager, upon

receiving the updates from the nodes, will choose a new secondary cell manager.

The failure recovery mechanisms are performed locally by each cell.  In figure 28

we see the process of replacing the cell manager. Let’s assume that cell 1 cell

manager is failing due to energy depletion and node 3 is chosen as a secondary

cell  manager.  The cell  manager sends a message to its cell  members 1,2,3,4,

which invokes the node 3 to stand up as the new cell manager.

Figure 30: Virtual grid of nodes

In the proposed architecture there is also a scenario where the energy of the cell

manager and the energy of the secondary cell manager are not sufficient enough
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to replace the cell manager. In this case, common nodes send exchange energy

messages within the cell to appoint a new cell manager, whose energy is above

50%. Moreover, if there is no candidate to replace the cell manager, the event cell

manager sends a request to its group manager to merge the remaining nodes with

the neighboring cells.  

From the perspective of the group manager, when it detects a sudden death of a

cell manager, it informs the cell members of that faulty cell manager. This is, again,

an  indication  for  the  secondary  cell  manager  to  start  acting  as  the  new  cell

manager. If the residual energy of the group manager drops below the threshold

value (i.e. greater or equal to 50% of battery life), it may downgrade itself to a

common node or enter a sleep mode, and notify its backup node to replace it. The

information of this change is propagated to the neighboring group managers and

cell managers within the group. As a result of the group manager‘ s sudden death,

the backup node will receive a message from the base station to start acting as

the new group manager. Unless the backup node has enough energy to replace

the group manager, cell  managers within a group co-ordinate to appoint a new

group manager for themselves, based on residual energy.

Each cell  maintains its health status in terms of energy levels.  It  can be High,

Medium or  Low. During the out-cell  update cycle the health  status of  a cell  is

reported to its associated cell manager. When the group manager receives these

health  statuses,  it  tries to  predict  and avoid future  failures.  High health  status

means  that  the  group  manager  will  always  recommend  using  the  cell  in  any

operation,  while  a  medium  status  indicates  that  the  group  manager  should

occasionally use this cell. Low health status means that the node doesn’t have a

sufficient energy and it should stop being used for any operation. The cells with

their energy being low are being joined with the neighboring cell.

The fault management that is proposed by Asim et al.  (2010) relies on message

broadcasting and exchanging messages among the sensors of the network. Thus,

this might cause an over flooding by broadcasting messages from different sensor
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nodes.  To  solve  this  problem,  they  created  a  message filtering  mechanism to

further  reduce the  redundancy  of  message  exchange.  The message format  is

showed in table 9.

Field Description

Group_id The group id

Cell_id The cell manager id

Timestamp The message sending out time

Curr_energy The current node energy level

Table 16: Message fields 

The Group_id field is used to determine whether the received message belongs to

the same group of current  node. If  not,  the message will  be dropped to avoid

unnecessary message rebroadcast. Cell_id helps a node to decide whether the

message belongs to its cell manager, if not it drops the message. The Timestamp

field is used to help the node to distinguish a message. If the receiving message is

a new one, it will be processed and forwarded to the neighboring nodes, otherwise

the message will be dropped.

4.2.2.2 Experiments

Asim et al., (2010), uses GTSNETS, (Riley, 2003), as a simulator platform and the

same radio model as proposed in Gupta and Younis (2003). In table 10 we see the

parameters of the experiment.
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Parameter Value

No. of sensors 40 – 80 sensors

No. of simulations 30

Coverage area 120 m × 120 m

Initial  energy  available  in  each

node

2000 mJ

Table 17: Experiment parameters

In their work, Asim  et al. (2010), they firstly compare it with the Venkataraman,

Emmanuel and Thambipillai algorithm, (2008), which is based on failure detection

and recovery due to energy exhaustion.

The  failure  detection  in  the  Venkataraman  algorithm  starts  after  the  cluster

formation. In this algorithm, the information about the neighbor is already known

by the nodes through the exchange of the hello messages. When a node fails, its

parents and its children have to take an appropriate action to fill the gap that the

failed node formed. The node that is about to fail reports the possibility to fail so

that appropriate actions can be taken to reduce the “damage” in the network. The

fail_report_message is only passed to immediate hop members and then later on,

passed to the cluster head. In the proposed algorithm (Asim  et al., 2010), if the

nodes energy drops below a specified threshold value, then it sends a failure to its

cell manager and goes to low computational mode. In Asim’s work, (2010), there

are only two types of nodes: common node and cell manager. Only one failure is

reported to the cell manager, which reduces the energy consumption and it will

“break” the network operation.
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As we mentioned before, in the Venkataraman algorithm, the failure node sends a

fail_report_message,  and,  by  receiving  this  message,  a  child  has  to  send  a

join_request_message to its neighbors.  Afterwards,  all  the neighbors that  have

received  this  message  have  to  respond  with  a  join_reply_message  or

join_reject_message messages. Then, the healthy child of the failing node tries to

find a suitable parent. A parent is considered suitable when its energy levels are

high so it won’t fail. In contrast, in the proposed architecture, common nodes (child

nodes) does not require any recovery mechanism but goes on low computational

mode after informing their cell manager (parent node).

In the Venkataraman algorithm, when a cluster head fails, it causes its children to

exchange  messages  that  are  necessary  for  electing  the  new  cluster  head.

Children with low energy aren’t concerned among the candidates. The child with

the  highest  energy value  is  the  one that  becomes the  new cluster  head and,

therefore, the parent for the children of the failing cluster head. Also, if the child of

the failing cluster head node is failing as well, then it also requires appropriate

steps to  get  connected to  the cluster.  In the work of  Asim et  al.,  (2010), they

employ the backup manager (cluster head) will replace the cell manager in case of

failure. When the common nodes (child nodes) of the manager receive a failure

message, the backup (secondary) manager automatically starts acting as the new

cell manager and no further action is needed, since common nodes are aware of

the backup manager.
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Figure 31: Average energy loss for cluster head recovery

Figure 31 depicts the average energy loss in each architecture. As we see, the

Asim  et  al.  (2010),  architecture  consumes  less  energy  for  cluster  heads  in

comparison to the Venkataraman et al.  (2008).  In the Venkataraman algorithm,

message  exchange  for  the  election  of  new cluster  manager  is  both  time  and

energy consuming. In Asim et al. (2010), the  cell manager sends one message

only to its members in order to recover from a failure.

Figure 32: Average energy loss in re-clustering
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Figure  32  shows  the  average  time  for  cluster  head  recovery.  The  proposed

algorithm has a quicker recovery compared to Verkataraman’s. Asim et al. (2010)

can  also  be  compared  to  two  other  algorithms:  the  autonomic  self-organizing

architecture (Wang, 2008), and the load – balanced clustering (Gupta  & Younis

2003), in the essence of energy consumption for cluster head recovery. In figure

32  it  can  be observed  that  the  Asim  et  al.  (2010)  algorithm for  cluster  head

recovery consumes less energy.

In the autonomic self-organizing algorithm, when a high level node (header) fails to

operate or needs to step down due to low residual energy, all the sensor nodes

from the failed header need to join other available header nodes using the same

mechanism. This, once again, is not an energy efficient way to re-organize the

cluster and is also time consuming compared to the Asim et. al., cellular approach.

In load-balanced clustering, (Gupta  & Younis, 2003), when a gateway fails, the

cluster dissolves and all its nodes are re-allocated to other healthy gateways. This

consumes more time and energy, as all cluster members are involved in the re-

clustering process. In our proposed algorithm, only a few nodes are involved in the

re-clustering.

4.2.3 A Dendritic Cell Algorithm for Security System with Self-healing

property

De Almeida, Ribeiro and Ordonez (2015), propose an architecture that implements

a Dendritic Cell Algorithm and is based on the essence of self-* properties that we

discussed earlier.  In the proposed architecture,  they are trying to eliminate the

security threats such as Jamming, Sinkhole, Hello Flood, Flooding.
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4.2.3.1 Dendritic Cell Algorithm

Before diving in the proposed architecture, we first have to take a look on the

Dendritic Cell Algorithm (DCA). The DCA was introduced by Greensmith, Aickelin

and Cayzen (2005), and was inspired by the danger theory of mammalian immune

system.  The main elements of DCA are the following: Dendritic Cells (DC), Lymph

nodes and antigens. DCs have two types of signals, the input signals that are:

danger signal, safe signal, PAMP (pathogenic associated molecular patterns) and

inflammatory  signal  and  the  output  signals  that  are:  Costimulatory  Molecules

(CSM), semi-mature signal and mature signal.   

The antigens are the input of DC and they are presented iteratively to dendritic

cells.  Each  antigen  increments  the  CSM.  When  the  CSM  pass  the  migration

threshold,  the  DC  migrates  to  lymph  node.  The  danger  signal  and  PAMP

increments  the  mature  signal  of  DC and the  safe  signal  increments  the semi-

mature signal. The inflammatory signal raises all other signal increments.

When the DC achieves the migration threshold, it will move into lymph node and

the DC will be labeled as mature or semi-mature, comparing the mature and semi-

mature signals.  After  receiving  a  defined number  of  DCs,  the lymph node will

calculate  the  Mature  Context  Antigen Value (MCAV)  that  is  the  percentage of

mature DCs per all DCs received. The Dendritic Cell Algorithm detects an attack if

the MCAV surpass a defined threshold.

4.2.3.2 Architecture Description

The proposed architecture is based on MAPE-K loop that we discussed earlier.

Each phase of the MAPE-K loop (monitor, analyze, etc.) is treated as a component

and  is  distributed  between  nodes.  The  architecture  is  based  on  the  RPL

Destination-Oriented Directed Acyclic Graph (DODAG). This is the default topology
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of a 6LoWPAN network that uses the RPL protocol. In Figure 33 we see a typical

RPL DODAG, that has a root and other nodes.

Figure  33:   A typical  RPL DODAG with one root and six
other nodes

Figure 34: The proposed architecture

The architecture uses five components: Artificial Intelligence, Dendritic Cell, Lymph

node, Monitor Knowledge, Analyze Knowledge. The other components (Planning,
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Execution) of the MAPE-K loop are not defined yet. The current components of the

proposed architecture are distributed between Sensing, Monitoring, Analyzing and

Knowledge  elements  of  MAPE-K  loop.  The  distribution  of  the  proposed

architecture components in the MAPE-K loop elements is depicted in Figure 34.

Some components are not present at all network nodes, the Lymph node, Analyze

Knowledge  and  part  of  Monitor  Knowledge  are  present  only  in  border  router.

Sensing,  Monitoring,  Analyzing,  Monitor  Knowledge  and  Analyze  Knowledge

components can be present in any network node and are present in border router.

At first we start with the sensing phase, which is present in all of the nodes. In this

phase, the network and node information will  be sent to the monitoring phase.

Node information is the rate of the successfully sent packets, total sent packets,

RSSI  level  and  more.  The  network  gets  its  information  from  the  packets

information  and,  as  long  as  it’s  connected  to  the  internet,  it  will  get  more

information about the network.

Then, there is the monitoring phase, which is also present in all  of  the nodes. In

this phase, De Almeida et al., (2015), use a Multi-Layer Percepton (MLP) network.

The MLP is used to get useful information from the sensing phase. For example,

the MLP will  try  to  predict  information from the packets,  such as total  time to

process and respond, in order to provide this information quickly to the Analyzing

phase.

Next,  there is  the  analyzing  phase,  during  which  the  proposed  architecture

receives the information from the monitoring phase and uses it as an input in the

dendritic cells DC component. This component is also present in all the nodes of

the local network. The signals of the dendritic cells are classified as safe, danger

or inflammatory signals. The monitoring phase gathers this information from the

sensing phase  and infers  the  signal  levels  to  this  phase.  When the  DC have

enough information, they will migrate their result to the lymph node, that is present

only in border router. Then, the lymph node processes the DC result and detects
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whether there is an attack on the network. This attack detection information is

passed onto the Planning phase.

The Knowledge components described in this paper are the Analyzing and Monitor

Knowledge. The Plan and Execute Knowledge components will be present in the

architecture too. The monitor knowledge is split in two components: the training

component and the component itself. The monitor knowledge itself is present in all

the nodes of the local network while the training monitor knowledge is present only

in border router. This split occurs because the training of the artificial intelligence

may need more resources than the node can offer. The analyze knowledge is split

in two parts, the dendritic cell part and the lymph node part. Each one is present

where its counterpart component in the Analyze phase is present.

Lastly,  we  have  the  Planning,  Execution  and  Effection  Phase.  Those  are  not

present  in  the  architecture  yet.  In  short,  the  Planning  phase  will  receive  the

warning from the analyze phase and plan how to mitigate the side effects of the

attack. The Execution phase will receive the actions planned in the planning phase

and deliver each order to the Effection phase. Then, the effectors will  perform

those orders and try to mitigate the side effects of the attack.

4.2.3.3 Experiments

The experiments done in this phase were about the technique that is used in the

monitoring phase. The technique for the first efforts is an Artificial Neural Network,

a  Multi-Layer  Perceptron  with  Limited  Weights  (MLPLW)  based  on  the  neural

network with  limited  precision weights,  (Bao,  Chen,  & Yu,  2012).  The MLPLW

implemented has 10 neurons in the hidden layer and each weight is represented

by a byte. The technique used for training is Quantized Back-Propagation Step-by-

Step (QBPSS), (Bao et al., 2012), which is a modified version of Back-Propagation

for neural network with limited weight.  To check the implementation there is a well-

known dataset the KDD99, (Greensmith  et al., 2005), which is used in Intrusion
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Detection Systems. The dataset is used to train the model with a stream based

training. After the first thousand inputs the MLPLW achieved 97,65% accuracy, but

oscillated until the thirty-fourth thousand input. The oscillation of the accuracy rate

of the MLPLW is depicted in Figure 35.

Figure  35: Accuracy rate of MLPLW over the number of
inputs.

4.2.4  A MAPE-K Based Self-healing Framework For  Online Sensor

Data

Nguyen,  Aiello,  Yonezawa,  and Tei  (2015),  proposes  an  architecture  that  fully

implements the MAPE-K loop (IBM Corporation, 2005) that we discussed earlier,

in Section 3.1. The goal of the proposal is to create a flexible framework, where its

mechanisms could be used in different processes of the framework. Nguyen et al.

(2015) also  propose some mechanisms for  each process.  These  mechanisms

provide runtime capabilities for detection, classification and correction of faults that

appear in sensor data.
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The functionalities of the Monitor and the Analyze processes can be overlapped.

For  example a fault  can be detected either  by the Monitor,  or  by the Analyze

functions. In the proposed framework, the Analyze function is responsible for both

fault detection and classification. Figure 36 illustrates the proposed framework. As

we said, the framework addresses the full cycle of the self-healing model which

includes:  monitoring  and  analysis,  as  well  as  fault  detection  at  normal  start,

diagnosis and classification of faults at faulty state, resiliency and fault correction

mechanisms to help system recover to normal state from a faulty one. Sensor data

faults  cannot  be  healed,  fault  notification  transits  the  node  to  broken  state,

notifying other calling services and system administrators to take necessary action

against detected fault and to bring the sensor node back to normal state.

4.2.4.1 Architecture

The  proposed  architecture,  (Nguyen  et  al.,  2015),   uses  a  framework  called

“Baljak”  (Baljak, Tei,  & Honiden,  2013)  for  its  fault  modeling. The Baljak fault

model  is  based  on  the  frequency  and  continuity  of  fault  occurrence  and  on

observable  and  learnable  patterns  that  faults  leave  on  the  data.  This  fault

categorization  is  flexible  and  applicable  to  a  wide  range  of  sensor  readings.

Therefore, the cause of the error does not do this categorization, which makes it

possible to handle the faults based on their patterns of occurrence on each sensor

node. The Baljak framework provides a decision tree to classify data faults into

four types: Bias fault, Drift fault, Malfunction fault and Random fault.

Those types of faults belong in two main categories of faults. The Intermittent and

the Regular faults. Intermittent faults occur from time to time and the occurrence of

faults is discrete. The Malfunction and the Random faults belong in this category of

faults. The first type of faults refers to faulty readings that appear frequently, while

the frequency of the occurrences of faults is higher than a threshold.  A Random

fault in a random manner is the frequency of the occurrences of faulty reading and
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it  is  smaller  than  the  threshold.  During  the  observation  period,  faults  occur

constantly and it is possible to find a pattern in the form of a function. These are

the Regular faults. Bias and Drift belong in this category of faults. In the first kind

of  error,  the  error  is  a  constant;  this  can  be  positive  or  negative.  Drift  is  the

deviation of data that follows a learnable function, such as a polynomial change.

As we mentioned, the proposed architecture uses the MAPE-K loop to implement

its functions.  In order to build the knowledge base for the system, the system is

calibrated before being deployed in a real environment. At this phase, necessary

knowledge and assumptions about the environment are gathered for the system to

build  its  knowledge  base  for  the  sake  of  self-healing.  The  knowledge  base

includes  1)  information  about  the  environment,  2)  the  database  of  managed

sensor data elements, 3) models for fault detection and classification used at the

Analyze process,  4)  models for fault  correction used at  the Plan process, and

other  necessary  information.  The  knowledge  base  should  be  automatically

updated by the processes and manually by the administrators to keep it up to date.

Figure  36:  The  MAPE-K-based  framework  for  self-healing  of
sensor data
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The Monitor process is responsible to  1)  collect real-time reading from managed

physical  sensors,  2)  retrieve  historical  data,  3)  gather  real-time  reading  from

neighborhood  sensor  elements  and  4)  annotate  the  state  of  each  and  every

sensor reading based on some assumption and information. Models, assumptions

are  retrieved  directly  from  the  Knowledge  Base.  After  this  pre-processing,

necessary sensor data are passed in the Analyse process.

The data received from the Monitor process are analyzed actively so as to identify

and detect  faulty  reading in  sensor  data.  The proposed architecture  applies  a

hybrid mechanism for fault detection using neighborhood vote together with time

series data analysis.  The fault  classification implements the Baljak fault  model

discussed earlier.

At the  Detection phase, each sensor data element compares its current reading

with  1)  the value computed by the neighborhood voting technique,  and 2)  the

value forecast by the series data forecasting model.  The result of the detection

phase is the state of the reading  that is  examined. In case a sensor reading is

detected  as  faulty,  i.e.  a  symptom,  it  is  diagnosed  by  the  fault  classification

component, which is a part of the diagnosis procedure. The fault model use for

classification is stored in the shared Knowledge Base. This model is, also, applied

later at the Plan process, to correct readings from the respective faulty nodes.

Moreover, the framework flexibly allows different sets of applicable algorithms to

be implemented at each process.

After diagnosing, the Analyze process updates the faulty state of  the  managed

sensor data elements back to the shared database in the Knowledge Base. This

way, the state of all managed sensor data elements are synced and consistent

among components of the framework. As an outcome, the Analyze process sends

healing  requests  to  the  Plan  process,  providing  a  list  of  faulty  sensor  data

elements that require the Plan process to take necessary actions: either heal -if

possible- or notify users to take particular interventions.
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After the Analyze process, comes the Plan process. In this kind  of  process the

goals that we want to achieve are defined. In the case of the described model, the

goals are to correct the faulty sensor reading if possible, maintaining the managed

elements  at  their  normal  state  as  well  as  providing  corrected  sensor  data  to

external services that are consuming the data. There is always a chance the faults

cannot  be  healed.  In  those  cases,  the  Plan  process should  notify  the  system

administrators to take appropriate actions.

Last but not least, there is the Execute process. In this process, fault correction

commands or sends user requests, depending on the instruction received from the

Plan.

In this architecture we do not have any kind of Experiments, but we have a real

case study that uses the proposed architecture.

4.2.4.2 The ClouT Case Study

The ClouT, (Tei, 2014), is a collaborative project between Europe and Japan. The

overall concept of the project is to bridge the Internet of Things with Internet of

People via Internet Internet of Services, establishing an efficient communication

and collaboration platform. The main goal of ClouT is to design, implement, and

validate a reference IoT+cloud architecture for a smart city ecosystem that helps

city authorities provide the backbone for the innovation of their environments.
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The  ClouT  (Tei  & Gurgen 2014)  project  uses  the  proposed  framework  as  its

proactive Adaptation Engine that gathers, via the Data exchanged, online sensor

data from the City Resource Access components and applies it to correct faults in

the data. In figure 37 we see how the architecture is implemented with the ClouT.

The self-healing framework is invoked only by External services that require the

self-healing service.

4.2.5 Comparison of the described architectures

In this section we compare the architectures that we described earlier.
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Architecture IOT MAPE-K

loop

Failures able to

detect

Energy

consumption

A Service

management system

for self- healing

✓ ✓ Unexpected failures,

Communication

failures

Low

A Self-managing

Fault Management

Mechanism for

Wireless Sensor

Networks

✓ ✕ Energy loss failures Low

A Dendritic Cell

Algorithm for

Security System with

Self-healing property

✓ ✓ Jamming, Sinkhole,

Hello Flood, Flooding

unknown3

A MAPE-K Based

Self-healing

Framework For

Online Sensor Data

✓ ✓ Intermittent faults4,

Regular faults5

unknown

Table 28: Architectures comparison

3 It is unknown when there are no experiments to prove it.

4 Frequent faults

5 Bias, constant error. Drift,  deviation of data follows a learnable function, such as a polynomial
change.
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Section 5: Case study

In this section, we will  talk about what could happen in a self-healing network,

what are the major problems, and we will  examine how this solution should be

implemented to solve these problems.

Let’s assume that we have deployed our IoT devices (sensors) in a huge area

such as an agricultural field. In that kind of field, the environmental phenomena are

our main problem. These phenomena, such as rain, thunderstorm, wind, fire, could

“break” our network. It’s easy to identify more problems. Battery exhaustion is, for

instance, another  big problem, thus we have to find a way to  limit  the energy

consumption of the devices. 

In table 12, we summarize the problems.

No. Problem

1. Environmental phenomena (rain, thunderstorm, wind, fire, earthquake,

etc..)

2. Battery exhaustion

Table 12: Network's major problems

Now that we have defined our major problems, we can create our network. We can

imply that our network has 54 nodes. This network is deployed in an area of α 250

m2. The nodes are able to collect weather data, such as weather conditions (rain,

sunny,  clear),  temperature,  wind,  humidity,  pressure and their  battery level  are

high.
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Parameter Value

No. of nodes 54

Coverage area 250 m2

Node data Weather data

Battery level High

Table 13: Network details

Ruiz et al., (2004), have proposed an architecture that fits our needs and that has

already been discussed in section 4.2.1. Briefly, in this architecture, the nodes are

grouped into clusters, while there is a special node called cluster head. This kind

of nodes are more powerful and, therefore, they are responsible to send the data

to a base station. Also, we will  go with a programmed and continuous network

because it’s easy enough to implement a logic and we need the data to be send at

regular intervals.

Our  failure  detection  works  with  GET requests/responses.  A manager,  located

externally to the sensor network, sends GET requests to retrieve the nodes state.

First, if the manager does not receive a response, he consults the energy map to

verify if it has any energy left and, then, if he detects a failure, he reports it to the

observer.

An autonomic manager located in the common nodes and in the cluster heads

helps us keep truck of resources, detect unusual behaviors and much more that

will help us adjust, in order to reduce the risk of faults.

The  architecture  that  we  are  using  helps  us  to  efficiently  arrange  our  major

problems. First, regarding the environmental phenomena problems, when a node

goes off (destroyed – e.g. from a failing tree), the node should be replaced by
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another node.  When the manager asks about the energy level of the node, it will

not receive any feedback, then it will try to find out if it has any energy left from the

energy level map. By not finding this node in the energy level map, the manager

will try to replace it (activate a backup node). The same approach can be taken if

there no energy left.  Figure 38 depicts the above actions.

Another proposal could be to use an event driven network. These networks are

harder to implement and it’s also harder to detect a failure, because we are not

sure when a node is “dead” or it just didn’t sense anything. That kind of networks

are more efficient in the essence of energy use.
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Section 6: Future work

In this section we will discuss about what we could further do or implement, for our

self-healing network to be more resistable and tested.

First,  we could start  by making our network tested.  For instance, in our future

work, we would create a simulation of our study case. That way, we would find out

how our network behaves whenever a problem occurs. By simulating our network,

we would have metrics over the battery usage and  over  what happens when a

node fails, if it correctly recovers from a failure.

Moreover,  in  order  to  make our  network  more  resistable  to  failures  and  more

battery friendly,  we could use machine learning techniques.  For instance, if  we

collect data from the nodes about packages that have been successfully delivered,

or if a node has failed, it is possible to use machine learning. More specifically,

these data, in combination with machine learning, will  help us determine better

parameters for our network. Such a parameter could be when a cluster head will

send a message to the node to determine if it is “online”. Using a neural network

would help  us  use less battery  when exchanging data  and,  thus,  less failures

would occur.  Having a trained neural network would, also, help us recognize the

cause of the failure faster, allowing the node to recover faster.

98 of 107



BSc Thesis of Petros Stergioulas

Conclusion

In conclusion, self-healing can take the IoT one step further from where it is today.

We talked about its features, its uses and implementations regarding the IoT,  but,

what  about  the  traditional  devices  like  personal  computers  and  smartphones?

Even  thought  the  use  of  self-healing  on  those  traditional  devices  may  seem

purposeless, it can in fact be quite helpful, making them more fault-resistant. 

However,  in our opinion it  would be of  bigger significance to focus on the IoT

devices, since, as we saw (in section 3.5), self-healing is mostly being used in

military applications. Military applications are critical and should be “up” 24/7, even

if a tree falls right into a node. So, baring in mind that this kind of applications

should not fail under any circumstances, we have to invest more time, manpower

and resources on making more research about it. Moreover, as the IoT grows,

continues to expand and joins our everyday lives – even if we don’t realize it –

more critical applications like the previous one will appear. For example, a system

that  will  help  disabled people pass the road should  be accessible  24/7  and it

should be able to recover by itself, while someone needs it. Thanks to self-healing,

there won’t be the need for a person to get of his bed at 3 am to fix an error on one

node among a thousand. 

Moving on, in section 4 we discussed about different architectures on self-healing

in IoT. Each architecture helps in different ways to solve different problems. But, all

of  them  have  the  same  base,  that  being  self-healing,  and  is  of  different

significance. As we mentioned in our future work, machine learning could join the

game of self-healing, because the detection of faults will be more accurate. 

Thus, it becomes clear why we should insist and invest on self-healing in IoT.
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