
INTERNATIONAL HELLENIC UNIVERSITY

SCHOOL OF ENGINEERING
DEPARTMENT OF INFORMATION AND

ELECTRONIC ENGINEERING

MSc THESIS
«WEBIMPUTER: A Web application for missing

value imputation in datasets»

Student
Dimitrios Antoniadis

Supervisor
Stefanos Ougiaroglou
Assistant Professor

September 20, 2023

Τίτλος Δ.Ε. WEBIMPUTER: Web εφαρμογή για καταλογισμό απουσών τιμών σε σύνολα δεδομένων
Κωδικός Δ.Ε. 21190

Ονοματεπώνυμο φοιτητή : Δημήτριος Αντωνιάδης
Ονοματεπώνυμο εισηγητή : Ουγιάρογλου Στέφανος

Ημερομηνία ανάληψης Δ.Ε. : 06-05-2022
Ημερομηνία περάτωσης Δ.Ε.: 20-09-2023

Βεβαιώνω ότι είμαι ο συγγραφέας αυτής της εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοι-
μασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, έχω καταγράψει τις όποιες
πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών, εικόνων και κειμένου, είτε αυτές αναφέρονται ακρι-
βώς είτε παραφρασμένες. Επιπλέον, βεβαιώνω ότι αυτή η εργασία προετοιμάστηκε από εμένα προσωπικά,
ειδικά ως διπλωματική εργασία, στο ΤμήμαΜηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων του
ΔΙ.ΠΑ.Ε.

Η παρούσα εργασία αποτελεί πνευματική ιδιοκτησία του φοιτητή Δημητρίου Αντωνιάδη που την εκπόνη-
σε/αν. Στο πλαίσιο της πολιτικής ανοικτής πρόσβασης, ο συγγραφέας/δημιουργός εκχωρεί στο Διεθνές
Πανεπιστήμιο της Ελλάδος άδεια χρήσης του δικαιώματος αναπαραγωγής, δανεισμού, παρουσίασης στο
κοινό και ψηφιακής διάχυσης της εργασίας διεθνώς, σε ηλεκτρονική μορφή και σε οποιοδήποτε μέσο, για
διδακτικούς και ερευνητικούς σκοπούς, άνευ ανταλλάγματος. Η ανοικτή πρόσβαση στο πλήρες κείμενο της
εργασίας, δεν σημαίνει καθ’ οιονδήποτε τρόπο παραχώρηση δικαιωμάτων διανοητικής ιδιοκτησίας του
συγγραφέα/δημιουργού, ούτε επιτρέπει την αναπαραγωγή, αναδημοσίευση, αντιγραφή, πώληση, εμπορική
χρήση, διανομή, έκδοση, μεταφόρτωση (downloading), ανάρτηση (uploading), μετάφραση, τροποποίηση
με οποιονδήποτε τρόπο, τμηματικά ή περιληπτικά της εργασίας, χωρίς τη ρητή προηγούμενη έγγραφη συ-
ναίνεση του συγγραφέα/δημιουργού.

Η έγκριση της διπλωματικής εργασίας από το Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστη-
μάτων του Διεθνούς Πανεπιστημίου της Ελλάδος, δεν υποδηλώνει απαραιτήτως και αποδοχή των απόψεων
του συγγραφέα, εκ μέρους του Τμήματος.

«Στους γονείς μου και τον αδερφό μου»

Acknowledgements

At this point, I would like to thank Assistant Professor Stefanos Ougiaroglou for supporting me during
the whole period of the masters program and helping me accomplish this thesis. I would also like to thank
all the Professors that have been part of the masters program, as they helped me gain a lot of meaningful
knowledge in the scientific field of ”web intelligence”. Of course, I couldn’t forget to thank ”my people”,
those who have been supporting me all these years, each one in their own way. So, I thank my parents,
my brother, my girlfriend, my grandparents and my friends. Thank you from the bottom of my heart!

Abstract

Missing values in datasets is a very important research issue in big data analysis. These datasets are often
used for training machine learning models and if a significant percentage of the values is missing, it may
result to inaccurate predictions or incorrect model evaluations. To address this issue, several imputation
techniques have been proposed as part of the data cleaning process. However, applying these techniques
to real-world datasets can be challenging and time-consuming for researchers and data scientists. This
thesis presents the development of a web application that utilizes various imputation methods, offering
an easy and user-friendly way to handle missing values in datasets. Users can access the website, upload
their datasets with missing values in CSV format, choose one of the available imputation methods based
on the feature types of the dataset and then download the file containing the imputed values, as soon as the
imputation process is complete. The web application, namedWEBIMPUTER, offers a variety of imputa-
tion solutions for numerical, categorical and mixed feature datasets, providing a wide range of parameter
options for the imputation models. Finally, several experiments that have been conducted by applying
all the imputation algorithms of the application to various datasets of different file size and measuring
the execution time are presented here, to help users gain a better understanding of the computational
efficiency of the models.

iv

Table of Contents

Acknowledgements . iii
Abstract . iv
Table of Contents . v
Αbbreviations . vii

1 Introduction 1
1.1 Missing Data Imputation . 1
1.2 Motivation and Contribution . 1
1.3 Thesis Organization . 2

2 Imputation Methods 3
2.1 Mean . 3
2.2 Median . 3
2.3 Mode . 3
2.4 Constant Value . 3
2.5 Random Hot-Deck . 3
2.6 k-Nearest Neigbors (k-NN) . 4
2.7 Mixed k-NN . 4
2.8 Naive Bayes . 5

2.8.1 Mathematical formulation . 5
2.9 Linear Regression . 6

2.9.1 Mathematical formulation . 6
2.10 Lasso Regression . 7

2.10.1 Mathematical formulation . 7
2.11 Ridge Regression . 8

2.11.1 Mathematical formulation . 9
2.12 Elastic-Net Regression . 10

2.12.1 Mathematical Formulation . 10
2.12.2 Advantages . 11
2.12.3 Challenges . 12

2.13 Support Vector Regression (SVR) . 12
2.13.1 Mathematical Formulation . 14

3 WEBIMPUTER implementation 16
3.1 Technologies Used . 16

3.1.1 Front-end . 16
3.1.2 Back-end . 16
3.1.3 Python libraries . 16

3.2 Application Architecture . 17
3.3 Imputation Modules . 18

3.3.1 simple_imputer.py . 18
3.3.2 regression_imputer.py . 21
3.3.3 svr_imputer.py . 24
3.3.4 naive_bayes_imputer.py . 27
3.3.5 random_hot_deck_imputer.py . 29
3.3.6 numerical_knn_imputer.py . 30
3.3.7 categorical_knn_imputer.py . 32
3.3.8 mixed_knn_imputer.py . 35
3.3.9 dataset_validator.py . 38

3.4 JavaScript Modules . 40
3.4.1 prevent_upload.js . 40
3.4.2 show_available_methods_and_parameters.js . 44
3.4.3 show_download_link.js . 51

v

4 WEBIMPUTER Presentation 53
4.1 Home Page . 53
4.2 Imputer Page . 53
4.3 Imputation Methods Page . 54
4.4 About Page . 55
4.5 Success Response . 55
4.6 Validation and Errors . 55

4.6.1 Invalid File Format . 56
4.6.2 Invalid Model Parameters . 56
4.6.3 Dataset Exceeds Maximum Size . 57
4.6.4 Imputation Still in Progress . 58
4.6.5 Imputation Requires More Time . 59

5 WEBIMPUTER Experiments and Metrics 60
5.1 Numerical Datasets . 60

5.1.1 Mean . 60
5.1.2 Median . 61
5.1.3 Random Hot-Deck . 61
5.1.4 k-NN (Mean) . 61
5.1.5 Linear Regression . 62
5.1.6 Lasso Regression . 62
5.1.7 Ridge Regression . 62
5.1.8 Elastic-Net Regression . 63
5.1.9 Support Vector Regression (SVR) . 63
5.1.10 Methods Comparison . 68

5.2 Categorical Datasets . 68
5.2.1 Mode . 68
5.2.2 Random Hot-Deck . 69
5.2.3 k-NN (Mode) . 69
5.2.4 Naive Bayes . 69
5.2.5 Methods Comparison . 69

5.3 Mixed Datasets . 70
5.3.1 Mean for Numerical - Mode for Categorical . 70
5.3.2 Median for Numerical - Mode for Categorical . 70
5.3.3 Random Hot-Deck . 71
5.3.4 Mixed k-NN (Mean for Numerical - Mode for Categorical) 71
5.3.5 Mixed k-NN (Median for Numerical - Mode for Categorical) 72
5.3.6 Methods Comparison . 72

6 Conclusion and Future Work 73
6.1 Conclusion . 73
6.2 Future Work . 73

References 74

vi

Αbbreviations

Δ.Ε. Διπλωματική Εργασία
ΔΙΠΑΕ Διεθνές Πανεπιστήμιο Ελλάδος

vii

1 Introduction

Chapter 1: Introduction

1.1 Missing Data Imputation

In real-world data, missing values are frequently present. Missing values in datasets usually result from
human error during data collection or from damaged data, and if those missing observations are removed,
the data will become biased. Missing data can also have an impact on training machine learning models,
resulting in less accurate predictions or classifications. To avoid that, missing values can be imputed using
statistical andmachine learning techniques so that themaximum amount of information is recoveredwhile
maintaining the objectivity of the data.

Anytime data scientists or researchers run into missing value issues in their work, they should first look
at the missing values’ patterns. Little and Rubin in their book ”Statistical Analysis with Missing Data”
(1987) identified three categories for missing patterns: ”Missing Completely at Random”, ”Missing at
Random” and ”Missing Not at Random”.

”Missing completely at random” (MCAR), which occurs when missing values have no dependency on
any other variable.

”Missing at random” (MAR), which occurs when missing values depend on other variables. In this case,
the missing values can be estimated using other variables.

”Missing not at random” (MNAT), which occurs when missing values depend on other missing values,
and thus missing data cannot be estimated from existing variables. [1]

1.2 Motivation and Contribution

In many data analysis domains, missing data is a typical issue. Incomplete datasets can be caused by a
variety of factors, such as measurement error or data input issues, and can significantly affect the validity
and dependability of machine learning models trained using this data. There are a lot of imputation
techniques that can help solve this issue, both statistical such as mean and mode imputation, and machine
learning such as k-nn, naive bayes and neural network imputation.

Despite the existence of these methods, imputation of missing data is still a difficult and time-consuming
operation, especially for users who are unfamiliar with statistical and machine learning methodologies
and huge datasets. Therefore, a web application that implements missing value imputation could be very
useful and time-saving.

This thesis aims to build a web application for missing value imputation that can be used by both novice
and expert users (e.g. data scientists). Users will be able to access the website, upload their missing value
dataset in csv format, choose one of the available imputation methods, and then download the imputed
dataset once the imputation process is complete.

1

Chapter 1

1.3 Thesis Organization

This thesis consists of six chapters. In Chapter 1 an introduction tomissing data ismade and its importance
of handling and imputing these data is highlighted. After that, themotivation and contribution of the thesis
is described, followed by the its overview and structure.

In Chapter 2 the imputation methods that have been used in the web application are presented and their
mathematical formulations are analyzed.

In Chapter 3 the WEBIMPUTER implementation is described. That includes the technologies that have
been used (programming languages, frameworks and libraries), the software architecture and the analysis
of the modules that have been created and implement the various imputation algorithms.

In Chapter 4 the complete WEBIMPUTER application is presented. In this chapter the user can learn
how to use the website step by step.

In Chapter 5 some experiments that have been made and metrics that have been monitored are presented.

In Chapter 6 the conclusions of the thesis are stated. Finally some of the most important future work is
suggested here.

2

2 Imputation Methods

Chapter 2: Imputation Methods

2.1 Mean

This is a simple statistical method that can be used in numerical data. It calculates the mean of all values
in the feature column that are not null and then replaces all the missing values in that column by that
value [2]. The formula for the mean imputation is the following:

µ =
1

n

n∑
i=1

xi (1)

,where n is the total number of non-null values in the feature column and xi is the i-th non-null value.

2.2 Median

This statistical method is also used in numerical datasets. It calculates the median of all values in the
feature column that are not null and then replaces all the missing values in that column by that value [2].
First a sorting of the non-null values is made and then the following formula for the median imputation
is applied:

median =

xn+1
2

if n is odd
1
2(xn

2
+ xn

2
+1) if n is even

(2)

,where n is the total number of non-null values in the feature column x(n+1)/2 is the middle non-null
value and xn/2 + xn/2+1 is the sum of the two middle non-null values.

2.3 Mode

This statistical method can be applied both to numerical and categorical datasets. It calculates the most
frequent element of the non-null values column and and then replaces all themissing values in that column
by that value.

2.4 Constant Value

This method simply replaces all the null values in the feture column by a constant value given by the user.

2.5 Random Hot-Deck

In this statistical method the missing values are replaced with values that are drawn randomly from a set
of non-null values. This set is called donor set and as in all hot-deck methods it is part of the same dataset.
The set that contains the missing values and receives values from the donor set is called recipient set [3].

3

Chapter 2

2.6 k-Nearest Neigbors (k-NN)

This machine learning method that is used in numerical datasets imputes the missing values by finding
the k nearest neighbors that don’t have null values for every record that contains missing data [4]. To
achieve this, first all the distances between a record with missing data and the records with non-missing
data are calculated. Then the average of the k records with the smallest distance is calculated and this
value is used to impute the missing data record. Two typical distance types are the Euclidean and the
Manhattan distance. The formula for the Euclidean distance is the following:

deuclidean =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + · · ·+ (ni − nj)2 (3)

The formula for the Manhattan distance is the following:

dmanhattan = |xi − xj |+ |yi − yj |+ |zi − zj |+ · · ·+ |ni − nj | (4)

In both formulas xi, yi, zi...ni are the non-null features of a missing data record and xj , yj , zj ...nj are
the corresponding features of a non-missing data record. It should be noted here that all the numerical
values that are used in the calculation of the Euclidean or the Manhattan distance are normalized first, in
order to be between 0 and 1. This way, the effect of the units of measurement and the order of magnitude
of the features is diminished. In this thesis, the vector normalization for each feature was used, given by
the following formula:

v̂ =
v
∥v∥

(5)

,where v=[v1 v2 v3 …vn] is the feature and its (non-null) values and ∥v∥ is its norm:

∥v∥ =
√

v21 + v22 + v23 + · · ·+ v2n (6)

The k-Nearest Neigbors method is one of the most popular and effective imputation methods. However
it should be noted that for very large dataset it might be resource and time consuming, as it requires the
distance calculation of all missing data records with all the non-missing data records. So depending on
the size of the dataset and the demands for the imputation, it should be whether this method should be
applied or not.

2.7 Mixed k-NN

This is a variation of the k-NN method, in order to be applied to datasets that have also categorical data.
This method also uses the Euclidean or the Manhattan distance formula for the numerical data. However,
for the categorical data, the Hamming distance is used:

dHamming =

0 if xi = xj

1 if xi ̸= xj
(7)

,where xi is a categorical feature value from a missing data record and xj is the corresponding categorical

4

2 Imputation Methods

value of a non-missing data record. It should be noted again that all the numerical values that are used
in the calculation of the Euclidean or the Manhattan distance are normalized first, in order to be between
0 and 1. This way, not only the effect of the units of measurement and the order of magnitude of the
features is diminished but also the Euclidean or the Manhattan distance becomes comparable with the
Hamming distance.

2.8 Naive Bayes

The Naive Bayes imputation algorithm can be used in categorical datasets. It uses the Naive Bayes
classifier as a tool for predicting the missing values of a feature, making the assumption that each feature
contributes equally and independently to the outcome [5].

The Naive Bayes method in categorical datasets is described as follows:

First, the prior probabilities of each possible value for the missing features are calculated. The prior
probability is the probability of a particular value occurring in the dataset, indipendently of the other
features.

After that, the likelihood is calculated, which is the probability of observing the other features in the
dataset, given a particular value for the missing feature.

Finally, using Bayes theorem the algorithm combines the prior probability and the likelihood to calculate
the posterior probability of each possible value for the missing feature. The posterior probability is the
probability of each possible value for the missing feature, given the values of the other features in the
dataset.

The valuewith the highest posterior probability is selected as the imputed value for themissing feature [6].

2.8.1 Mathematical formulation

Suppose we have a dataset with n features X1, X2, ..., Xj−1, Xj+1, ..., Xn, and we want to impute the
missing value for feature Xj . We denote the value of Xj as xj , and the values of the other features as
x1, x2, ..., xj−1, xj+1, ..., xn. We also assume that the dataset hasm data points.

The formula for Naive Bayes imputation is:

P (Xj = xj |X1 = x1, X2 = x2, . . . , Xj−1 = xj−1, Xj+1 = xj+1, . . . , Xn = xn)

=
1

Z
P (X1 = x1, X2 = x2, . . . , Xn = xn|Xj = xj)P (Xj = xj)

(8)

Where:

P (Xj = xj |X1 = x1, X2 = x2, ..., Xj−1 = xj−1, Xj+1 = xj+1, ..., Xn = xn) is the conditional prob-
ability of the missing value ofXj given the values of the other features. P (X1 = x1, X2 = x2, ..., Xn =

xn|Xj = xj) is the joint probability of the values of all the features, given the value ofXj . P (Xj = xj) is

5

Chapter 2

the prior probability ofXj and Z is a normalization constant that ensures that the sum of all probabilities
is 1.

To impute the missing value for Xj , the conditional probabilities for all possible values of xj are calcu-
lated and the value with the highest probability is chosen.

2.9 Linear Regression

Linear regression is a statistical modeling technique that is used to estimate the relationship between a
dependent variable and one or more independent variables. In simple linear regression, there is only one
independent variable, whereas in multiple linear regression, there are two or more independent variables.

The goal of linear regression is to find the best-fit line that can predict the value of the dependent variable
based on the values of the independent variables. The best-fit line is determined by minimizing the sum
of the squared differences between the predicted and actual values [7].

Linear regression can be used for imputingmissing values because it can estimate the relationship between
the target variable and the other variables in the dataset. If the target variable has missing values, we can
use linear regression to predict the missing values based on the other variables in the dataset.

2.9.1 Mathematical formulation

The linear regression model can be expressed as:

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε (9)

Where:

y is the dependent variable (target),

β0, β1, β2, . . . , βp are the coefficients (parameters) to be estimated,

x1, x2, . . . , xp are the independent variables (features),

ε represents the error term.

The goal of linear regression is to estimate the coefficients β0, β1, . . . , βp that minimize the residual sum
of squares (RSS):

minimize: RSS =

n∑
i=1

ϵ2i =

n∑
i=1

(yi − (β0 + β1xi1 + β2xi2 + . . .+ βpxip))
2 (10)

Once these coefficients are determined, the model can be used for predicting the missing value of a feature
given the values of the other non-missing features as input.

6

2 Imputation Methods

Figure 2.1: Linear regression

2.10 Lasso Regression

Lasso regression is a regularization technique, an extension of ordinary least squares (OLS) regression.
It is used over regression methods for a more accurate prediction. This model uses shrinkage, mean-
ing data values are shrunk towards a central point as the mean, which leads to simple, sparse models
(models with fewer parameters). This particular type of regression is well-suited for models showing
high levels of multicollinearity or certain parts of model selection needs to be automated, like variable
selection/parameter elimination [8].

Lasso Regression uses L1 regularization technique and it is suitable for datasets with a lot of features,
because it automatically performs feature selection.

2.10.1 Mathematical formulation

Lasso regression starts with a standard linear regression model as described in the previous section, but it
introduces an additional penalty term (L1 regularization) based on the absolute values of the coefficients.
The L1 regularization term is the sum of the absolute values of the coefficients multiplied by a tuning
parameter α:

L1 = α (|β1|+ |β2|+ . . .+ |βp|) (11)

Where:

α is the regularization parameter that controls the amount of regularization applied,

β1, β2, . . . , βp are the coefficients.

The objective of Lasso regression is to find the values of the coefficients that minimize the sum of squared
differences between the predicted values and the actual valueswhile alsominimizing the L1 regularization

7

Chapter 2

term:

minimize: RSS+ L1 (12)

Where:

RSS is the residual sum of squares (the error between the predicted values and the actual values).

By adding the L1 regularization term, Lasso regression can shrink the coefficients towards zero. When α
is sufficiently large, some coefficients are driven to exactly zero. This property of Lasso makes it useful
for feature selection, as variables with zero coefficients are effectively removed from the model.

The choice of the regularization parameter α is crucial in Lasso regression. A larger α value increases the
amount of regularization, leading to more coefficients being pushed towards zero. Conversely, a smaller
α value reduces the regularization effect, allowing more variables to have non-zero coefficients.

To estimate the coefficients in Lasso regression, an optimization algorithm is used to minimize the ob-
jective function. Coordinate descent is commonly used here, which iteratively updates each coefficient
while holding the others fixed.

Lasso regression offers a powerful framework for both prediction and feature selection, especially when
dealing with high-dimensional datasets where the number of features is large. By finding a balance
between simplicity and accuracy, Lasso can provide interpretable models while effectively managing the
risk of overfitting.

2.11 Ridge Regression

Ridge regression is an extension of ordinary least squares (OLS) regression, commonly used to fit a linear
relationship between independent and dependent variables, which is designed to handle scenarios where
predictor variables exhibit high collinearity or strong correlation [8].

Whenmulticollinearity exists, traditional regression models may lead to inconsistent or unreliable results.
Ridge regression addresses this issue by adding a regularization term to the objective function, which
penalizes large coefficient values. This penalty encourages themodel to distribute the impact of correlated
variables more evenly, reducing their dominance.

By finding a balance between model complexity and data fitting, Ridge regression produces more stable
and accurate predictions, effectively mitigating the problems associated with multicollinearity.

8

2 Imputation Methods

2.11.1 Mathematical formulation

Ridge regression starts with a standard linear regression model as described in the previous section, but
it introduces an additional penalty term (L2 regularization):

L2 = α

p∑
j=1

β2
j (13)

Where:

α is the regularization parameter and

βj are the coefficients to be estimated.

This regularization term encourages small values of the coefficients, helping to prevent overfitting and
improve model stability by penalizing large coefficient values. The choice of α determines the strength
of regularization iand it is often selected using techniques like cross-validation to find the value that
minimizes the prediction error in a validation dataset.

By adding this regularization term, Ridge’s objective function that should be minimized takes the form:

Minimize: J(β) =
N∑
i=1

(yi − y′i)
2 + α

p∑
j=1

β2
j (14)

Minimizing this objective function is typically done by taking the derivative of J(β) with respect to β

and setting it to zero:
∂J(β)

∂β
= 0 (15)

The closed-form solution for the above equation is given by:

β̂ridge = (XTX + λI)−1XT y (16)

Where:

β̂ridge represents the estimated ridge regression coefficients.

X is the matrix of predictor variables.

y is the vector of target values.

I is the identity matrix.

To make predictions using the Ridge regression model, the estimated coefficients (β̂ridge) can be used as
follows:

y′ = Xβ̂ridge (17)

9

Chapter 2

2.12 Elastic-Net Regression

Elastic-Net regression is a regularization technique, an extension of ordinary least squares (OLS) regres-
sion, which combines the advantages of Lasso and Ridge regression. It can handle multicollinearity,
reduce overfitting, and select relevant features. But it also has some drawbacks and challenges that a
researcher or a data scientist should be aware of.

Elastic-Net regression, like Lasso and Ridge uses a penalty term to shrink the coefficients of the predic-
tors. The penalty term is a combination of the L1 norm and the L2 norm of the coefficients described in
previous sections, and includes a regularization hyperparameter, called alpha (α) weighted by a parameter
called ’L1_ratio’. The L1 norm penalty is similar to Lasso, which tends to produce sparse linear models
by setting some coefficients to zero. The L2 norm penalty is similar to Ridge, which tends to reduce the
variance of the coefficients by shrinking them towards zero.

The hyperparameter alpha (α) controls the overall strength of regularization. A large value of α means
strong regularization, which can lead to less features being selected and thus simpler models. A small
value of α reduces the strength of regularization, allowing the model to fit the data more closely, which
can lead to more features being selected and thus more complex models with larger coefficients. When α
is zero the regularization term is removed and the model becomes equivalent to Ordinary Least Squares
(OLS) regression [9].

The hyperparameter L1_ratio takes values in range:

0 ≤ L1_ratio ≤ 1 (18)

When L1_ration is zero, Elastic-Net is equivalent to Ridge (L2 norm). When L1_ration is one, elastic net
is equivalent to Lasso (L1 norm). When L1_ration is between zero and one, Elastic-Net is a compromise
between Lasso and Ridge regression. This makes Elastic-Net a flexible method that can adapt to different
situations and datasets.

2.12.1 Mathematical Formulation

By adding terms alpha (α) and L1_ratio, the objective function that should be minimized takes the form:

minimize: J(w) =
1

2nsamples
∥y −Xw∥22 + α L1_ratio ∥w∥1 +

1

2
α (1− L1_ratio) ∥w∥22 (19)

10

2 Imputation Methods

Where:

nsamples is the number of training samples.

X is the matrix of input features.

y is the vector of target values.

w is the vector of coefficients to be calculated.

α is the regularization strength parameter.

L1_ratio is the mixing parameter between L1 and L2 regularization.

The closed-form solution for the vector of coefficients w, which obtained by setting the derivative of the
loss function J(w) to zero is the following:

w =
(
XTX + α(1− L1_ratio)I

)−1 (
XT y − αL1_ratio sign(w)

)
(20)

Where:

w is the vector of coefficients to be learned.

X is the matrix of input features.

y is the vector of target values.

α is the regularization strength parameter.

L1_ratio is the mixing parameter between L1 and L2 regularization.

I is the identity matrix.

sign(w) represents the sign of the coefficients.

Finally, to make predictions using the Elastic-Net regression model, the estimated coefficients (w) can
be used as follows:

ŷ = Xw (21)

2.12.2 Advantages

Elastic-Net regression has the advantage of being able to manage multicollinearity, which happens when
several predictors have a high degree of correlation with one another. When there is multicollinearity
in the dataset, lasso regression can be unstable and inconsistent because it may arbitrarily choose one
predictor over another. Ridge regression can handle multicollinearity better, but it may keep too many
predictors that are not relevant. Elastic-Net can tackle these problems by selecting a subset of predictors
that are correlated, but not redundant.

Another advantage of Elastic-Net regression is that it can reduce overfitting, which occurs when themodel

11

Chapter 2

fits the training data too well, but does not perform adequately on a new dataset. Lasso and Ridge can as
well reduce overfitting by adding regularization terms, but Elastic-Net is able do it more effectively by
combining the benefits of both methods. Elastic-Net regression can balance the bias-variance trade-off
by finding the ”golden ratio” between underfitting and overfitting.

A third advantage of Elastic-Net regression is that it is able perform feature selection, which means that
the model identifies the most important predictors for the outcome. Lasso regression can also perform
feature selection by setting some coefficients to zero, but it may leave out some relevant predictors if there
are too many of them. Ridge regression cannot perform feature selection, as it keeps all the predictors,
although it shrinks them.

2.12.3 Challenges

One of the challenges of Elastic-Net regression is that it requires tuning two hyperparameters: alpha
and L1_ratio. Hyperparameters are parameters that are not learned by the model, but need to be speci-
fied by the user. Finding the best values for hyperparameters involves minimizing error or maximizing
model performance. Due to the need to test various value combinations and assess their effects, tuning
hyperparameters can be time-consuming and computationally expensive.

Elastic-Net regression also has the drawback of occasionally not working well with certain dataset types.
When there are far more predictors than observations in high-dimensional data, for instance, Elastic-Net
regression may not be appropriate. In this situation, it’s possible that the approach won’t be able to choose
the pertinent features or effectively minimize the dimensionality. When there is a non-linear relationship
between the variables and the outcome, elastic-net regression may not be acceptable. In this situation,
it’s possible that the approach can’t adequately represent the complexity of the data.

A third challenge of Elastic-Net regression is that it may not be easily interpretable or explainable. In-
terpretability and explainability refer to the ability to understand how the model works and why it makes
certain predictions. Lasso and Ridgemethods are relatively simple andmore intuitive, as they have a clear
relationship between the coefficients and the predictors. Elastic-Net, on the other hand, is more complex
and ambiguous, as it involves a combination of two penalties and two hyperparameters, which makes
it less intuitive. This means that Elastic-Net regression method may not provide a clear or meaningful
explanation of the model and its predictions.

2.13 Support Vector Regression (SVR)

Support Vector Machines (SVMs) are a statistical learning theory that was created by Vapnik and Lerner
in 1963. In 1996, the theory was further developed by Scholkopf, Burges and Vapnik, who constructed
a hyperplane or a set of hyperplanes in a high- or infinite-dimensional space on known data. They suc-
cessfully used SVM for classification of unseen data. A different version of SVM for regression, which
is called support vector regression (SVR), was proposed by Vapnik, Steven Golowich and Alex Smola
in 1997. The model produced by support vector classification depends on only a subset of the training
data because the cost function for building the model does not consider training points that lie beyond the
margin. Analogously, the model produced by SVR depends on only a subset of the training data because

12

2 Imputation Methods

Figure 2.2: Support Vector Regression (SVR)

the cost function for building the model ignores any training data that are close (within a threshold e)
to the model prediction. Support vector regression (SVR) is the most commonly used form of support
vector machines [10].

The goal of SVR is to find a function that approximates the relationship between the input variables and
a continuous target variable, while minimizing the prediction error.

Unlike Support Vector Machines (SVMs) used for classification tasks, SVR seeks to find a hyperplane
that best fits the data points in a continuous space. This is achieved by mapping the input variables to a
high-dimensional feature space and finding the hyperplane that maximizes the margin (distance) between
the hyperplane and the closest data points, while also minimizing the prediction error.

SVR can handle non-linear relationships between the input variables and the target variable by using a
kernel function tomap the data to a higher-dimensional space. This makes it a powerful tool for regression
tasks where there may be complex relationships between the input variables and the target variable.

Support Vector Regression (SVR) uses the same principle as SVM, but for regression problems. The
problem of regression is to find a function that approximates mapping from an input domain to real
numbers on the basis of a training sample.

Consider these two red lines shown in figure 2.2 as the decision boundary and the green line as the
hyperplane. The objective, when moving on with SVR, is to basically consider the points that are within
the decision boundary line. The best fit line is the hyperplane that has a maximum number of points.

Consider the decision boundary lines being at any distance, say ’ε’, from the hyperplane. So, these are
the lines that we draw at distance ’+ε’ and ’-ε’ from the hyperplane. This ’ε’ is referred as epsilon.

Assuming that the equation of the hyperplane is as follows:

13

Chapter 2

Y = wx+ b (22)

Then the equations of decision boundary become:

wx+ b = +ϵ (23)

wx+ b = −ϵ (24)

Thus, any hyperplane that satisfies our SVR should satisfy:

−ϵ < Y − wx+ b < +ϵ (25)

The main aim is to decide a decision boundary at ’ε’ distance from the original hyperplane such that data
points closest to the hyperplane or the support vectors are within that boundary line.

Hence, only those points that are within the decision boundary and have the least error rate or are within
the margin of tolerance are being taken.

SVR gives the flexibility to define howmuch error is acceptable in the model and will find an appropriate
line (or hyperplane in higher dimensions) to fit the data.

2.13.1 Mathematical Formulation

In contrast to ordinary least squares (OLS), the objective function of SVR is to minimize the coefficients
— more specifically, the l2-norm of the coefficient vector — not the squared error. The error term is
instead handled in the constraints, where the absolute error is set less than or equal to a specified margin,
called the maximum error, ε (epsilon). Epsilon can be tuned to gain the desired accuracy of the model.
The objective function and constraints are as follows:

Minimize:
1

2
∥w∥2 + C

n∑
i=1

|ξi| (26)

Constraints: |yi − wixi| <= ϵ+ |ξi| (27)

Where:

ξi is the slack variable and

C is a hyperparameter.

The concept of the slack variable is that for any value that falls outside of ε, we can denote its deviation
from the margin as ξ.

14

2 Imputation Methods

Figure 2.3: Support Vector Regression (SVR)

As the hyperparameter C increases, the tolerance for points outside of ε also increases. As C approaches 0,
the tolerance approaches 0 and the equation collapses into the simplified (although sometimes infeasible)
one.

15

Chapter 3

Chapter 3: WEBIMPUTER implementation

3.1 Technologies Used

3.1.1 Front-end

The front-end of the application is written inHTMLwith use of CSS for styling the pages and JavaScript
with jQuery for adding some functionalities on the client-side. The framework used for the HTML
templates and CSS styling is Bootstrap.

3.1.2 Back-end

Themain functionality of the application is implemented on the server-side. That includes all the modules
that implement the imputation algorithms and all the processes that handle the receiving of the datasets
with missing values and sending the imputed datasets back to client-side. The datasets that are uploaded
by the users should be in CSV format.

The framework used for building the server-side is Flask and the programming language is Python.

3.1.3 Python libraries

The most important libraries that have been used for the implementation of the imputing algorithms are:

1. pandas: It is an open source, BSD-licensed library providing high-performance, easy-to-use data
structures and data analysis tools. Pandas has been used in the application for handling the datasets
as Data Frames, which is a convenient way to perform complex manipulations and transformations.

2. NumPy: It is the fundamental package for scientific computing in Python. It is a Python library
that provides a multidimensional array object, various derived objects (such as masked arrays and
matrices), and an assortment of routines for fast operations on arrays. NumPy has been used in
the application for handling multidimensional arrays and perform complex mathematical manipu-
lations and transformations.

3. sklearn.impute: It includes modules that perform some popular imputation algorithms such as
KNN (for numerical datasets) and some other simple ones such as mean and median imputation.

4. sklearn.linear_model: It includes a set of methods intended for regression in which the target
value is expected to be a linear combination of the features. In the application it has been used in
the implementation of linear, lasso, ridge and elastic-net regression.

5. sklearn.naive_bayes: It includes modules for implementing Naive-Bayes classification and it has
been used in the application to perform Naive-Bayes imputation in categorical datasets.

6. sklearn.svm: It includes modules regarding Support Vector Machines (SVM) and it has been used
in the application to perform Support Vector Regression (SVR) imputation.

16

3 WEBIMPUTER implementation

3.2 Application Architecture

The application architecture and flow is shown in figure 3.1.

1. First the user uploads a dataset in CSV format and defines the following parameters:

• Missing Value Representation: This parameter defines how the missing values are repre-
sented in the dataset. Available options are ’NaN’, ’?’ and ’-’.

• Dataset Features Type: This parameter defines the type of the dataset according to its fea-
tures. Available options are ’Numerical’ (all features of the dataset are numerical), ’Categor-
ical’ (all features of the dataset are numerical) and ’Mixed’ (both numerical and categorical
data are present in the dataset).

• Imputation Method: This parameter defines the imputation method that will be used. This
field is filtered by the ’Dataset Features Type’ field (via JavaScript code) so that the user
can see only the compatible imputation methods to his/her dataset. The available imputation
methods for each dataset type are:

– For Numerical Datases: ’Mean’, ’Median’, ’Random Hot-Deck’, ’k-NN (Mean)’, ’k-
NN (Median)’, ’Linear Regression’, ’Lasso Regression’ and ’Ridge Regression’ and
’Elastic-Net Regression’.

– For Categorical Datasets: ’Mode’, ’Random Hot-Deck’, ’k-NN (Mode)’ and ’Naive
Bayes’.

– For Mixed Datasets: ’Mode’, ’Mean for Numerical - Mode for Categorical’, ’Median
for Numerical - Mode for Categorical’, ’Random Hot-Deck’, ’Mixed k-NN (Mean for
Numerical - Mode for Categorical)’ and ’Mixed k-NN (Median for Numerical - Mode
for Categorical)’.

2. Once the user defines all the above parameters, he/she submits the form and the CSV is uploaded
and stored in the server.

3. The appropriate imputation python module is triggered according to the selected method and starts
the imputation process asynchronously. That means that the user can continue browsing the appli-
cation or he/she can upload another dataset in the meantime.

4. Once the imputation process is completed, the imputed dataset is stored in CSV format in the server
and a download link is sent asynchronously to the front-end.

17

Chapter 3

Figure 3.1: WEBIMPUTER architecture

3.3 Imputation Modules

In this section all the python imputation modules are presented and some key points of the algorithms are
analyzed.

3.3.1 simple_imputer.py

This module implements the simple imputation methods for numerical, categorical and mixed datasets
(datasets that contain both numerical and categorical features). These methods are ’Mean’ and ’Median’
for numerical features and ’Mode’ for categorical. The implementation of these imputing methods is
performed using the ’SimpleImputer’ module of ’sklearn.impute’ library.

The imputation algorithm in this module is described as follows:

First the CSV file is read and converted to a pandas Data Frame so that the data handling and the calcu-
lations are easier and efficient.

Then a validation is made to ensure that the CSV structure is according to the application’s specifications
which are described on the ’About’ page, meaning that numerical features should be declared under their
name as ’int’ for integer features, ’float’ for floating point features and ’str’ for categorical/string features.

18

3 WEBIMPUTER implementation

This check is necessary because the imputation methods should be aware of which types of features are
expected to be handled.

After that the given missing value is replaced by ’np.nan’ (numpy’s ’not-a-number’ constant) to prepare
the input data in suitable format for the algorithms of ’SimpleImputer’.

Next the Data Frame is devided into separate Data Frames, each one contains the same data type. For
instance, a mixed dataset that contains integer, floating point and categorical features will be devided
into three separate Data Frames, one that contains the integer features, one that contains the floating
point features and one that contains the categorical/string features.

After that for each separate Data Frame a ’SimpleImputer’ object is created and is used to impute the
missing data, according to the corresponding imputation method (’mean’, median’, ’mode’).

The final step is to merge each and every imputed feature into the original Data Frame and save it in CSV
format.

The source code of the module is shown below:

1 import logging
2 import shutil
3

4 import numpy as np
5 import pandas as pd
6 from sklearn.impute import SimpleImputer
7

8 from dataset_validator import is_mixed_attribute_types_valid
9

10

11 def simple_imputer(filename, missing_value, imp_method):
12 imp_csv = filename[:-4] + "_imp.csv"
13

14 try:
15 df = pd.read_csv(filename, low_memory=False)
16 attribute_types = df.loc[0, :]
17

18 if not is_mixed_attribute_types_valid(attribute_types, imp_csv):
19 return 1
20

21 df = df.replace(to_replace=missing_value, value=np.nan)
22 int_df = pd.DataFrame()
23 float_df = pd.DataFrame()
24 str_df = pd.DataFrame()
25

26 for i in range(len(attribute_types)):
27 if attribute_types[i] == 'int': # Alternative is df.iloc[0][i]
28 int_df[df.columns[i]] = df[df.columns[i]]
29 elif attribute_types[i] == 'float': # Alternative is df.iloc[0][i]

19

Chapter 3

30 float_df[df.columns[i]] = df[df.columns[i]]
31 else: # 'str'
32 str_df[df.columns[i]] = df[df.columns[i]]
33

34 if len(int_df) > 0:
35 int_df = int_df.drop([0])
36 int_imp = SimpleImputer(missing_values=np.nan, strategy=imp_method)
37 int_imp.fit(int_df)
38 if imp_method == 'mean':
39 int_array_imp = np.rint((int_imp.transform(int_df) + 0.0001))
40 else:
41 int_array_imp = int_imp.transform(int_df)
42

43 int_array_imp = int_array_imp.astype(int)
44 int_df_imp = pd.DataFrame(int_array_imp, columns=int_df.columns)
45 int_df_imp = int_df_imp.astype('object')
46

47 for i in range(len(int_df_imp.columns)):
48 df[int_df_imp.columns] = int_df_imp[int_df_imp.columns]
49

50 if len(float_df) > 0:
51 float_df = float_df.drop([0])
52 float_imp = SimpleImputer(missing_values=np.nan, strategy=imp_method)
53 float_imp.fit(float_df)
54 if imp_method == 'mean':
55 float_array_imp = np.round((float_imp.transform(float_df) + 0.0001),

decimals=3)↪→

56 else:
57 float_array_imp = float_imp.transform(float_df)
58 float_df_imp = pd.DataFrame(float_array_imp, columns=float_df.columns)
59 for i in range(len(float_df_imp.columns)):
60 df[float_df_imp.columns] = float_df_imp[float_df_imp.columns]
61

62 if len(str_df) > 0:
63 str_df = str_df.drop([0])
64 str_imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
65 str_imp.fit(str_df)
66 str_array_imp = str_imp.transform(str_df)
67 str_df_imp = pd.DataFrame(str_array_imp, columns=str_df.columns)
68 for i in range(len(str_df_imp.columns)):
69 df[str_df_imp.columns] = str_df_imp[str_df_imp.columns]
70

71 df.to_csv(imp_csv, index=False)
72

73 except Exception as e:
74 logging.error(e)
75 error_csv = r'imputation_error.csv'
76 shutil.copyfile(error_csv, imp_csv)
77 return 1

20

3 WEBIMPUTER implementation

78

79 return 0

3.3.2 regression_imputer.py

This module implements the linear regression imputation algorithms. The four available algorithms are
’Linear Regression’, ’Lasso Regression’, ’Ridge Regression’ and ’Elastic-Net Regression’. The corre-
sponding models that have been used here are from ’sklearn.linear_model’ library and they are ’Linear-
Regression’, ’Lasso’, ’Ridge’ and ’ElasticNet’.

The imputation algorithm in this module is described as follows:

First the validity of the input ”regression_model” parameter is checked. If the input parameter is not
one of the available valid options, an Exception is raised. At this point it should be stated that in the
context of the application this Exception is expected never to be raised as the regression model input is
provided as option in a drop-down box, so that the user cannot provide any invalid input. However it is
considered to be a good practice to have this kind of Exceptions, in case of this module will be used in
another application in the future.

After that the data from the CSV file are converted to a pandas Data Frame and another validation is made
in order to ensure that the dataset has the correct form, meaning that all features should be numerical and
declared accordingly (’int’ for integer and ’float’ for floating point features). Categorical features are not
accepted in these regression methods and will lead to error.

Next the Data Frame is split into two Data Frames, one called the ’donor’ and the other one called the
’recipient’. The ’donor’ Data Frame contains all the records of the dataset that do not have any missing
values. The ’recipient’ Data Frame, on the other hand, contains all the records of the dataset that have at
least one missing value. The ’donor’ Data Frame will be used to train and build the regression models
which will predict the missing values of the ’recipient’ Data Frame.

After this separation the ’recipient’ Data Frame is iterated and each of its records gets imputed with the
following procedure:

1. For each record the column(s) with themissing feature value(s) is/are stored in the ’missing_attributes’
list, which is given as input to the ’make_regression_models’ function.

2. This function handles the build of the regression models. First it checks if the model that corre-
sponds to the missing attribute already exists in the ’models_total’ list. The ’models_total’ list
contains all the regression models that have been built so far. This check is done in order to avoid
repetitive training and builds of models.

3. If the model exists in the ’models_total’ list the function is terminated (returns 0). Otherwise, if
the model does not exist, it is built and added in the ’models_total’ lis. Depending of the impu-
tation method that has been selected, the corresponding model is built. For example in case of
’elastic_net_regression’ the ’ElasticNet’ model from ’sklearn.impute’ library is selected etc.

21

Chapter 3

4. The model that has been built is used for predicting and imputing the missing values of the record.

Finally the imputed Data Frame is stored in CSV format.

The source code of the module is shown below:

1 import logging
2 import shutil
3

4 import numpy as np
5 import pandas as pd
6 from sklearn.linear_model import (
7 LinearRegression,
8 Lasso,
9 Ridge,
10 ElasticNet,
11)
12

13 from dataset_validator import is_numerical_attribute_types_valid
14

15 pd.options.mode.chained_assignment = None
16

17 VALID_LINEAR_REGRESSION_MODELS = [
18 'linear_regression',
19 'lasso_regression',
20 'ridge_regression',
21 'elastic_net_regression',
22]
23

24 def regression_imputer(filename, missing_value, regression_model='linear_regression',
alpha=1.0, l1_ratio=0.5):↪→

25 if regression_model not in VALID_LINEAR_REGRESSION_MODELS:
26 raise Exception(f"Invalid linear regression model {regression_model}. It must

be one of {', '.join(VALID_LINEAR_REGRESSION_MODELS)}.")↪→

27

28 imp_csv = filename[:-4] + "_imp.csv"
29

30 try:
31 df = pd.read_csv(filename, low_memory=False)
32 attribute_types = df.loc[0, :]
33

34 if not is_numerical_attribute_types_valid(attribute_types, imp_csv):
35 return 1
36

37 cols_num = len(df.columns)
38 df = df.drop([0])
39

40 recipient_df = pd.DataFrame()

22

3 WEBIMPUTER implementation

41 recipient_df = df[(df == missing_value).any(axis=1)]
42

43 donor_df = pd.DataFrame()
44 donor_df = df.drop(recipient_df.index)
45

46 missing_attributes_total = []
47 models_total = []
48

49 def make_regression_models(miss_attr_list: list):
50 if miss_attr_list in missing_attributes_total:
51 return 0
52 else:
53 missing_attributes_total.append(miss_attr_list)
54 reg_models_list = []
55 df_feat = donor_df.loc[:, ~donor_df.columns.isin(miss_attr_list)]
56 arr_feat = df_feat.to_numpy()
57

58 if regression_model == "linear_regression":
59 reg = LinearRegression()
60 elif regression_model == "lasso_regression":
61 reg = Lasso(alpha=alpha, max_iter=int(1e6))
62 elif regression_model == "ridge_regression":
63 reg = Ridge(alpha=alpha, max_iter=int(1e6))
64 else:
65 reg = ElasticNet(alpha=alpha, l1_ratio=l1_ratio,

max_iter=int(1e6))↪→

66

67 for k in range(len(miss_attr_list)):
68 df_target = donor_df.loc[:, donor_df.columns == miss_attr_list[k]]
69 arr_target = df_target.to_numpy()
70 reg.fit(arr_feat, np.ravel(arr_target))
71 reg_models_list.append(reg)
72 models_total.append(reg_models_list)
73 return 0
74

75 for i in range(len(recipient_df)):
76 missing_attributes = []
77 for j in range(cols_num):
78 if recipient_df.iloc[i, j] == missing_value:
79 missing_attributes.append(recipient_df.columns[j])
80 make_regression_models(missing_attributes)
81 model_index = missing_attributes_total.index(missing_attributes)
82 recip_index = recipient_df.index[i]
83 rec_df_target = recipient_df.loc[recip_index,

~recipient_df.columns.isin(missing_attributes)]↪→

84 rec_target = [rec_df_target.to_numpy().astype(float)]
85

86 for m in range(len(missing_attributes)):
87 prediction = models_total[model_index][m].predict(rec_target)

23

Chapter 3

88

89 if attribute_types[missing_attributes[m]] == "float":
90 recipient_df.loc[recip_index, missing_attributes[m]] =

np.round(prediction[0] + 0.0001, decimals=3)↪→

91 else:
92 recipient_df.loc[recip_index, missing_attributes[m]] =

int(np.rint(prediction[0] + 0.0001))↪→

93

94 imp_record = recipient_df.loc[recip_index, :]
95 df.loc[recip_index, :] = imp_record
96

97 df.to_csv(imp_csv, index=False)
98

99 except Exception as e:
100 logging.error(e)
101 error_csv = r'imputation_error.csv'
102 shutil.copyfile(error_csv, imp_csv)
103 return 1
104

105 return 0

3.3.3 svr_imputer.py

This module implements the Support Vector Regression (SVR) imputation algorithm. The model that
has been used here is ’SVR’ from ’sklearn.svm’ library.

This algorithm has the same steps and logic as described in section regression imputer (see section 3.3.2).
The difference is that the ’make_models’ function uses the ’SVR’ model to build the models and make
the predictions and the imputation of missing values. This model has some parameters that are given by
the user. These parameters are:

• kernel: Specifies the kernel type to be used in the algorithm. The options are ’RBF’, ’Linear’,
’Polynomial’ and ’Sigmoid’.

• C: The regularization parameter. The strength of the regularization is inversely proportional to C.
The penalty is a squared L2 norm penalty. Normally it must be strictly positive, however in the
application it is restricted in the range [0.001, 1000] due to computational limitations of the server.

• epsilon: Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty
is associated in the training loss function with points predicted within a distance epsilon from the
actual value. Normally it must be non-negative, however in the application it is restricted in the
range [0.1, 1000] due to computational limitations of the server.

• gamma: Kernel coefficient for kernels RBF, polynomial and sigmoid. If gamma is set to ’auto’
(which is the default value) then the function uses 1

nfeatures
as value of gamma. If ’scale’ is selected

the function uses 1
nfeaturesVar(X) as value of gamma. Otherwise, if ’Custom’ gamma is selected the user

should provide a float value. Normally gamma must be non-negative, however in the application
it is restricted in the range [0.001, 1000] due to computational limitations of the server.

24

3 WEBIMPUTER implementation

• degree: The degree of the polynomial kernel function. It is ignored by all other kernels Normally
it must be a non-negative integer, however in the application it must be an integer in the range [1,
10] due to computational limitations of the server.

• coef0: Independent term in kernel function. It is only significant in polynomial and sigmoid
kernels. Normally it can be a float with no other restrictions, however in the application it is
restricted in the range [-10, 10] due to computational limitations of the server.

The source code of the module is shown below:

1 import shutil
2

3 import numpy as np
4 import pandas as pd
5 from sklearn.pipeline import Pipeline
6 from sklearn.pipeline import make_pipeline
7 from sklearn.preprocessing import StandardScaler
8 from sklearn.svm import SVR
9

10 from dataset_validator import is_numerical_attribute_types_valid
11

12 pd.options.mode.chained_assignment = None
13

14

15 def svr_imputer(filename, missing_value, kernel, C=1.0, epsilon=0.1, gamma='auto',
degree=3, coef0=0.0):↪→

16 imp_csv = filename[:-4] + "_imp.csv"
17

18 try:
19 df = pd.read_csv(filename, low_memory=False)
20 attribute_types = df.loc[0, :]
21

22 if not is_numerical_attribute_types_valid(attribute_types, imp_csv):
23 return 1
24

25 cols_num = len(df.columns)
26 df = df.drop([0])
27

28 recipient_df = pd.DataFrame()
29 recipient_df = df[(df == missing_value).any(axis=1)]
30

31 donor_df = pd.DataFrame()
32 donor_df = df.drop(recipient_df.index)
33

34 svr_missing_attributes = []
35 svr_models = []
36

37 def make_svr_models(miss_attr_list: list):

25

Chapter 3

38 if miss_attr_list in svr_missing_attributes:
39 return 0
40 else:
41 svr_missing_attributes.append(miss_attr_list)
42 svr_models_list = []
43 df_feat = donor_df.loc[:, ~donor_df.columns.isin(miss_attr_list)]
44 arr_feat = df_feat.to_numpy()
45

46 for k in range(len(miss_attr_list)):
47 df_target = donor_df.loc[:, donor_df.columns == miss_attr_list[k]]
48 arr_target = df_target.to_numpy()
49 svr_obj = SVR(kernel=kernel, C=C, epsilon=epsilon, gamma=gamma,

degree=degree, coef0=coef0)↪→

50 reg = make_pipeline(StandardScaler(), svr_obj)
51 reg.fit(arr_feat, np.ravel(arr_target))
52 Pipeline(steps=[('standardscaler', StandardScaler()), ('svr',

svr_obj)])↪→

53 svr_models_list.append(reg)
54 svr_models.append(svr_models_list)
55 return 0
56

57 for i in range(len(recipient_df)):
58 missing_attributes = []
59 for j in range(cols_num):
60 if recipient_df.iloc[i, j] == missing_value:
61 missing_attributes.append(recipient_df.columns[j])
62 make_svr_models(missing_attributes)
63

64 model_index = svr_missing_attributes.index(missing_attributes)
65 recip_index = recipient_df.index[i]
66 rec_df_target = recipient_df.loc[recip_index,

~recipient_df.columns.isin(missing_attributes)]↪→

67 rec_target = [rec_df_target.to_numpy().astype(float)]
68

69 for m in range(len(missing_attributes)):
70 prediction = svr_models[model_index][m].predict(rec_target)
71 if attribute_types[missing_attributes[m]] == "float":
72 recipient_df.loc[recip_index, missing_attributes[m]] =

np.round(prediction[0] + 0.0001, decimals=3)↪→

73 else:
74 recipient_df.loc[recip_index, missing_attributes[m]] =

int(np.rint(prediction[0] + 0.0001))↪→

75 imp_record = recipient_df.loc[recip_index, :]
76 df.loc[recip_index, :] = imp_record
77

78 df.to_csv(imp_csv, index=False)
79

80 except Exception as e:
81 error_csv = r'imputation_error.csv'

26

3 WEBIMPUTER implementation

82 shutil.copyfile(error_csv, imp_csv)
83 return 1
84

85 return 0

3.3.4 naive_bayes_imputer.py

This module implements Naive Bayes imputation algorithm for categorical datasets. The model that has
been used here is ’CategoricalNB’ from ’sklearn.naive_bayes’ library.

This algorithm has similar steps and logic to the regression and SVR imputation modules that were de-
scribed in the two previous sections. The difference is that the ’make_models’ function uses the ’Cat-
egoricalNB’ model to build the models and make the predictions and the imputation of missing values.
In order to appropriately use the ’CategoricalNB’ model, first some data preprocessing should be made.
This is achieved with the use of ’OrdinalEncoder’ module from ’sklearn.preprocessing’ library. This
module encodes the categorical features to appropriate numerical values that will be used as input in the
’CategoricalNB’ model.

After the imputation is complete, the numerical values are transformed back to categorical using the
inverse transformation of ’OrdinalEncoder’ module and the Data Frame is stored in CSV format.

The source code of the module is shown below:

1 import shutil
2

3 import numpy as np
4 import pandas as pd
5 from sklearn.naive_bayes import CategoricalNB
6 from sklearn.preprocessing import OrdinalEncoder
7

8 from dataset_validator import is_categorical_attribute_types_valid
9

10 pd.options.mode.chained_assignment = None
11

12

13 def naive_bayes_imputer(filename, missing_value):
14 imp_csv = filename[:-4] + "_imp.csv"
15

16 try:
17 df = pd.read_csv(filename, low_memory=False)
18 attribute_types = df.loc[0, :]
19

20 if not is_categorical_attribute_types_valid(attribute_types, imp_csv):
21 return 1
22

23 cols_num = len(df.columns)
24 df = df.drop([0])

27

Chapter 3

25 df_enc = df.copy()
26 ord_enc = OrdinalEncoder()
27 df_enc[df_enc.columns] = ord_enc.fit_transform(df_enc[df_enc.columns])
28

29 recipient_df = pd.DataFrame()
30 recipient_df = df[(df == missing_value).any(axis=1)]
31

32 donor_df = pd.DataFrame()
33 donor_df = df.drop(recipient_df.index)
34

35 donor_df_enc = donor_df.copy()
36

37 donor_df_enc[donor_df_enc.columns] =
ord_enc.transform(donor_df_enc[donor_df_enc.columns])↪→

38

39 recipient_df_enc = recipient_df.copy()
40 recipient_df_enc[recipient_df_enc.columns] =

ord_enc.transform(recipient_df_enc[recipient_df_enc.columns])↪→

41

42 nb_missing_attributes = []
43 nb_models = []
44

45 def make_nb_models(miss_attr_list: list):
46 if miss_attr_list in nb_missing_attributes:
47 return 0
48 else:
49 nb_missing_attributes.append(miss_attr_list)
50 nb_models_list = []
51 for k in range(len(miss_attr_list)):
52 df_enc_feat = donor_df_enc.loc[:, donor_df_enc.columns !=

miss_attr_list[k]]↪→

53 df_enc_target = donor_df_enc.loc[:, donor_df_enc.columns ==
miss_attr_list[k]]↪→

54 arr_enc_feat = df_enc_feat.to_numpy()
55 arr_enc_target = df_enc_target.to_numpy()
56 clf = CategoricalNB()
57 clf.fit(arr_enc_feat, np.ravel(arr_enc_target))
58 nb_models_list.append(clf)
59 nb_models.append(nb_models_list)
60 return 0
61

62 for i in range(len(recipient_df_enc)):
63 missing_attributes = []
64 for j in range(cols_num):
65 if recipient_df.iloc[i, j] == missing_value:
66 missing_attributes.append(recipient_df_enc.columns[j])
67

68 make_nb_models(missing_attributes)
69 model_index = nb_missing_attributes.index(missing_attributes)

28

3 WEBIMPUTER implementation

70 recip_index = recipient_df_enc.index[i]
71

72 for m in range(len(missing_attributes)):
73 rec_df_enc_target = recipient_df_enc.iloc[i,

:].drop(labels=[missing_attributes[m]]).to_numpy()↪→

74 rec_target = [rec_df_enc_target]
75 prediction = nb_models[model_index][m].predict(rec_target)
76 recipient_df_enc.loc[recip_index, missing_attributes[m]] = prediction
77 enc_record = [recipient_df_enc.loc[recip_index, :]]
78 inv_record = ord_enc.inverse_transform(enc_record)
79 df.loc[recip_index, :] = inv_record
80

81 df.to_csv(imp_csv, index=False)
82

83 except:
84 error_csv = r'imputation_error.csv'
85 shutil.copyfile(error_csv, imp_csv)
86 return 1
87

88 return 0

3.3.5 random_hot_deck_imputer.py

This module implements the Random Hot-Deck imputation algorithm.

The imputation algorithm is described as follows:

First the data from the CSV file are converted to a pandas Data Frame and a validation is made in order
to ensure that the dataset has the correct form, meaning that numerical features should be declared under
their name as ’int’ for integer features, ’float’ for floating point features and ’str’ for categorical/string
features.

Next the Data Frame is split into two Data Frames, one called the ’donor’ and the other one called the
’recipient’. The ’donor’ Data Frame contains all the records of the dataset that do not have any missing
values. The ’recipient’ Data Frame, on the other hand, contains all the records of the dataset that have at
least one missing value.

After this separation the ’recipient’ Data Frame is iterated and each of its records gets imputed by getting
the corresponding values of a random record in the ’donor’ Data Frame.

Finally the imputed Data Frame is stored in CSV format.

The source code of the module is shown below:

1 import shutil
2

3 import pandas as pd
4

29

Chapter 3

5 from dataset_validator import is_mixed_attribute_types_valid
6

7 pd.options.mode.chained_assignment = None
8

9

10 def random_hot_deck_imputer(filename, missing_value):
11 imp_csv = filename[:-4] + "_imp.csv"
12

13 try:
14 df = pd.read_csv(filename, low_memory=False)
15 attribute_types = df.loc[0, :]
16

17 if not is_mixed_attribute_types_valid(attribute_types, imp_csv):
18 return 1
19

20 df = df.drop([0])
21

22 recipient_df = pd.DataFrame()
23 recipient_df = df[(df == missing_value).any(axis=1)]
24

25 donor_df = pd.DataFrame()
26 donor_df = df.drop(recipient_df.index)
27

28 for i in range(len(recipient_df)):
29 donor_random_record = donor_df.sample(n=1)
30

31 for j in range(len(recipient_df.columns)):
32 if recipient_df.iloc[i, j] == missing_value:
33 df.loc[recipient_df.index[i], recipient_df.columns[j]] =

donor_random_record.iloc[0, j]↪→

34

35 df.to_csv(imp_csv, index=False)
36

37 except:
38 error_csv = r'imputation_error.csv'
39 shutil.copyfile(error_csv, imp_csv)
40 return 1
41

42 return 0

3.3.6 numerical_knn_imputer.py

This module implements the numerical k-Nearest Neighbors (k-NN) imputation algorithm with the use
of ’KNNImputer’ from ’sklearn.impute’ library.

The imputation algorithm is described as follows:

First the data from the CSV file are converted to a pandas Data Frame and a validation is made in order

30

3 WEBIMPUTER implementation

to ensure that the dataset has the correct form, as has been analyzed in the previous sections.

Then the given missing value is replaced by ’np.nan’ (numpy’s ’not-a-number’ constant) to prepare the
input data in suitable format for the ’KNNImputer’ model.

Additionally some data preprocessing ismade using ’MinMaxScaler’module from ’sklearn.preprocessing’
library. This module normalizes the data in the range of [0, 1]. Normalization (also called feature scal-
ing) is an import preprocessing step of the k-NN imputation algorithm. Features generally have different
scales or units and this can have as a result some features to dominate in the distance calculation just
because they have larger values and this could lead to biased results.

After that an object of the ’KNNImputer’ is created with k-Neighbors value and the normalized data are
given as input to its ’fit_transform’ method. This method handles the imputation of missing values based
on the euclidean distance and taking the mean values of the k-Nearest Neighbors as the imputed values.

Finally the normalized imputed Data Frame is transformed back to its initial feature units and it is stored
in CSV format.

The source code of the module is shown below:

1 import logging
2 import shutil
3

4 import numpy as np
5 import pandas as pd
6 from sklearn.impute import KNNImputer
7 from sklearn.preprocessing import MinMaxScaler
8

9 from dataset_validator import is_numerical_attribute_types_valid
10

11 import time
12

13 def numerical_knn_imputer(filename, missing_value, k_neighbors: int):
14 start_time = time.time()
15

16 imp_csv = filename[:-4] + "_imp.csv"
17

18 try:
19 df = pd.read_csv(filename, low_memory=False)
20 attribute_types = df.loc[0, :]
21

22 if not is_numerical_attribute_types_valid(attribute_types, imp_csv):
23 return 1
24

25 df = df.replace(to_replace=missing_value, value=np.nan)
26

27 df_norm = df.copy()
28 df_norm = df_norm.drop([0])

31

Chapter 3

29

30 scaler = MinMaxScaler(feature_range=(0, 1))
31 df_norm = pd.DataFrame(scaler.fit_transform(df_norm), columns=df_norm.columns)
32

33 knn_imputer = KNNImputer(n_neighbors=k_neighbors)
34 df_norm_imputed = pd.DataFrame(knn_imputer.fit_transform(df_norm),

columns=df_norm.columns)↪→

35 df_imputed = pd.DataFrame(scaler.inverse_transform(df_norm_imputed),
columns=df_norm.columns).round(3)↪→

36

37 i = 0
38 for column in df_imputed.columns:
39 if attribute_types[i] == 'int':
40 df_imputed[column] = df_imputed[column].astype(int)
41 i += 1
42

43 df_imputed.to_csv(imp_csv, index=False)
44

45 end_time = time.time()
46 duration=int((end_time-start_time)*1000)
47 print(f"duration(ms) = {duration}")
48 except Exception as e:
49 logging.error(e)
50 error_csv = r'imputation_error.csv'
51 shutil.copyfile(error_csv, imp_csv)
52 return 1
53

54 return 0

3.3.7 categorical_knn_imputer.py

This module implements the categorical k-Nearest Neighbors (k-NN) imputation algorithm. Since there
was no relevant module in ’sklearn.impute’ library, the algorithm was created from scratch, following
the definition and the description of the k-Nearest Neighbors algorithm. The distance that has been used
here is the ’hamming’ distance.

The steps of this imputation algorithm are the following:

1. The data from the CSV file are converted to a pandas Data Frame and a validation is made in order
to ensure that the dataset has the correct form, as has been analyzed in the previous sections.

2. The Data Frame is split to ’recipient’ (contains at least one missing value) and ’donor’ (no missing
values).

3. For each record of the ’recipient’ Data Frame the manhattan distances between the values of current
non-missing feature values and the corresponding ’donor’ values is calculated. These distances are
saved as Data Frame, whose indices correspond to the indices of the ’donor’ Data Frame. This is

32

3 WEBIMPUTER implementation

very important, because the algorithm will later need to know which ’donor’ records to use in order
to impute the missing values of the ’recipient’ record.

4. The sum of these distances is calculated and saved as Data Frame as well, keeping the same indices.

5. The Data Frame that contains the sum of the distances is sorted in ascending order along with its
indices.

6. The first k indices of this sortedData Frame are used to create a newData Frame (the ’k_neighbors_df’)
that contains the k records of the ’donor’ Data Framewhich have the smallest distance to the current
record of the ’recipient’ Data Frame.

7. From the ’k_neighbors_df’ the mode (most frequent) value of each feature is used to impute the
current record of the ’recipient’ Data Frame.

8. This procedure is repeated for all the records of the ’recipient’ Data Frame.

9. The imputed Data Frame is stored in CSV format.

The source code of the module is shown below:

1 import shutil
2 from statistics import mean, median, mode
3

4 import numpy as np
5 import pandas as pd
6

7 from dataset_validator import is_categorical_attribute_types_valid
8

9

10 def categorical_knn_imputer(
11 filename,
12 missing_value,
13 k_neighbors: int,
14):
15 imp_csv = filename[:-4] + "_imp.csv"
16

17 try:
18 df = pd.read_csv(filename, low_memory=False)
19 attribute_types = df.loc[0, :]
20

21 if not is_categorical_attribute_types_valid(attribute_types, imp_csv):
22 return 1
23

24 number_of_attributes = len(attribute_types)
25 df = df.drop([0])
26

27 # Split dataset to recipient (contains at least one missing value) and donor
(no missing values)↪→

33

Chapter 3

28 recipient_df = pd.DataFrame()
29 recipient_df = df[(df == missing_value).any(axis=1)]
30 donor_df = pd.DataFrame()
31 donor_df = df.drop(recipient_df.index)
32

33 # Calculate difference between two feature values
34 def difference(x1, x2):
35 return 0 if x1 == x2 else 1
36

37 # Impute every row that contains missing value(s)
38 for i in range(len(recipient_df)):
39 # Get info and data for missing and present features for the current

recipient_df record↪→

40 missing_record_index = recipient_df.index[i]
41 missing_features_col_numbers = np.where(recipient_df.iloc[i, :] ==

missing_value)[0]↪→

42 present_features_col_numbers = np.where(recipient_df.iloc[i, :] !=
missing_value)[0]↪→

43 present_features_for_missing_record =
recipient_df.loc[missing_record_index].iloc[present_features_col_numbers]↪→

44 present_features_donor_df = donor_df.iloc[:, present_features_col_numbers]
45

46 # Calculate difference between the values of current non-missing feature
values and the corresponding donor values↪→

47 df_difference = pd.DataFrame(
48 [[difference(x, y) for x, y in zip(row,

present_features_for_missing_record)] for row in↪→

49 present_features_donor_df.values],
50 columns=present_features_donor_df.columns,
51 index=present_features_donor_df.index
52)
53

54 # Calculate sum of differences (equivalent to distance) and sort in
ascending order↪→

55 sum_of_diff_df = pd.DataFrame()
56 sum_of_diff_df['SumOfDiff'] = df_difference.sum(axis=1)
57 sum_of_diff_df = sum_of_diff_df.sort_values(by='SumOfDiff')
58

59 # Select the k-number of the sorted sum_of_diff_df dataframe which
contains k-nearest neighbors↪→

60 k_neighbors_df = pd.DataFrame(columns=df.columns)
61 for k in range(k_neighbors):
62 k_index = sum_of_diff_df.index[k]
63 k_neighbors_df.loc[k_index] = df.loc[k_index]
64

65 # Create a result record from k_neighbors_df (mean or median of columns
for numerical data, mode for categorical)↪→

66 result_k_neighbors_df = pd.DataFrame(columns=df.columns, index=[0])
67 for j in range(number_of_attributes):

34

3 WEBIMPUTER implementation

68 column_data = k_neighbors_df.iloc[:, j]
69 result_k_neighbors_df.iloc[0, j] = mode(column_data)
70

71 # Impute the missing value of the current recipient record
72 for missing_features_col_number in missing_features_col_numbers:
73 df.loc[missing_record_index].iloc[missing_features_col_number] =

result_k_neighbors_df.iloc[0, missing_features_col_number]↪→

74

75 df.to_csv(imp_csv, index=False)
76

77 except Exception as e:
78 error_csv = r'imputation_error.csv'
79 shutil.copyfile(error_csv, imp_csv)
80 return 1
81

82 return 0

3.3.8 mixed_knn_imputer.py

This module implements the mixed k-Nearest Neighbors (k-NN) imputation algorithm for datasets that
contain both numerical and categorical features. Since there was no relevant module in ’sklearn.impute’
library, the algorithm was created from scratch, following the definition and the description of the k-
Nearest Neighbors algorithm. The distance that has been used for categorical features is the ’hamming’
distance, while there is the option between ’euclidean’ and ’manhattan’ for the numerical features.

The steps of this imputation algorithm are similar to categorical k-NN. The main differences are the
following:

• The numerical features are normalized according to the selected distance type. For ’euclidean’
distance they are normalized using the L2 norm, while for ’mahattan’ distance they are normalized
using the L1 norm for consistency reasons.

• For the numerical features either the mean value or the median (depending on the input option) is
selected from the ’k_neighbors_df’ Data Frame.

The source code of the module is shown below:

1 import shutil
2 from statistics import mean, median, mode
3

4 import numpy as np
5 import pandas as pd
6

7 from dataset_validator import is_attribute_types_valid
8

9

35

Chapter 3

10 def mixed_knn_imputer(
11 filename,
12 missing_value,
13 k_neighbors: int,
14 metric='euclidean',
15 numerical_method='mean'
16):
17 imp_csv = filename[:-4] + "_imp.csv"
18

19 try:
20 df = pd.read_csv(filename, low_memory=False)
21 attribute_types = df.loc[0, :]
22

23 if not is_attribute_types_valid(attribute_types, imp_csv):
24 return 1
25

26 number_of_attributes = len(attribute_types)
27

28 # Normalize the numerical values according to metric (L2 normalization for
euclidean, L1 for manhattan↪→

29 def normalize_array(array):
30 num_values = []
31 num_index = []
32 for n in range(len(array)):
33 if array[n] != missing_value:
34 num_values.append(float(array[n]))
35 num_index.append(n+1)
36 num_array = np.array(num_values)
37 if metric == "euclidean":
38 normalized_array = num_array / np.linalg.norm(num_array)
39 else: # manhattan
40 normalized_array = num_array / np.linalg.norm(num_array, ord=1)
41 return num_index, normalized_array
42

43 df = df.drop([0])
44 norm_df = df.copy()
45

46 for j in range(number_of_attributes):
47 if attribute_types[j] != "str":
48 normalized_obj = normalize_array(norm_df.iloc[:, j].values)
49 for i in range(len(normalized_obj[0])):
50 norm_df.loc[normalized_obj[0][i], df.columns[j]] =

normalized_obj[1][i]↪→

51

52 # Split dataset to recipient (contains at least one missing value) and donor
(no missing values)↪→

53 recipient_df = pd.DataFrame()
54 recipient_df = norm_df[(df == missing_value).any(axis=1)]
55 donor_df = pd.DataFrame()

36

3 WEBIMPUTER implementation

56 donor_df = norm_df.drop(recipient_df.index)
57

58 # Calculate difference between two feature values according to attribute type
and metric↪→

59 def difference(x1, x2):
60 if type(x1) == str:
61 return 0 if x1 == x2 else 1
62 elif metric == "euclidean":
63 return (float(x1) - float(x2)) ** 2
64 else: # manhattan
65 return abs(float(x1) - float(x2))
66

67 # Impute every row that contains missing value(s)
68 for i in range(len(recipient_df)):
69 # Get info and data for missing and present features for the current

recipient_df record↪→

70 missing_record_index = recipient_df.index[i]
71 missing_features_col_numbers = np.where(recipient_df.iloc[i, :] ==

missing_value)[0]↪→

72 present_features_col_numbers = np.where(recipient_df.iloc[i, :] !=
missing_value)[0]↪→

73 present_features_for_missing_record =
recipient_df.loc[missing_record_index].iloc[present_features_col_numbers]↪→

74 present_features_donor_df = donor_df.iloc[:, present_features_col_numbers]
75

76 # Calculate difference between the values of current non-missing feature
values and the corresponding donor values↪→

77 df_difference = pd.DataFrame(
78 [[difference(x, y) for x, y in zip(row,

present_features_for_missing_record)] for row in↪→

79 present_features_donor_df.values],
80 columns=present_features_donor_df.columns,
81 index=present_features_donor_df.index
82)
83

84 # Calculate sum of differences (equivalent to distance) and sort in
ascending order↪→

85 sum_of_diff_df = pd.DataFrame()
86 sum_of_diff_df['SumOfDiff'] = df_difference.sum(axis=1)
87 sum_of_diff_df = sum_of_diff_df.sort_values(by='SumOfDiff')
88

89 # Select the k-number of the sorted sum_of_diff_df dataframe which
contains k-nearest neighbors↪→

90 k_neighbors_df = pd.DataFrame(columns=df.columns)
91 for k in range(k_neighbors):
92 k_index = sum_of_diff_df.index[k]
93 k_neighbors_df.loc[k_index] = df.loc[k_index]
94

37

Chapter 3

95 # Create a result record from k_neighbors_df (mean or median of columns
for numerical data, mode for categorical)↪→

96 result_k_neighbors_df = pd.DataFrame(columns=df.columns, index=[0])
97 for j in range(number_of_attributes):
98 column_data = k_neighbors_df.iloc[:, j]
99 if attribute_types[j] == "str":
100 result_k_neighbors_df.iloc[0, j] = mode(column_data)
101 elif attribute_types[j] == "float":
102 if numerical_method == "mean":
103 result_k_neighbors_df.iloc[0, j] =

round(mean(column_data.astype(float)), 3)↪→

104 else: # median
105 result_k_neighbors_df.iloc[0, j] =

round(median(column_data.astype(float)), 3)↪→

106 else: # int
107 if numerical_method == "mean":
108 result_k_neighbors_df.iloc[0, j] =

round(mean(column_data.astype(float)))↪→

109 else: # median
110 result_k_neighbors_df.iloc[0, j] =

round(median(column_data.astype(float)))↪→

111

112 # Impute the missing value of the current recipient record
113 for missing_features_col_number in missing_features_col_numbers:
114 df.loc[missing_record_index].iloc[missing_features_col_number] =

result_k_neighbors_df.iloc[0, missing_features_col_number]↪→

115

116 df.to_csv(imp_csv, index=False)
117

118 except Exception as e:
119 error_csv = r'imputation_error.csv'
120 shutil.copyfile(error_csv, imp_csv)
121 return 1
122

123 return 0

3.3.9 dataset_validator.py

This module handles the validation of the dataset format. It checks if the attributes of the dataset have
been defined according to the specifications of the application. Categorical features should be marked
as ’str’, meaning that the algorithm with handle them as strings. Numerical features should be marked
either as ’int’ in case they have integer values or ’float’ in case they have floating point values.

If the validator finds an invalid feature type, the imputation procedure is terminated and the user receives
a CSV with a corresponding error message.

For example, if a feature is marked as ’number’, the validator will create a CSV with error message:
”Invalid attribute type ’number’! Type must be either ’int’ for integer attribute, ’float’ for floating point

38

3 WEBIMPUTER implementation

attribute or ’str’ for string attribute!”

The source code of the module is shown below:

1 import csv
2

3 VALID_NUMERICAL_ATTRIBUTE_TYPES = [
4 'int',
5 'float'
6]
7

8 VALID_CATEGORICAL_ATTRIBUTE_TYPES = [
9 'str'
10]
11

12 VALID_MIXED_ATTRIBUTE_TYPES = [
13 'int',
14 'float',
15 'str'
16]
17

18

19 def is_numerical_attribute_types_valid(attribute_types, imp_csv):
20 for i in range(len(attribute_types)):
21 if attribute_types[i] not in VALID_NUMERICAL_ATTRIBUTE_TYPES:
22 error_message = [
23 f"Invalid attribute type " + "\'" + attribute_types[i] + "\'" +
24 "! Type must be either 'int' for integer attribute or 'float' for

floating point attribute!"↪→

25]
26 with open(imp_csv, mode='w', newline='') as csv_file:
27 csv_writer = csv.writer(csv_file)
28 csv_writer.writerow(error_message)
29 return False
30 return True
31

32

33 def is_categorical_attribute_types_valid(attribute_types, imp_csv):
34 for i in range(len(attribute_types)):
35 if attribute_types[i] not in VALID_CATEGORICAL_ATTRIBUTE_TYPES:
36 error_message = [
37 f"Invalid attribute type " + "\'" + attribute_types[i] + "\'" +
38 "! Type must be 'str' for string/categorical attribute!"
39]
40 with open(imp_csv, mode='w', newline='') as csv_file:
41 csv_writer = csv.writer(csv_file)
42 csv_writer.writerow(error_message)
43 return False

39

Chapter 3

44 return True
45

46

47 def is_mixed_attribute_types_valid(attribute_types, imp_csv):
48 for i in range(len(attribute_types)):
49 if attribute_types[i] not in VALID_MIXED_ATTRIBUTE_TYPES:
50 error_message = [
51 f"Invalid attribute type " + "\'" + attribute_types[i] + "\'" +
52 "! Type must be either 'int' for integer attribute, 'float' for

floating point attribute"↪→

53 "or 'str' for string/categorical attribute!"
54]
55 with open(imp_csv, mode='w', newline='') as csv_file:
56 csv_writer = csv.writer(csv_file)
57 csv_writer.writerow(error_message)
58 return False
59 return True

3.4 JavaScript Modules

In this section JavaScript modules that have been used in client-side are described and presented. All these
modules are very useful because they perform actions and validations without overloading the server side.

3.4.1 prevent_upload.js

This module is applied on imputer.html page and is responsible for validating the CSV file extension and
size before it gets uploaded to the server. This is very important because it prevents the upload of files with
unsupported extensions (other than CSV) and large files that would overload the server resources. Each
imputation method has its own maximum file size limit, as it requires different computation capacity.
Additionally, this module performs validation on the float parameter fields (e.g. lasso regression alpha)
, to ensure that correct values will be sent to the server.

The source code of the module is shown below:

1 alphaField = $("#alphaField");
2 l1RatioField = $("#l1RatioField");
3 svrGammaField = $("#svrGammaField");
4 svrCoef0Field = $("#svrCoef0Field");
5 svrCField = $("#svrCField");
6 svrEpsilonField = $("#svrEpsilonField");
7

8 let fileName = '';
9 let fileExtension = '';
10 let fileSize = 0;
11 let alphaValue = 1.0;
12 let l1RatioValue = 0.5;
13 let svrGammaValue = 0.3;

40

3 WEBIMPUTER implementation

14 let svrCoef0Value = 0.0;
15 let svrCValue = 1.0;
16 let svrEpsilonValue = 0.1;
17

18 let file = document.getElementById("file")
19

20 $(document).ready(function() {
21 file.value = "";
22 });
23

24 $('#file').bind('change', function() {
25 fileName = this.files[0].name;
26 fileExtension = fileName.split('.').pop().toLowerCase();
27 fileSize = this.files[0].size;
28 });
29

30 alphaField.bind('change', function() {
31 alphaValue = alphaField.val();
32 });
33

34 l1RatioField.bind('change', function() {
35 l1RatioValue = l1RatioField.val();
36 });
37

38 svrGammaField.bind('change', function() {
39 svrGammaValue = svrGammaField.val();
40 });
41

42 svrCoef0Field.bind('change', function() {
43 svrCoef0Value = svrCoef0Field.val();
44 });
45

46 svrCField.bind('change', function() {
47 svrCValue = svrCField.val();
48 });
49

50 svrEpsilonField.bind('change', function() {
51 svrEpsilonValue = svrEpsilonField.val();
52 });
53

54 let maxFileSize = {
55 "mean": [10485760, "10 MB"],
56 "median": [10485760, "10 MB"],
57 "mode": [10485760, "10 MB"],
58 "mixed_mean_mode": [10485760, "10 MB"],
59 "mixed_median_mode": [10485760, "10 MB"],
60 "random_hot_deck": [10485760, "10 MB"],
61 "linear_regression": [10485760, "10 MB"],
62 "lasso_regression": [10485760, "10 MB"],

41

Chapter 3

63 "ridge_regression": [10485760, "10 MB"],
64 "elastic_net_regression": [10485760, "10 MB"],
65 "naive_bayes": [10485760, "10 MB"],
66 "svr": [1048576, "1 MB"],
67 "knn_mean": [5242880, "5 MB"],
68 "knn_mode": [307200, "300 KB"],
69 "mixed_knn_mean_mode": [307200, "300 KB"],
70 "mixed_knn_median_mode": [307200, "300 KB"],
71 };
72

73 $("form").submit(function(e){
74 let datasetFeaturesType = document.getElementById("datasetFeaturesType").value ;
75 let impMethod = "none";
76 if (datasetFeaturesType === "numerical"){
77 impMethod = document.getElementById("numImpMethod").value ;
78 }
79 else if (datasetFeaturesType === "categorical"){
80 impMethod = document.getElementById("catImpMethod").value ;
81 }
82 else{
83 impMethod = document.getElementById("mixedImpMethod").value ;
84 }
85

86 if (fileExtension !== 'csv'){
87 alert("Invalid file format! Only CSV files are allowed!");
88 file.value = "";
89 e.preventDefault(e);
90 }
91

92 if (fileSize > maxFileSize[impMethod][0]){
93 alert("Dataset exceeds maximum allowed size for this method!

("+maxFileSize[impMethod][1]+")");↪→

94 file.value = "";
95 e.preventDefault(e);
96 }
97

98 // First alphaValue is parsed as string in order to replace comma (if it exists)
with dot.↪→

99 let alphaString = alphaValue.toString().replace(',', '.');
100 let alphaFloat = parseFloat(alphaString);
101

102 if (isNaN(alphaFloat) || alphaFloat < 0.001 || alphaFloat > 1000) {
103 alert("alpha value must be a float number in range [0.001, 1000] due to

computational limitations of the server!");↪→

104 e.preventDefault(e);
105 } else {
106 alphaField.val(alphaFloat);
107 }
108

42

3 WEBIMPUTER implementation

109 // First alphaValue is parsed as string in order to replace comma (if it exists)
with dot.↪→

110 let l1RatioString = l1RatioValue.toString().replace(',', '.');
111 let l1RatioFloat = parseFloat(l1RatioString);
112

113 if (isNaN(l1RatioFloat) || l1RatioFloat < 0 || l1RatioFloat > 1) {
114 alert("L1-ratio value must be a float number in range [0, 1]!");
115 e.preventDefault(e);
116 } else {
117 l1RatioField.val(l1RatioFloat);
118 }
119

120 // First svrGammaValue is parsed as string in order to replace comma (if it
exists) with dot.↪→

121 let svrGammaString = svrGammaValue.toString().replace(',', '.');
122 let svrGammaFloat = parseFloat(svrGammaString);
123

124 if (isNaN(svrGammaFloat) || svrGammaFloat < 0.001 || svrGammaFloat > 1000) {
125 alert("gamma value must be a float number in range [0.001, 1000] due to

computational limitations of the server!");↪→

126 e.preventDefault(e);
127 } else {
128 svrGammaField.val(svrGammaFloat);
129 }
130

131 // First svrCoef0Value is parsed as string in order to replace comma (if it
exists) with dot.↪→

132 let svrCoef0String = svrCoef0Value.toString().replace(',', '.');
133 let svrCoef0Float = parseFloat(svrCoef0String);
134

135 if (isNaN(svrCoef0Float) || svrCoef0Float < -10 || svrCoef0Float > 10) {
136 alert("coef0 value must be a float number in range [-10, 10] due to

computational limitations of the server!");↪→

137 e.preventDefault(e);
138 } else {
139 svrCoef0Field.val(svrCoef0Float);
140 }
141

142 // First svrCValue is parsed as string in order to replace comma (if it exists)
with dot.↪→

143 let svrCString = svrCValue.toString().replace(',', '.');
144 let svrCFloat = parseFloat(svrCString);
145

146 if (isNaN(svrCFloat) || svrCFloat < 0.001 || svrCFloat > 1000) {
147 alert("C value must be a float number in range [0.001, 1000] due to

computational limitations of the server!");↪→

148 // document.getElementById("file").value = "";
149 e.preventDefault(e);
150 } else {

43

Chapter 3

151 svrCField.val(svrCFloat);
152 }
153

154 // First svrEpsilonValue is parsed as string in order to replace comma (if it
exists) with dot.↪→

155 let svrEpsilonString = svrEpsilonValue.toString().replace(',', '.');
156 let svrEpsilonFloat = parseFloat(svrEpsilonString);
157

158 if (isNaN(svrEpsilonFloat) || svrEpsilonFloat < 0.1 || svrEpsilonFloat > 1000) {
159 alert("epsilon value must be a float number in range [0.1, 1000] due to

computational limitations of the server!");↪→

160 e.preventDefault(e);
161 } else {
162 svrEpsilonField.val(svrEpsilonFloat);
163 }
164 });

3.4.2 show_available_methods_and_parameters.js

This module is also applied on imputer.html page and handles the filtering of the available imputation
methods according to the selected dataset type, as described in section 3.2.

It also handles the filtering of method parameters, such as ’alpha’ for lasso regression or ’k-Neighbors’
for k-NN. These parameters are only displayed when the corresponding imputation method is selected,
otherwise they get hidden, in order to improve the user experience.

The source code of the module is shown below:

1 let datasetFeaturesType = document.getElementById("datasetFeaturesType");
2 let numImpMethod = document.getElementById("numImpMethod");
3 let catImpMethod = document.getElementById("catImpMethod");
4 let mixedImpMethod = document.getElementById("mixedImpMethod");
5 let svrKernelOptions = document.getElementById("svrKernelOptions");
6 let svrGammaOptions = document.getElementById("svrGammaOptions");
7

8 let knn_neighbors = $('#knn_neighbors');
9 let knn_neighbors_options = $('#knn_neighbors_options');
10 let knn_distance = $('#knn_distance');
11 let knn_distance_options = $('#knn_distance_options');
12 let alpha = $('#alpha');
13 let alpha_input = $('#alpha_input');
14 let l1_ratio = $('#l1_ratio');
15 let l1_ratio_input = $('#l1_ratio_input');
16 let svr_kerner = $('#svr_kernel');
17 let svr_kerner_options = $('#svr_kernel_options');
18 let svr_poly_degree = $('#svr_poly_degree');
19 let svr_poly_degree_options = $('#svr_poly_degree_options');
20 let svr_coef0 = $('#svr_coef0');

44

3 WEBIMPUTER implementation

21 let svr_coef0_input = $('#svr_coef0_input');
22 let svr_c = $('#svr_c');
23 let svr_c_input = $('#svr_c_input');
24 let svr_epsilon = $('#svr_epsilon');
25 let svr_epsilon_input = $('#svr_epsilon_input');
26 let svr_gamma = $('#svr_gamma');
27 let svr_gamma_options = $('#svr_gamma_options');
28 let svr_gamma_input = $('#svr_gamma_input');
29

30 let num_imp_method = $('#num_imp_method');
31 let num_imp_method_options = $('#num_imp_method_options');
32 let cat_imp_method =$('#cat_imp_method');
33 let cat_imp_method_options = $('#cat_imp_method_options');
34 let mixed_imp_method = $('#mixed_imp_method');
35 let mixed_imp_method_options = $('#mixed_imp_method_options');
36

37 datasetFeaturesType.onchange = function(){
38 hide_knn();
39 hide_alpha();
40 hide_l1_ratio();
41 hide_svr();
42

43 let featuresType = datasetFeaturesType.value;
44

45 if (featuresType === "categorical") {
46 num_imp_method.hide();
47 num_imp_method_options.hide();
48 cat_imp_method.show();
49 cat_imp_method_options.show();
50 mixed_imp_method.hide();
51 mixed_imp_method_options.hide();
52 if (catImpMethod.value === "knn_mode"){
53 show_only_knn_neighbors();
54 hide_alpha();
55 hide_l1_ratio();
56 hide_svr();
57 }
58 } else if (featuresType === "mixed"){
59 num_imp_method.hide();
60 num_imp_method_options.hide();
61 cat_imp_method.hide();
62 cat_imp_method_options.hide();
63 mixed_imp_method.show();
64 mixed_imp_method_options.show();
65 if (mixedImpMethod.value === "mixed_knn_mean_mode" || mixedImpMethod.value

=== "mixed_knn_median_mode"){↪→

66 show_knn();
67 hide_alpha();
68 hide_l1_ratio();

45

Chapter 3

69 hide_svr();
70 }
71 } else {
72 num_imp_method.show();
73 num_imp_method_options.show();
74 cat_imp_method.hide();
75 cat_imp_method_options.hide();
76 mixed_imp_method.hide();
77 mixed_imp_method_options.hide();
78 if (numImpMethod.value === "knn_mean"){
79 show_only_knn_neighbors();
80 hide_alpha();
81 hide_l1_ratio();
82 hide_svr();
83 } else if (numImpMethod.value === "lasso_regression" || numImpMethod.value

=== "ridge_regression") {↪→

84 hide_knn();
85 show_alpha();
86 hide_l1_ratio();
87 hide_svr();
88 } else if (numImpMethod.value === "elastic_net_regression") {
89 hide_knn();
90 show_alpha();
91 show_l1_ratio();
92 hide_svr();
93 } else if (numImpMethod.value === "svr") {
94 hide_knn();
95 hide_alpha();
96 hide_l1_ratio();
97 show_svr();
98 }
99 }
100 }
101

102 numImpMethod.onchange = function() {
103 let num_imp_method = numImpMethod.value;
104

105 if (num_imp_method === "knn_mean") {
106 show_only_knn_neighbors();
107 hide_alpha();
108 hide_l1_ratio();
109 hide_svr();
110 } else if (numImpMethod.value === "lasso_regression" || numImpMethod.value ===

"ridge_regression") {↪→

111 hide_knn();
112 show_alpha();
113 hide_l1_ratio();
114 hide_svr();
115 } else if (numImpMethod.value === "elastic_net_regression") {

46

3 WEBIMPUTER implementation

116 hide_knn();
117 show_alpha();
118 show_l1_ratio();
119 hide_svr();
120 } else if (num_imp_method === "svr") {
121 hide_knn();
122 hide_alpha();
123 hide_l1_ratio();
124 show_svr();
125 } else {
126 hide_knn();
127 hide_alpha();
128 hide_l1_ratio();
129 hide_svr();
130 }
131 }
132

133 catImpMethod.onchange = function() {
134 let cat_imp_method = catImpMethod.value;
135

136 if (cat_imp_method === "knn_mode") {
137 hide_alpha();
138 hide_l1_ratio();
139 show_only_knn_neighbors();
140 hide_svr();
141 } else {
142 hide_alpha();
143 hide_l1_ratio();
144 hide_knn();
145 hide_svr();
146 }
147 }
148

149 mixedImpMethod.onchange = function() {
150 let mixed_imp_method = mixedImpMethod.value;
151

152 if (mixed_imp_method === "mixed_knn_mean_mode" || mixed_imp_method ===
"mixed_knn_median_mode") {↪→

153 hide_alpha();
154 hide_l1_ratio();
155 show_knn();
156 hide_svr();
157 } else {
158 hide_alpha();
159 hide_l1_ratio();
160 hide_knn();
161 hide_svr();
162 }
163 }

47

Chapter 3

164

165 function hide_knn() {
166 knn_neighbors.hide();
167 knn_neighbors_options.hide();
168 knn_distance.hide();
169 knn_distance_options.hide();
170 }
171

172 function show_knn() {
173 knn_neighbors.show();
174 knn_neighbors_options.show();
175 knn_distance.show();
176 knn_distance_options.show();
177 }
178

179 function show_only_knn_neighbors() {
180 knn_neighbors.show();
181 knn_neighbors_options.show();
182 knn_distance.hide();
183 knn_distance_options.hide();
184 }
185

186 function hide_alpha() {
187 alpha.hide();
188 alpha_input.hide();
189 }
190

191 function show_alpha() {
192 alpha.show();
193 alpha_input.show();
194 }
195

196 function hide_l1_ratio() {
197 l1_ratio.hide();
198 l1_ratio_input.hide();
199 }
200

201 function show_l1_ratio() {
202 l1_ratio.show();
203 l1_ratio_input.show();
204 }
205

206 function hide_svr() {
207 svr_kerner.hide();
208 svr_kerner_options.hide();
209 svr_gamma.hide();
210 svr_gamma_options.hide();
211 svr_gamma_input.hide();
212 svr_poly_degree.hide();

48

3 WEBIMPUTER implementation

213 svr_poly_degree_options.hide();
214 svr_coef0.hide();
215 svr_coef0_input.hide();
216 svr_c.hide();
217 svr_c_input.hide();
218 svr_epsilon.hide();
219 svr_epsilon_input.hide();
220 }
221

222 svrKernelOptions.onchange = function() {
223 show_svr();
224 }
225

226 svrGammaOptions.onchange = function() {
227 show_or_hide_svr_gamma_input();
228 }
229

230 function show_svr() {
231 let svrKernel = svrKernelOptions.value;
232

233 if (svrKernel === "rbf") {
234 show_svr_rbf();
235 } else if (svrKernel === "linear") {
236 show_svr_linear();
237 } else if (svrKernel === "poly") {
238 show_svr_poly();
239 } else {
240 show_svr_sigmoid();
241 }
242 }
243

244 function show_svr_rbf() {
245 svr_kerner.show();
246 svr_kerner_options.show();
247 show_or_hide_gamma();
248 show_or_hide_svr_gamma_input();
249 svr_poly_degree.hide();
250 svr_poly_degree_options.hide();
251 svr_coef0.hide();
252 svr_coef0_input.hide();
253 svr_c.show();
254 svr_c_input.show();
255 svr_epsilon.show();
256 svr_epsilon_input.show();
257 }
258

259 function show_or_hide_gamma() {
260 if (svrKernelOptions.value === "rbf") {
261 svr_gamma.show();

49

Chapter 3

262 svr_gamma_options.show();
263 show_or_hide_svr_gamma_input();
264 } else {
265 svr_gamma.hide();
266 svr_gamma_options.hide();
267 svr_gamma_input.hide();
268 }
269 }
270

271 function show_or_hide_svr_gamma_input() {
272 if (svrGammaOptions.value === "custom") {
273 svr_gamma_input.show();
274 } else {
275 svr_gamma_input.hide();
276 }
277 }
278 function show_svr_linear() {
279 svr_kerner.show();
280 svr_kerner_options.show();
281 svr_gamma.hide();
282 svr_gamma_options.hide();
283 svr_gamma_input.hide();
284 svr_poly_degree.hide();
285 svr_poly_degree_options.hide();
286 svr_coef0.hide();
287 svr_coef0_input.hide();
288 svr_c.show();
289 svr_c_input.show();
290 svr_epsilon.show();
291 svr_epsilon_input.show();
292 }
293

294 function show_svr_poly() {
295 svr_kerner.show();
296 svr_kerner_options.show();
297 svr_gamma.hide();
298 svr_gamma_options.hide();
299 svr_gamma_input.hide();
300 svr_poly_degree.show();
301 svr_poly_degree_options.show();
302 svr_coef0.show();
303 svr_coef0_input.show();
304 svr_c.show();
305 svr_c_input.show();
306 svr_epsilon.show();
307 svr_epsilon_input.show();
308 }
309

310 function show_svr_sigmoid() {

50

3 WEBIMPUTER implementation

311 svr_kerner.show();
312 svr_kerner_options.show();
313 svr_gamma.hide();
314 svr_gamma_options.hide();
315 svr_gamma_input.hide();
316 svr_poly_degree.hide();
317 svr_poly_degree_options.hide();
318 svr_coef0.show();
319 svr_coef0_input.show();
320 svr_c.show();
321 svr_c_input.show();
322 svr_epsilon.show();
323 svr_epsilon_input.show();
324 }

3.4.3 show_download_link.js

This module is applied on success.html page and is responsible for showing the download link of the
imputed dataset, as soon as the imputation process finishes.

The whole process is as follows:

1. First a loading gif and a message appear, showing that the imputation process is still in progress

2. Then it proceeds to make a HEAD call to the server, trying to fetch the imputed dataset. The HEAD
method has been selected as it is faster than GET and it is more suitable for this case, because only
the status code of the response is required to check if the imputed file exists on the server.

3. The HEAD call is repeated five times in total. The interval between the calls has been set to five
seconds, in order not to overload the server.

4. If the status code of the response to one of the HEAD calls is 200 (meaning that the imputed file
exists on the server) the loading gif and the corresponding message get hidden and the download
link appears. The user then can click on the link to download the imputed dataset.

5. If the status code of all responses to the HEAD calls is 404 (meaning the file does not exist on the
server) or any other status code (meaning that there is some other problem on the server-side) a
message appears showing that the imputation progress requires more time. Also, along with that
the download link of the imputed dataset appears suggesting to the user to use it after a fewminutes.
This case usually applies when the dataset size is close to the maximum allowed file size.

The source code of the module is shown below:

1 function ImpFileExists() {
2 let imp_file_url = document.getElementById("download_link").href;
3 let http = new XMLHttpRequest();

51

Chapter 3

4 let timeout_cnt = 0;
5 let timeout_cnt_max = 3;
6 let sleepTimeInMilliseconds = 5000;
7

8 function sleep(ms) {
9 return new Promise(resolve => setTimeout(resolve, ms));
10 }
11

12 async function sendRequestAndWait(){
13 while (sendRequest() === false && timeout_cnt <= timeout_cnt_max){
14 await sleep(sleepTimeInMilliseconds);
15 timeout_cnt += 1;
16 }
17 if (timeout_cnt > timeout_cnt_max){
18 $('#loading_gif').hide();
19 $('#please_wait').hide();
20 $('#imputation_completed').hide();
21 $('#download_button').hide();
22 $('#more_time').show();
23 $('#download_button_2').show();
24 }
25 }
26

27 sendRequestAndWait();
28

29 function sendRequest() {
30 http.open('HEAD', imp_file_url, false);
31 http.send();
32 if (http.status === 200) {
33 $('#loading_gif').hide();
34 $('#please_wait').hide();
35 $('#imputation_completed').show();
36 $('#download_button').show();
37 return true
38 }
39 else{
40 return false
41 }
42 }
43 }

52

4 WEBIMPUTER Presentation

Chapter 4: WEBIMPUTER Presentation

4.1 Home Page

Figure 4.1: Home Page

Figure 4.1 displays the home page of the application. The navigation bar consists of WEBIMPUTER
logo, which has a link to home page, the ’Home’ button, the ’Imputer’ button which has a link to the
Imputer Page, the ’Imputation Methods’ button which has a link to imputation methods page and the
’About’ button which has a link to the ’About’ page.

4.2 Imputer Page

Figure 4.2: Imputer Page

53

Chapter 4

Figure 4.2 displays the imputer page. On this page, the user uploads the dataset with missing values and
fills in all the necessary information (’Missing Value Represantation’, ’Dataset Features Type’, ’Impu-
tation Method’ and perhaps some additional parameters that are required for some algorithms, such as
k-NN).

Then he/she submits the form and waits for the response which will contain the download link for the
imputed dataset in CSV format.

Here some validations are made before the CSV gets uploaded to the server and the user might receive
some error messages, if the CSV and the chosen parameters are not according to the required specifica-
tions of the application.

4.3 Imputation Methods Page

Figure 4.3: Imputation Methods Page

Figure 4.3 displays the imputationmethods page. On this page a short presentation and description of each
imputation methods is made, along with some restrictions (allowed range of parameters and maximum
allowed CSV file size).

54

4 WEBIMPUTER Presentation

4.4 About Page

Figure 4.4: About Page

Figure 4.4 displays the about page. On this page the user gets some general information about the ap-
plication and the format and of the CSV file that should be uploaded, as well as a link to the available
imputations methods page.

4.5 Success Response

Figure 4.5: Success Response: Imputation completed

Figure 4.5 displays the success page. This page is rendered and returned from the server when the im-
putation progress is completed. It includes a download link to the imputed dataset in CSV format. The
name of the file is the same with the one that the user uploaded with ”_imp” as suffix. For example if the
user uploaded ”cars.csv” the name of the imputed file will be ”cars_imp.csv”.

4.6 Validation and Errors

In this section some typical validations that are made in the front-end using the JavaScript modules are
presented. In addition, some other HTML pages that are rendered and returned from the server after some

55

Chapter 4

checks are also dispayed here.

4.6.1 Invalid File Format

Figure 4.6: Upload validation: Invalid file format

Figure 4.6 displays the pop-up error message that the user receives after trying to upload a dataset file with
extension other than CSV. This check is performed in the client-side, in order not to use unnecessarily
the serve’s resources.

4.6.2 Invalid Model Parameters

Figure 4.7: Upload validation: Invalid model parameters

Figure 4.7 displays the pop-up error message that the user receives after inserting invalid or out of allowed
range model parameters. This error message is only relevant to the input fields that user writes a custom
number. So if for example the user writes a text instead of a number or inserts a very large number that

56

4 WEBIMPUTER Presentation

is not acceptable, this message will appear. Such validation does not apply to drop-down type fields, as
the available choices are pre-determined by creator of the application.

4.6.3 Dataset Exceeds Maximum Size

Figure 4.8: Upload validation: Dataset exceeds maximum allowed size

Figure 4.8 displays the pop-up error message that the user receives after trying to upload a dataset file
with size larger than the maximum allowed. This check is performed in the client-side, in order not to
overload the server.

Otherwise if the file would first be uploaded to the server and then the validation was made, the server
would have to handle the upload of very large files which could lead to decreased performance and
security.

Each imputation method has its own maximum allowed file size limit. This happens due to the fact that
some methods are more complex than the others and require a lot of computational capacity, as they have
to perform millions of calculations. Thus the more complex an imputation method is the lower maximum
allowed file size limit has been set.

These limits have been set according to experiments with various methods, parameters and file sizes that
have been made. The general strategy that has been applied is that the maximum completion time should
not exceed the three-minute threshold in any case, in order not to exceed the server’s computational
capacity.

Below is a list of the available methods and their corresponding maximum allowed file size limits:

• Mean: 10 MB

• Median: 10 MB

• Mode: 10 MB

• Mixed (Mean for Numerical - Mode for Categorical): 10 MB

57

Chapter 4

• Mixed (Median for Numerical - Mode for Categorical): 10 MB

• Random Hot-Deck: 10 MB

• Linear Regression: 10 MB

• Lasso Regression: 10 MB

• Ridge Regression: 10 MB

• Elastic-Net Regression: 10 MB

• Naive-Bayes: 10 MB

• Support Vector Regression (SVR): 1 MB

• Numerical k-NN (Mean): 5 MB

• Categorical k-NN (Mode): 300 KB

• Mixed k-NN (Mean for Numerical - Mode for Categorical): 300 KB

• Mixed k-NN (Median for Numerical - Mode for Categorical): 300 KB

4.6.4 Imputation Still in Progress

Figure 4.9: Imputation still in progress

Figure 4.9 displays the page the user sees when he/she is waiting for the imputation procedure to be
completed. It has a loading gif and a message, indicating that the imputation is still in progress. After the
imputation is completed, a download link to the imputed dataset appears (see success page).

In case the user has uploaded a large dataset and has selected a complex method that requires a lot of
calculations and time (e.g. mixed k-NN), after about 20 seconds, he/she will see the message that writes
”Imputation requires more time...” (see next section).

58

4 WEBIMPUTER Presentation

4.6.5 Imputation Requires More Time

Figure 4.10: Imputation requires more time

Figure 4.10 displays the page that the user sees when the imputation process takes more than 20 seconds.
Usually this is the case when large datasets with file size close to maximum allowed limit are combined
with the selection of complex imputation methods and/or model parameters that lead to increased com-
putational resources and thus increased completion time.

Along with the message that writes ”Imputation requires more time...”, the download link is provided and
the user is suggested to try use this link to download the imputed dataset in a few minutes or whenever
he/she likes in the future.

59

Chapter 5

Chapter 5: WEBIMPUTER Experiments and Metrics

In this section experiments and metrics for WEBIMPUTER are presented. More specifically, the avail-
able imputation methods of the application have been tested on datasets with a typical percentage of 6.5%
missing values and for various file sizes. The corresponding execution time has been monitored and is
displayed here.

The technical specifications of the machine that has been used for these experiments are:

• CPU: AMD Ryzen 7 5825U (min 1600 MHz, max 4547 MHz)

• RAM: 30 GB

The restrictions of each method described on the relevant sections (see 3.4.1 and 4.3) have been decided
based on these experiments and metrics. The criteria of choosing the maximum allowed CSV file size
were two:

• The file size should not be larger than 10 MB.

• The execution time should not be more than three minutes.

These restrictions are necessary in order not to overload the server.

5.1 Numerical Datasets

5.1.1 Mean

Table 5.1 displays the execution time of mean imputation method on various numerical datasets of dif-
ferent file size:

Dataset Size (MB) Execution Time (sec)
1 0.2
5 0.7
10 1.3

Table 5.1: Execution time for mean

60

5 WEBIMPUTER Experiments and Metrics

5.1.2 Median

Table 5.2 displays the execution time of median imputation method on various numerical datasets of
different file size:

Dataset Size (MB) Execution Time (sec)
1 0.2
5 0.7
10 1.4

Table 5.2: Execution time for median

5.1.3 Random Hot-Deck

Table 5.3 displays the execution time of random hot-deck imputation method on various numerical
datasets of different file size:

Dataset Size (MB) Execution Time (sec)
1 3.3
5 19.5
10 55

Table 5.3: Execution time for random hot-deck (numerical dataset)

5.1.4 k-NN (Mean)

Table 5.4 displays the execution time of k-NN (Mean) imputation method on various numerical datasets
of different file size and for different values of k-Neighbors:

Dataset Size (MB) k-Neighbors Execution Time (sec)

1
3 6
10 6
20 6

2
3 23
10 21
20 21

3
3 53
10 48
20 48

5
3 88
10 76
20 76

Table 5.4: Execution time for k-NN (Mean)

61

Chapter 5

5.1.5 Linear Regression

Table 5.5 displays the execution time of random hot-deck imputation method on various numerical
datasets of different file size:

Dataset Size (MB) Execution Time (sec)
1 5
5 20
10 41

Table 5.5: Execution time for linear regression

5.1.6 Lasso Regression

Table 5.6 displays the execution time of lasso regression imputationmethod on various numerical datasets
of different file size and for different values of alpha (α):

Dataset Size (MB) alpha Execution Time (sec)

1
0.001 6
1 8

1000 6

5
0.001 22
1 24

1000 27

10
0.001 42
1 43

1000 47

Table 5.6: Execution time for lasso regression

5.1.7 Ridge Regression

Table 5.7 displays the execution time of ridge regression imputationmethod on various numerical datasets
of different file size and for different values of alpha (α):

Dataset Size (MB) alpha Execution Time (sec)

1
0.001 4
1 4

1000 4

5
0.001 19
1 17

1000 18

10
0.001 36
1 35

1000 35

Table 5.7: Execution time for ridge regression

62

5 WEBIMPUTER Experiments and Metrics

5.1.8 Elastic-Net Regression

Table 5.8 displays the execution time of elastic-net regression imputation method on various numerical
datasets of different file size and for different values of alpha (α) and L1-ratio:

Dataset Size (MB) alpha L1-ratio Execution Time (sec)

1

0.001
0.25 5
0.5 5
0.75 5

1
0.25 8
0.5 8
0.75 7

1000
0.25 6
0.5 5
0.75 6

5

0.001
0.25 22
0.5 22
0.75 23

1
0.25 22
0.5 24
0.75 22

1000
0.25 43
0.5 40
0.75 38

10

0.001
0.25 44
0.5 43
0.75 42

1
0.25 42
0.5 42
0.75 42

1000
0.25 72
0.5 78
0.75 71

Table 5.8: Execution time for elastic-net regression

5.1.9 Support Vector Regression (SVR)

Table 5.9 displays the execution time of SVR imputation method with RBF kernel on a numerical dataset
of 1 MB and for different values of gamma (γ), C and epsilon (ϵ):

63

Chapter 5

gamma C epsilon Execution Time (sec)

auto

0.001
0.1 38
1 37
10 29

1
0.1 21
1 10
10 7

1000
0.1 13
1 6
10 6

scale

0.001
0.1 38
1 36
10 28

1
0.1 22
1 10
10 7

1000
0.1 13
1 6
10 6

0.01

0.001
0.1 38
1 37
10 29

1
0.1 28
1 15
10 8

1000
0.1 15
1 7
10 6

0.1

0.001
0.1 39
1 36
10 29

1
0.1 19
1 10
10 7

1000
0.1 14
1 7
10 6

1

0.001
0.1 37
1 37
10 30

1
0.1 21
1 15
10 11

1000
0.1 19
1 13
10 10

Table 5.9: Execution time for SVR with RBF kernel (1 MB dataset)

64

5 WEBIMPUTER Experiments and Metrics

Table 5.10 displays the execution time SVR imputation method with linear kernel on a numerical dataset
of 1 MB and for different values of C and epsilon (ϵ):

C epsilon Execution Time (sec)

0.001
0.1 23
1 20
10 14

1
0.1 6
1 6
10 6

1000
0.1 6
1 6
10 6

Table 5.10: Execution time for SVR with linear kernel (1 MB dataset)

Table 5.11 displays the execution time of SVR imputation method with polynomial kernel of 3rd degree
on a numerical dataset of 1 MB and for different values of coef0, C and epsilon (ϵ):

coef0 C epsilon Execution Time (sec)

-10

0.001
0.1 35
1 34
10 23

1
0.1 37
1 37
10 30

1000
0.1 37
1 38
10 30

0

0.001
0.1 30
1 29
10 23

1
0.1 39
1 20
10 10

1000
0.1 42
1 10
10 6

10

0.001
0.1 15
1 14
10 10

1
0.1 10
1 10
10 7

1000
0.1 10
1 9
10 7

Table 5.11: Execution time for SVR with polynomial kernel of 3rd degree (1 MB dataset)

65

Chapter 5

Table 5.12 displays the execution time of SVR imputation method with polynomial kernel of 5th degree
on a numerical dataset of 1 MB and for different values of coef0, C and epsilon (ϵ):

coef0 C epsilon Execution Time (sec)

-10

0.001 0.1
37
35
33

1 0.1
36
38
35

1000 0.1
37
39
34

0

0.001 0.1
32
32
22

1 0.1
60
46
14

1000 0.1
157
40
7

10

0.001 0.1
10
8
7

1 0.1
10
8
7

1000 0.1
10
8
7

Table 5.12: Execution time for SVR with polynomial kernel of 5th degree (1 MB dataset)

66

5 WEBIMPUTER Experiments and Metrics

Table 5.13 displays the execution time of SVR imputation method with sigmoid kernel on a numerical
dataset of 1 MB and for different values of coef0, C and epsilon (ϵ):

coef0 C epsilon Execution Time (sec)

-10

0.001
0.1 54
1 53
10 40

1
0.1 56
1 53
10 40

1000
0.1 55
1 52
10 40

0

0.001
0.1 49
1 50
10 37

1
0.1 49
1 49
10 50

1000
0.1 49
1 51
10 46

10

0.001
0.1 51
1 50
10 40

1
0.1 53
1 51
10 40

1000
0.1 51
1 50
10 40

Table 5.13: Execution time for SVR with sigmoid kernel (1 MB dataset)

67

Chapter 5

5.1.10 Methods Comparison

Figure 5.1 displays the average execution time for all numerical imputation methods applied to a typical
1 MB dataset with 6.5% missing values.

Figure 5.1: Execution Time Comparison - Numerical Methods

5.2 Categorical Datasets

5.2.1 Mode

Table 5.14 displays the execution time of Mode imputation method on various numerical datasets of
different file size:

Dataset Size (MB) Execution Time (sec)
1 0.1
5 0.2
10 0.4

Table 5.14: Execution time for mode

68

5 WEBIMPUTER Experiments and Metrics

5.2.2 Random Hot-Deck

Table 5.15 displays the execution time of random hot-deck imputation method on various categorical
datasets of different file size:

Dataset Size (MB) Execution Time (sec)
1 1
5 10
10 39

Table 5.15: Execution time for random hot-deck (categorical dataset)

5.2.3 k-NN (Mode)

Table 5.16 displays the execution time of k-NN (Mode) imputation method on various numerical datasets
of different file size and for different values of k-Neighbors:

Dataset Size (MB) k-Neighbors Execution Time (sec)

0.5
3 34
10 39
20 49

1
3 106
10 120
20 128

2
3 142
10 147
20 158

Table 5.16: Execution time for k-NN (Mode)

5.2.4 Naive Bayes

Table 5.17 displays the execution time of Naive Bayes imputation method on various numerical datasets
of different file size:

Dataset Size (MB) Execution Time (sec)
1 2
5 7
10 14

Table 5.17: Execution time for Naive Bayes

5.2.5 Methods Comparison

Figure 5.2 displays the average execution time for all categorical imputation methods applied to a typical
1 MB dataset with 6.5% missing values.

69

Chapter 5

Figure 5.2: Execution Time Comparison - Categorical Methods

5.3 Mixed Datasets

5.3.1 Mean for Numerical - Mode for Categorical

Table 5.18 displays the execution time of Mean-Mode imputation method on various numerical datasets
of different file size:

Dataset Size (MB) Execution Time (sec)
1 0.2
5 0.9
10 1.7

Table 5.18: Execution time for Mean-Mode

5.3.2 Median for Numerical - Mode for Categorical

Table 5.19 displays the execution time ofMedian-Mode imputation method on various numerical datasets
of different file size:

Dataset Size (MB) Execution Time (sec)
1 0.2
5 0.9
10 1.9

Table 5.19: Execution time for Median-Mode

70

5 WEBIMPUTER Experiments and Metrics

5.3.3 Random Hot-Deck

Table 5.20 displays the execution time of random hot-deck imputation method on various mixed datasets
of different file size:

Dataset Size (MB) Execution Time (sec)
1 3
5 28
10 88

Table 5.20: Execution time for random hot-deck (mixed datasets)

5.3.4 Mixed k-NN (Mean for Numerical - Mode for Categorical)

Table 5.21 displays the execution time of mixed k-NN (Mean-Mode) imputation method on various nu-
merical datasets of different file size and for different values of distance and k-Neighbors:

Dataset Size (MB) Distance k-Neighbors Execution Time (sec)

0.2

Euclidean
3 31
10 40
20 53

Manhattan
3 29
10 37
20 51

0.3

Euclidean
3 59
10 75
20 96

Manhattan
3 59
10 71
20 95

1 Euclidean 3 633

Table 5.21: Execution time for mixed k-NN (Mean-Mode)

71

Chapter 5

5.3.5 Mixed k-NN (Median for Numerical - Mode for Categorical)

Table 5.22 displays the execution time of mixed k-NN (Median-Mode) imputation method on various
numerical datasets of different file size and for different values of distance and k-Neighbors:

Dataset Size (MB) Distance k-Neighbors Execution Time (sec)

0.2

Euclidean
3 28
10 43
20 56

Manhattan
3 28
10 42
20 60

0.3

Euclidean
3 68
10 86
20 98

Manhattan
3 56
10 74
20 94

1 Euclidean 3 595

Table 5.22: Execution time for mixed k-NN (Median-Mode)

5.3.6 Methods Comparison

Figure 5.3 displays the average execution time for all mixed imputation methods applied to a typical 1
MB dataset with 6.5% missing values.

Figure 5.3: Execution Time Comparison - Mixed Methods

72

6 Conclusion and Future Work

Chapter 6: Conclusion and Future Work

6.1 Conclusion

In this thesis, a web application for missing value imputation in datasets, named WEBIMPUTER, has
been successfully developed. Datasets can be numerical, categorical or mixed. The application provides a
user-friendly interface for users to upload their datasets withmissing values, select appropriate imputation
methods, and obtain the imputed datasets.

The available imputation methods for numerical datasets are: Mean, Median, Random Hot-Deck, Linear
Regression, Lasso Regression, Ridge Regression and Support Vector Regression (SVR). For categorical
datasets the available methods are: Mode, Random Hot-Deck, k-NN (Mode) and Naive Bayes. And for
mixed datasets the available methods are: Mean-Mode, Median-Mode, Random Hot-Deck, Mixed k-NN
(Mean-Mode) and Mixed k-NN (Median-Mode). The mathematical formulation and explanation of all
these methods were also presented in this thesis.

The front-end of the applicationwaswritten inHTMLwith use of CSS for styling the pages and JavaScript
with jQuery for adding some functionalities on the client-side. Bootstrap was the framework utilized.

The main functionality of the application was implemented on the server-side. That includes all the
modules that implement the imputation algorithms and all the processes that handle the receiving of the
datasets with missing values and sending the imputed datasets back to client-side. The framework which
was used for building the server-side is Flask and the programming language is Python.

Finally, a lot of experiments have been conducted by applying all the imputation methods of the applica-
tion to various datasets of different file size and measuring the execution time, to help users gain a better
understanding of the computational efficiency of the models. The results of the experiments have been
presented both individually for each method and comparatively.

6.2 Future Work

A great number of features could be integrated into the application and a lot of different experiments
could be conducted in the future.

For example some more advanced imputation methods that involve neural networks like Generative Ad-
versarial Networks (GANs) [11] could be used. That would make the application more powerful and
would probably attract more data scientists and engineers. However the server resources for such imple-
mentation should be taken into account, in order to avoid overloading.

As far as the experiments are concerned, it would be very useful to use various datasets with different
missing value percentages and measure the accuracy and the performance of the imputation models [12].
In such case, a lot of insightful conclusions would be made regarding how missing values affect the
effectiveness of the methods, so that users would have an indication of which imputation method should
choose every time.

73

References

[1] I. B. Aydilek and A. Arslan, “A hybrid method for imputation of missing values using optimized
fuzzy c-means with support vector regression and a genetic algorithm,” Information Sciences,
vol. 233, pp. 25–35, 2013.

[2] S. Reddy Sankepally, N. Kosaraju, and K. Mallikharjuna Rao, “Data imputation techniques: An
empirical study using chronic kidney disease and life expectancy datasets,” in 2022 International
Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1–7, 2022.

[3] D. W. Joenssen and U. Bankhofer, “Hot deck methods for imputing missing data,” in Machine
Learning and Data Mining in Pattern Recognition (P. Perner, ed.), (Berlin, Heidelberg), pp. 63–75,
Springer Berlin Heidelberg, 2012.

[4] D. M. P. Murti, U. Pujianto, A. P. Wibawa, and M. I. Akbar, “K-nearest neighbor (k-nn) based miss-
ing data imputation,” in 2019 5th International Conference on Science in Information Technology
(ICSITech), pp. 83–88, 2019.

[5] A. Garcia and E. Hruschka, “Naive bayes as an imputation tool for classification problems,” in Fifth
International Conference on Hybrid Intelligent Systems (HIS’05), pp. 3 pp.–, 2005.

[6] T. Makaba and E. Dogo, “A comparison of strategies for missing values in data on machine learn-
ing classification algorithms,” in 2019 International Multidisciplinary Information Technology and
Engineering Conference (IMITEC), pp. 1–7, 2019.

[7] S. Shah, M. Telrandhe, P. Waghmode, and S. Ghane, “Imputing missing values for dataset of used
cars,” in 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), pp. 1–5, 2022.

[8] M. Peña, P. Ortega, andM. Orellana, “A novel imputation method for missing values in air pollutant
time series data,” in 2019 IEEE Latin American Conference on Computational Intelligence (LA-
CCI), pp. 1–6, 2019.

[9] L.Wijesekara and L. Liyanage, “Mind the large gap: Novel algorithm using seasonal decomposition
and elastic net regression to impute large intervals of missing data in air quality data,” Atmosphere,
vol. 14, p. 355, 02 2023.

[10] V. Anandhi and R. Chezian, “Support vector regression to forecast the demand and supply of pulp-
wood,” International Journal of Future Computer and Communication, vol. 2, pp. 266–269, 01
2013.

[11] S. C.-X. Li, B. Jiang, and B. Marlin, “Misgan: Learning from incomplete data with generative
adversarial networks,” 2019.

[12] W. Kim, W. Cho, J. Choi, J. Kim, C. Park, and J. Choo, “A comparison of the effects of data
imputation methods on model performance,” in 2019 21st International Conference on Advanced
Communication Technology (ICACT), pp. 592–599, 2019.

74

[13] A. K.S., R. Ramanathan, and M. Jayakumar, “Impact of k-nn imputation technique on performance
of deep learning based dfl algorithm,” in 2021 Sixth International Conference on Wireless Commu-
nications, Signal Processing and Networking (WiSPNET), pp. 153–157, 2021.

[14] L. Beretta and A. Santaniello, “Nearest neighbor imputation algorithms: a critical evaluation,” BMC
Med. Inform. Decis. Mak., vol. 16 Suppl 3, p. 74, July 2016.

[15] K. Nishanth and R. Vadlamani, “Probabilistic neural network based categorical data imputation,”
Neurocomputing, vol. 218, 08 2016.

[16] J. Wang, D. Li, H. Zhang, X. Yu, A. Sekhari, Y. Ouzrout, and A. Bouras, “An improvement of
support vector machine imputation algorithm based onmultiple iteration and grid search strategies,”
in 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT),
pp. 538–543, 2020.

[17] R. R. Andridge and R. J. A. Little, “A review of hot deck imputation for survey non-response,”
International Statistical Review, vol. 78, pp. 40–64, Apr. 2010.

[18] S. Thirukumaran and A. Sumathi, “Missing value imputation techniques depth survey and an impu-
tation algorithm to improve the efficiency of imputation,” in 2012 Fourth International Conference
on Advanced Computing (ICoAC), pp. 1–5, 2012.

[19] T. Aljuaid and S. Sasi, “Proper imputation techniques for missing values in data sets,” in 2016
International Conference on Data Science and Engineering (ICDSE), pp. 1–5, 2016.

[20] O. Harel and X.-H. Zhou, “Multiple imputation: review of theory, implementation and software,”
Statistics in Medicine, vol. 26, no. 16, pp. 3057–3077, 2007.

75

	Acknowledgements
	Abstract
	Table of Contents
	Αbbreviations
	Introduction
	Missing Data Imputation
	Motivation and Contribution
	Thesis Organization

	Imputation Methods
	Mean
	Median
	Mode
	Constant Value
	Random Hot-Deck
	k-Nearest Neigbors (k-NN)
	Mixed k-NN
	Naive Bayes
	Mathematical formulation

	Linear Regression
	Mathematical formulation

	Lasso Regression
	Mathematical formulation

	Ridge Regression
	Mathematical formulation

	Elastic-Net Regression
	Mathematical Formulation
	Advantages
	Challenges

	Support Vector Regression (SVR)
	Mathematical Formulation

	WEBIMPUTER implementation
	Technologies Used
	Front-end
	Back-end
	Python libraries

	Application Architecture
	Imputation Modules
	simple_imputer.py
	regression_imputer.py
	svr_imputer.py
	naive_bayes_imputer.py
	random_hot_deck_imputer.py
	numerical_knn_imputer.py
	categorical_knn_imputer.py
	mixed_knn_imputer.py
	dataset_validator.py

	JavaScript Modules
	prevent_upload.js
	show_available_methods_and_parameters.js
	show_download_link.js

	WEBIMPUTER Presentation
	Home Page
	Imputer Page
	Imputation Methods Page
	About Page
	Success Response
	Validation and Errors
	Invalid File Format
	Invalid Model Parameters
	Dataset Exceeds Maximum Size
	Imputation Still in Progress
	Imputation Requires More Time

	WEBIMPUTER Experiments and Metrics
	Numerical Datasets
	Mean
	Median
	Random Hot-Deck
	k-NN (Mean)
	Linear Regression
	Lasso Regression
	Ridge Regression
	Elastic-Net Regression
	Support Vector Regression (SVR)
	Methods Comparison

	Categorical Datasets
	Mode
	Random Hot-Deck
	k-NN (Mode)
	Naive Bayes
	Methods Comparison

	Mixed Datasets
	Mean for Numerical - Mode for Categorical
	Median for Numerical - Mode for Categorical
	Random Hot-Deck
	Mixed k-NN (Mean for Numerical - Mode for Categorical)
	Mixed k-NN (Median for Numerical - Mode for Categorical)
	Methods Comparison

	Conclusion and Future Work
	Conclusion
	Future Work

	References

