
INTERNATIONAL HELLENIC UNIVERSITY
School of Information Technologies

Giorgos Sideris 272020

RESEARCH AND IMPROVEMENT OF PATENT RETRIEVAL

USING MACHINE LEARNING METHODS

Master’s Thesis

Supervisor: Michalis Salampasis

Thessaloniki 2023

Γιώργος Σιδέρης 272020

Μελέτη και βελτίωση της ανάκτησης πατεντών

χρησιμοποιώντας μεθόδους μηχανικής μάθησης.

Διπλωματική εργασία

Επιβλέπων καθηγητής: Μιχάλης Σαλαμπάσης

Θεσσαλονίκη 2023

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Giorgos Sideris

16.05.2023

1

Abstract

This dissertation researches and compares patent retrieval architectures using a combination
of traditional first-stage retrieval algorithms and second-stage deep learning techniques.
The author conducts experiments using various combinations of tools such as BERT
models, the Pyserini indexing software, and the DeepCT software tools, and evaluates the
effectiveness of each retrieval architecture. The datasets used, the field selection process,
and the algorithm selection procedures are documented, along with the scripts and software
developed for the experiments. The paper aims to determine the best techniques and
methodologies for efficient and effective patent retrieval. The author concludes with their
findings and proposes future research directions in this field. The study highlights the
significance of information retrieval methods and their applications in everyday life in
the 21st century. Furthermore, the paper provides an introduction to artificial intelligence,
machine learning, and deep learning concepts, which are fundamental to understanding
the thesis’s technical aspects.

The thesis is written in English and is 57 pages long, including 13 chapters, 17 figures and
3 tables.

2

Σύνοψη

Αυτή η διπλωματική εργασία ερευνά και συγκρίνει αρχιτεκτονικές ανάκτησης διπλωμάτων

ευρεσιτεχνίας χρησιμοποιώντας συνδυασμό παραδοσιακών αλγορίθμων ανάκτησης

πρώτου σταδίου και τεχνικών βαθιάς μάθησης δεύτερου σταδίου. Ο συγγραφέας

πραγματοποιεί πειράματα χρησιμοποιώντας διάφορα εργαλεία, όπως το μοντέλο λέξ-

εων BERT, το λογισμικό ευρετηρίασης Pyserini και το εργαλείο με δυνατότητες
χρήσης μεθόδων μηχανικής και βαθιάς μάθησης DeepCT, και αξιολογεί την αποτε-
λεσματικότητα κάθε αρχιτεκτονικής ανάκτησης. Τα σύνολα δεδομένων που χρησι-

μοποιήθηκαν, η διαδικασία επιλογής πεδίων και οι διαδικασίες επιλογής αλγορίθμων

καλύπτονται με λεπτομέρεια, μαζί με τα σενάρια και το λογισμικό που αναπτύχθηκε για

τα πειράματα. Στόχος αυτής της διατριβής είναι να ερευνήσει τις καλύτερες τεχνικές

και μεθοδολογίες για αποτελεσματική ανάκτηση διπλωμάτων ευρεσιτεχνίας. Ο συγ-

γραφέας παρουσιάζει τα ευρήματά του και προτείνει περαιτέρω κατευθύνσεις έρευνας

σε αυτό το πεδίο. Επιπρόσθετα, το παρόν εγγραφο περιέχει εισαγωγικές πληροφορίες

για τις έννοιες Τεχνητή Νοημοσύνη, την Μηχανική Μάθηση και την Βαθιά Μάθηση,

οι οποίες είναι σημαντικές για την κατανόηση των τεχνικών και τεχνολογικών πτυχών

της παρούσας διπλωματικής.

3

Acknowledgements

The completion of this dissertation could not have been possible without the help from
my supervisor, Mr. Michalis Salampasis and especially Mr. Vasilis Stamatis who gave me
unwithering support in the first steps of my research and helped me establish a plan that I
followed along this journey.

I am also very grateful to Ms. Rafaela Takou for her constant support throughout those
years that I spent on this research and her words of encouragement and I also wish her
good luck on her PhD program.

4

List of Abbreviations and Terms

IR Information Retrieval
QF Query Formulation
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
CNN Convolutional Neural Network
ANN Artificial Neural Network
NLP Natural Language Processing
TF-IDF Term Frequency - Inverse Document Frequency

5

Table of Contents

1 Introduction . 11

2 Introduction to Information Retrieval . 13
2.1 Definition of Information Retrieval . 13
2.2 IR methodology . 14

2.2.1 Indexing . 15
2.2.2 Query Formulation . 16
2.2.3 Matching . 16
2.2.4 Re-ranking . 17

2.3 IR in everyday life . 17

3 Artificial Intelligence, Machine Learning and Deep Learning 19
3.1 Artificial Intelligence . 19
3.2 Machine Learning . 20

3.2.1 Neural Networks . 21
3.3 Deep Learning . 21
3.4 Pre-trained deep models . 22

4 Introducing BERT and deepCT . 23
4.1 BERT . 23
4.2 DeepCT . 23
4.3 DeepCT hands-on and its importance in this thesis 24

5 Structure and background of the data set used 26
5.1 CLEF-IP . 26
5.2 Data set figures . 26

6 Experimental procedures . 28
6.1 Progressive experimenting . 28
6.2 Helper files structure . 30
6.3 Technologies and tools used . 33
6.4 Limitations of the technologies . 33

7 Fields selection . 36

8 Weights creation algorithm . 38

6

9 Creating Indices with Pyserini . 41

10 DeepCT indexing . 43

11 Comparing indices . 47

12 Conclusion . 52

13 Future research and work . 54

References . 55

7

List of Figures

1 Information Retrieval Process. 14
2 Query formulation [4] . 16

3 AI, ML and DL visualised as Russian nesting dolls [5] 19
4 The components of machine learning [7] 21

5 A part of the documentation instructing on how to run the executable,

found in DeepCT’s github repo [11] . 25

6 Patent document example [7] . 27

7 Evaluation performance per field . 37

8 Custom TF-IDF implementation . 38
9 TF-IDF calculation & preservation . 39
10 TF-IDF scores in docterm_recall helper file 40

11 Index files . 42

12 Floating point term weights . 45
13 Term weighting ready to use with Pyserini 45

14 Different approaches used . 47
15 Queries file & Qrels file . 48
16 Evaluation performance . 49
17 Evaluation performance . 50

8

List of Tables

1 Field selection experiment results . 36

2 Querying evaluation of indices with common metrics 49
3 Querying evaluation of indices with common metrics 50

9

List of code and command blocks
6.1 Code block: Docterm_recall helper file 28
6.2 Code block: Prediction edit.tsv helper file 31
6.3 Code block: Pyserini jsonl helper file . 32
9.1 Command: Creating index with Pyserini 41
10.1 Command: Training with DeepCT . 43
10.2 Command: Predicting term weights with DeepCT 44

10

1. Introduction

The scope of this dissertation is to research and compare different patent retrieval archi-
tectures by focusing on Information Retrieval methods and by using a combination of
traditional first stage retrieval algorithms and second stage Machine Learning techniques,
more specifically, patent retrieval using Deep Learning algorithms. First stage retrieval
algorithms, namely TF-IDF and BM25 are used for term weight predictions and these term
weights are subsequently used for second stage retrieval models and comparisons will be
executed between those retrieval architectures.

With the introduction of Deep Learning models, such as BERT, indexing software such
as Pyserini and newly created algorithmic tools such as DeepCT, which leverages the
capabilities of machine learning and deep learning methods, the author provides some
context for his subsequent experimenting and test runs to further explore how to maximize
efficiency of patent retrieval. The aforementioned tools will be presented in greater detail
in the following chapters.

Moreover, the author presents a brief introduction to Information Retrieval and its meth-
ods, their application to our every-day life and its importance for reading through the
noise of the overabundance of data that defines life in the 21st century. A preamble to
artificial intelligence, machine learning and deep learning is also included to define some
fundamental concepts and terms used in this thesis and in computer science in general.
Additionally, the tools and algorithms that are used in this experimental analysis are in-
troduced and explained in detail. BERT models and the DeepCT algorithm are included,
as well as Information Retrieval software for indexing such as Pyserini and algorithms,
mostly bag-of-words algorithms as mentioned above.

Furthermore, several chapters are focused on describing the process of the experiments
that the author executed. The structure and origin of the datasets used is documented
on a separate chapter as well as the field selection process that relates to the process of
deciding which parts of the documents are the most suitable to be used in the test runs.
Moreover, the algorithm selection procedure for defining the term weights used and the
process in which the experiments were executed are all explained in detail in the following
chapters. The scripts and software developed or used for the purpose of this thesis are
briefly presented as well.

11

Finally, the different evaluations are compared side to side and observed to reach some
final conclusions. This is also the final purpose of this paper, to find the best techniques
and methodologies for efficient and effective patent retrieval. Lastly, after reaching some
conclusion with the test results, further steps to progress the research are listed and
discussed in this dissertation.

12

2. Introduction to Information Retrieval

Rapid development of the internet, computers and the increase of the capacity of storage
devices in the last 50 years has led to an overabundance of information one can find on
the web. Especially in the 21st century, the amount of information that is stored on the
internet has been increasing almost exponentially. Meanwhile, people have been interested
in finding information for thousands of years now, and lately more than ever they are keen
to find relevant information quickly and effectively.

The rise of search engines, mainly Google, made users get used to rapidly finding informa-
tion about what they are searching for between millions of websites and publications. More
specifically, researchers around the globe are increasingly looking for scientific written
knowledge online. Considering this information is mainly available in an unstructured way
all over the web, one can realise how paramount intelligent and automatic ways to sift
through information have been for humanity. The information found must be relevant to
what the user is looking for and it needs to be useful and this can only be possible using
automated methods and algorithms, considering the sheer amount of data available on the
internet.

This is what prompted to the genesis of Information Retrieval - will also be referred to
as IR in this document - and the corresponding field in science. IR was born around the
1950s out of necessity [1]. The field has matured significantly over the 21st century and
late 20th century.

2.1 Definition of Information Retrieval

Information retrieval is the science of retrieving information in a document, in a collection
of documents, or searching for the document itself. IR can also be described as the process
of finding non-structural material (mainly documents) that meets the need for information
from large collections [2]. IR is used extensively today by millions of users and some
of the use cases include: web search, question retrieval, email search, scientific material
search.

13

2.2 IR methodology

It would be utterly inefficient for an IR application to search through millions of documents
and their corresponding text to find information relevant to a user’s query. To overcome
this challenge, IR systems use a representation of a document’s content instead of the
complete information of a document. IR systems do this by creating a representation of
said content. [3]

One of the most important function of an IR systems is called indexing, which is the
creation of a representation of a document, and its elements are often called keywords.
Nevertheless, depending on requirements, phrases, parse trees, and semantic structures are
employed as indexes. Relevant papers are those that provide users with the information
they require. Ideally, only pertinent papers should be returned by a perfect IR system.

Four operations make up a typical IR system: indexing, query formulation, matching, and
re-ranking. The flowchart schematic for the IR process is shown in Figure 1. IR systems
may use a variety of retrieval models throughout the matching process in order to respond
to a user query. [2]

Figure 1. Information Retrieval Process.

14

2.2.1 Indexing

Firstly, indexing - as mentioned above - is the process of creating a representation of a
document for easier retrieval and relevance exploration. Indexing, ideally, can occur after
some pre-processing on the dataset about to be indexed. Pre-processing can include but is
not limited to: stemming, tokenization and case folding, which all make indexing more
efficient by categorizing words with the same or similar meaning.

Stemming is the process of grouping words by converting them to their root form, for
example rapping, rap and rapper can be connected to the same root word "rap" and queries
containing the word rap will probably be related to the document containing these words.

Tokenization is the process of dividing a stream of text information into tokens, which can
be words, concepts, symbols, or other significant components. It is a crucial stage in the
IR process. Exploring the words in a sentence is the goal of tokenization. Tokenization
facilitates word-by-word breakdown of the textual content.

Case folding includes changing the case of all alphabetic tokens. Since people will
use lowercase regardless of the ’proper’ capitalization, it is frequently beneficial to use
lowercase only and group lowercase and uppercase words together.

Furthermore, indexing documents may mean that all indexing terms that represent the
meaning of a document have the same semantic weight, or term weights may differ based
on calculations that estimate the importance of a term weight. The bigger the term weight,
the more important a word is to a document and the more likely it is for the document to
be matched to a query that includes the term weight or something similar.

Term weighting can be implemented with various methods, and in this paper the author
explores a term weighting algorithm that utilises Deep Learning and Machine Learning to
define the most useful and accurate term weights, namely DeepCT.

Finally, there are some widely used algorithms in computer science used for term weighting,
such as TF-IDF, which is used on the experiments implemented by the author and are
presented in subsequent chapters of this dissertation. TF-IDF is used to estimate how
important a term is to a collection of documents, utilising information like how frequently a
word occurs in a document or collection and the rarity of a word in the bespoke collection.

15

2.2.2 Query Formulation

The stage of the interactive information access process known as Query Formulation (QF)
occurs when a user formulates a question from an information requirement and submits it
to an information access system like a search engine (like Google) or a library database
(like Factiva or PubMed). The system runs certain calculations to match the query with the
papers most likely to be relevant to the inquiry and then provides the information seeker
with a ranked list of those documents [4].

One of the difficulties of Query Formulation for IR systems to take into account is that
QF usually occurs in the human mind, and that may change dramatically from person to
person. Query formulation can be unpredictable and difficult to isolate in detail what the
specific user is searching for.

Figure 2. Query formulation [4]

2.2.3 Matching

Matching is the process that occurs after pre-processing, indexing and query formulation
and includes matching the user query to some relevant documents, using some sophisticated
- or simple - algorithm.

There are several types of algorithms IR systems use to match documents and terms to
user queries. From simply looking for query words in indexing terms and matching them
to more complex techniques that use the power of Artificial Intelligence and Machine
Learning to more accurately extract meaning from the query to match more efficiently to
documents of the indexed collection.

Subsequently, matching also includes ranking matches from most relevant to least relevant
to provide value to the user’s search and make sure they are retrieving the information they
are looking for.

16

2.2.4 Re-ranking

Re-ranking can be described as the procedure of estimating some ranking and evaluating if
this ranking was accurate for semantic similarity. Additionally, the initial ranking can be
altered to a more efficient version.

This process can occur by running experiments manually or with some automated method
that receives some hand picked ranking list defined by a human and tests it against the
computed generated ranking list and adjusts ranking parameters accordingly.

2.3 IR in everyday life

Information retrieval is, as also stated above, used extensively by basic and advanced users
all over the world. Almost any application that searches through large amounts of data
collections is using some form of an Information Retrieval system. It becomes obvious
when one thinks that the alternative would be searching every word of every element on
the searchable collection to match with the user’s query, whereas with IR and therefore
some form of indexing the search for relevant results would be looking through key words
and parts of collection items.

Common uses of information retrieval include but are not limited to:

■ Search engines
– Web search
– Mobile search
– Social search
– Desktop search

■ Digital libraries

■ Recommendation systems

■ Multimedia search
– Music retrieval
– Video retrieval
– Speech retrieval
– News retrieval

17

The list above contains only some of IR use cases in everyday life, and it is evident that it
is an important field of study in computer science that affects everyone.

Subsequently, the importance of efficient Information retrieval and the numerous use cases
led to research to develop more sophisticated systems that utilise modern technologies
such as Machine Learning and Deep Learning. On the next chapter, the author provides
a brief introduction to this field before presenting algorithms and methodologies that are
related to both fields, Information Retrieval and Deep Learning.

18

3. Artificial Intelligence, Machine Learning and Deep
Learning

Artificial Intelligence is the broader term and field of science that refers to "intelligence"
exhibited by machines. This field has been rapidly developing in the last few decades, and
is now present in numerous applications in software, mobile phones and many aspects of
our life. There are several different technologies that fall under the same "umbrella" term
that is Artificial Intelligence. Ranging from simple to very complex problem solving, the
main - and most promising - characteristic of AI is that the possibilities are endless. In this
chapter, the author provides a brief introduction to the reader of AI, Machine Learning,
Deep Learning and defines some useful terms for better understanding of the experimental
work undertaken for this dissertation.

Additionally, as it is stated below, Artificial Intelligence is a broader field that includes
Machine Learning. Similarly Deep Learning is a subset of Machine Learning technologies.
This can be visualised in the figure below.

Figure 3. AI, ML and DL visualised as Russian nesting dolls [5]

3.1 Artificial Intelligence

The study of "intelligent agents," or any technology that senses its surroundings and acts
in a way that maximizes its chances of success in achieving a goal, is what the area
of artificial intelligence (AI) research in computer science refers to. When a machine
imitates "cognitive" abilities that people typically associate with other human minds, such
as "learning" and "problem solving," the phrase "artificial intelligence" is used. [6]

19

Popular applications of AI include but are not limited to speech recognition, self driving
algorithms, image recognition and natural language processing.

3.2 Machine Learning

Frequently, artificial intelligence is attained through the use of machine learning. As one of
the founders of machine learning, Arthur Samuel proposed in 1959 that machine learning
is a field of study that allows computers to learn without being explicitly programmed.
Machine Learning is an approach or subset of Artificial Intelligence that places more
emphasis on "learning" than on computer programs. Without a human writing precise
instructions into the machine’s software, machines utilize complex algorithms to analyze
vast volumes of data, find patterns in the data, and make predictions. A system can use
machine learning to learn from its errors and enhance its pattern recognition. [7]

There are three main types of Machine Learning [6]:

■ Supervised Learning, where the system is trained with training data examples where
the input and desired output are provided. By using those examples, the system can
be trained to provide outputs for provided inputs by using the intelligence acquired
by training data. This type of ML is useful for identifying future outcomes such as
for stocks or predicting customer actions

■ Unsupervised Learning is applied to information that lacks historical labels. The
"correct answer" is not provided to the system. The showing must be determined
by the algorithm. The objective is to investigate the data and identify any internal
structure. It can be useful for identifying hidden patterns between items and for
providing suggestions.

■ Semi-supervised learning

■ Reinforcement learning Through trial and error, the algorithm learns through re-
inforcement learning which actions result in the biggest rewards. The learner or
decision-maker is the agent in this sort of learning, together with the environment
and actions, which are all things the learner or decision-maker interacts with (what
the agent can do). The goal is for the agent to make decisions that maximize the
anticipated benefit over a predetermined period of time. By adhering to a sound
policy, the agent will attain the target much more quickly. The best policy is what
reinforcement learning aims to learn.

20

Figure 4. The components of machine learning [7]

3.2.1 Neural Networks

Neural networks, also known as artificial neural networks (ANNs) or simulated neural
networks (SNNs), are a subset of machine learning and are at the heart of deep learning
algorithms. Their structure and nomenclature are modeled after the human brain, mirroring
the communication between organic neurons. [8]

A node layer of an artificial neural network (ANN) consists of an input layer, one or more
hidden layers, and an output layer. Each node, or artificial neuron, is connected to others
and has a weight and threshold that go along with it. Any node whose output exceeds the
defined threshold value is activated and begins providing data to the network’s uppermost
layer. Otherwise, no data is transmitted to the network’s next tie.

3.3 Deep Learning

Deep learning refers to the use of neural networks and related machine learning algorithms
that contain one or more hidden layers.

21

An observation (such as an image) can be represented in a variety of ways, including as a set
of edges, areas of a certain form, or more abstractly as a vector of intensity values per pixel.
Some representations (such face recognition or facial expression recognition) are more
effective than others at making the learning job simpler. Deep learning holds the potential
of replacing manual feature creation with effective unsupervised or semi-supervised feature
learning and hierarchical feature extraction methods. [6]

3.4 Pre-trained deep models

In the next chapter, the author introduces the reader to pre-trained deep models, such as
BERT, used for text contextualization and more efficient passage retrieval. Pre-trained
models have been trained against very large corpora to better understand term importance
in context.

Additionally, DeepCT-index which is utilising pre-trained BERT models is presented as it
is the used on most of the author’s experiments that are explained in this thesis.

22

4. Introducing BERT and deepCT

In recent years, there has been significant progress in passage understanding methods with
the introduction of deep contextualized word representations such as BERT and ELMo [9].
These techniques use sizable text corpora to train a neural language model. Each token
is given a representation that depends on both the token and other factors as well. These
neural language models have been demonstrated to characterize a word’s meaning and
syntax, and more significantly, how they differ in multi-language settings.

4.1 BERT

BERT stands for Bidirectional Encoder Representations from Transformers. It is a machine
learning technique for Natural Language Processing pre-training. It was developed by
Google engineers, more specifically it was developed and published in 2019 by Jacob
Devlin and his colleagues [10]. BERT models can significantly help with term or passage
importance identifying. They are already being actively used by Google search engine.

To understand how BERT works and how BERT models are created, one needs to under-
stand some basic architecture concepts behind it. A transformer is an attention mechanism
that learns the contextual relationships between words (or subwords) in a text and is used
by BERT. A Transformer’s basic design consists of two independent mechanisms: an
encoder that reads the text input and a decoder that generates a task prediction. Only the
encoder mechanism is required because BERT’s aim is to produce a language model. More
detail about the transformers inner workings can be found in Google’s paper [10].

The Transformer encoder reads the entire sequence of words at once, in contrast to
directional models, which read the text input sequentially (from right to left or left to right).
Although it would be more accurate to describe it as non-directional, it is therefore thought
of as bidirectional. This feature enables the model to understand the context of a word.

4.2 DeepCT

DeepCT is a Deep Contextualized Term Weighting framework and it is utilised for im-
proved first-stage retrieval models using the contextualized word representations generated
by BERT [9].

23

A BERT-based contextualized word model and a mapping function that calculates terms
weights from representations are used to train DeepCT in a supervised manner. Context
also affects a word’s representation and subsequently its estimated importance. More
information can be found on DeepCT’s public code repository on Github as it is released
with open-source licensing [11].

4.3 DeepCT hands-on and its importance in this thesis

In this dissertation, DeepCT is quite central to the experiments executed. The experiments
are explained in great detail in the corresponding chapter below and in this section the
reader can learn more about how the DeepCT command line executable works practically.

There are three tasks the DeepCT executable can perform and these are incremental
procedures that lead to the main end product of this program that is contextually-accurate
term weights for a document collection that can be used to create an index, so that this
index then can be used for query/term retrieval. So these procedures are:

■ Step one: Training - The program is fed with data from the document collection
which helps it better understand the context of this collection and the terms contextual
value to better estimate term weights. The program reads and trains itself by creating
a word model better suited to this data collection. It is not done from scratch,
a pre-trained BERT model is used as a starting point to make the process more
efficient.

■ Step two: Prediction - After the training is completed and the customized word
model is built, the executable can be used to infer term weights for the document
collection. The model from the previous step one is used and DeepCT also requires
a file containing all the documents and their contents to run. The end result is a file
containing floating-point term weights.

■ Step three: Index weights - The executable converts the term weights calculated in
the previous step (prediction) to a form better suited for them to be fed into software
like Anserini, Pyserini to create an index. The term weights are converted to integers
from their previous format that was floating-point numbers.

The steps above are followed - sometimes without training, listed in step 1 - in this thesis
to reach the point where an index is generated through DeepCT. These indexes generated
with DeepCT, are later compared to indexes created directly with Pyserini without the
contribution of a Machine Learning powered tool like DeepCT.

24

Figure 5. A part of the documentation instructing on how to run the executable, found in
DeepCT’s github repo [11]

It should also be noted here that as the author explains in the subsequent chapters, the
process of creating the help files that the DeepCT executable needs to work has also been
fine tuned to produce better end results.

25

5. Structure and background of the data set used

In this chapter, the data set used for subsequent runs and experiments is explained in detail
by documenting the structure and the background of the data set documents.

5.1 CLEF-IP

The dataset is provided by CLEF-IP which was an evaluation lab that was operated by
Vienna University of Technology from 2009 to 2013. Its purpose was two-fold: to promote
cross-language patent retrieval research and to make a big and clean patent-related data
collection available in the three primary European languages for experimentation, with
the languages being English, German and French [12]. The project was supported by the
PROMISE Network of Excellence (co-funded by the 7th Framework Programme of the
European Commission).

The single task that CLEF-IP organized in its first year was a text retrieval exercise that
was modeled after the "Search for Prior Art" carried out by professionals at patent offices.
The types of CLEF-IP tasks grew during the ensuing years to include (formal) structure
recognition, patent text classification, and retrieval and classification of patent images. The
test collection was increased to account for the new tasks.

CLEF-IP provided datasets for teams to come and compete in Information Retrieval
techniques and methodologies to discover the most efficient ones and drive forward this
specific field of IR. Each dataset included patent documents. The concept of a patent can be
defined as follows: "A patent is a set of exclusive legal rights for the use and exploitation
of an invention in exchange for its public disclosure". A patent is a set of legal documents
by which a governing authority, through its patent office, grants a set of exclusive rights
for exploitation [of the invention] for a limited number of years, usually 20 [13].

5.2 Data set figures

The CLEF-IP data set used in this dissertation contained patent documents in English,
French and German language. It was the collection distributed by CLEF-IP lab in 2011.
Its size is approximately 16gb (gigabytes), it contains a total of 1,768,641 files which are
patent documents and these are divided into 100 folders. The patent documents follow
TREC XML format, an example of this format can be seen in the figure below.

26

Figure 6. Patent document example [7]

In this format the beginning and ending of the document are denoted by <DOC> and
</DOC> respectively. DOCNO opening and closing tags contain the document’s unique
identifier. <TEXT> and </TEXT> represent the start and end of documents text fields.
The rest of fields are self-explanatory and represent different fields of the patent document
like ABSTRACT tags contain the patent’s abstract text.

Additionally, a set of 300 topics/queries was used to test against the indexes created. The
results were then compared to a QRELS files to determine the effectiveness of the query
results. A QRELS file includes the patent documents that should be returned when running
the aforementioned queries/topics.

27

6. Experimental procedures

For the purposes of this dissertation, the author developed a large number of scripts and
programs, that were executed numerous times for the experiments needed to determine the
most efficient algorithmic method for patent retrieval.

6.1 Progressive experimenting

Firstly, the author analyzed DeepCT use and how it’s predictions could be further improved.
One stage that could be improved is the training of the word model. To work with DeepCT,
it must be provided with a file containing all document data and important words of each
document in a single file, with each line representing a single document in a format that
can be seen below:

{"query": "channel supply degradingexcess zone pipe dissipation

16 transfer located.the heat increased rate steam range.the

vapor cross initially", "term_recall": {"channel": 1, "supply

": 1, "degradingexcess": 1, "zone": 1, "pipe": 1, "

dissipation": 1, "16": 1, "transfer": 1, "located.the": 1, "

heat": 1, "increased": 1, "rate": 1, "steam": 1, "range.the":

1, "vapor": 1, "cross": 1, "initially": 1}, "doc": {"

position": "1", "id": "EP-0000001","title": "The invention

relates to a thermal heat pump consisting of a heat pipe (11)

in which the steam passage (16) between the heat transfer

zone for heat supply and the heat transfer zone for heat

dissipation steam channel (16) initially changing over its

length, the flow rate of the steam initially increasing and

then degradingExcess cross-section and wherein in the region

of the increased vapor rate, another heat transfer zone with

heat supply or removal is located.The increased steam

velocity can be in the column range or in the transition

range.The cross-sectional change of the vapor channel (16) in

the heat pipe (11) between the two outer heat transfer zones

is advantageously effected by a displacement body (13) with

a certain surface contour." }}

Listing 6.1. Code block: Docterm_recall helper file

We will from now on refer to this helper file as the docterm_recall file as per the example

28

data file provided in DeepCT’s repository.

At this stage, several observations and experiments were made. There were many questions
on how to build the file for this patent document data collection. Questions such as what the
query should be, what the title should be, which words can be included in the term_recall

object and if their value needs to be "1" or if it can be weighted using a custom weighting
procedure.

These questions where mainly answered by looking through the source code of DeepCT.
The author deducted that the title field should contain text that briefly describes the patent
and for this purpose, the description and the abstract were chosen as the most suitable
fields. As the limit for the title field size was 128 characters, the first 128 characters of
the abstract or description were selected for each document, unless the whole content
fitted. Additionally, the query field was filled with the most important words in each patent
document. The importance of each word was determined by the TF-IDF score of each
word. After each word’s TF-IDF score was calculated for each corresponding document,
an average score was found and each word that had a score larger than the average was
used to fill the query field for each document. Finally, the term_recall field was filled with
the words used in the query and their TF-IDF scores as values.

A term weighting algorithm was selected for estimating the importance of each word
in any patent document. The algorithm that was picked was TF-IDF (Term Frequency -
Inverse Document Frequency). In the corresponding chapter of this dissertation, the author
explains how TF-IDF was chosen over other algorithms.

As for the technical aspect of this process, to reach this point of using the TF-IDF scores of
a specific field from every patent to create the docterm_recall file, starting from the XML
patent document files explained above and visualised in Figure 6, a collection of scripts
needed to be created and the process needed to be streamlined. Specifically, a Python
script was developed, namely create-db.py to scan through all the documents, select the
needed fields and create an SQLite database of all the patents for a more convenient usage
afterwards. Subsequently, the author created a Python script (pyserini_tfIdf.py) that uses
Pyserini functions and the database created earlier, to calculate the TF-IDF scores of each
word for every document. These scores were then used to create the docterm_recall file
using the words for each patent that had a score larger than the average, as explained briefly
above. It should be noted that firstly the author create a Python script with a fully custom
TF-IDF calculation, however the execution time was very large and the Pyserini TF-IDF
functionalities were preferred instead.

29

Simultaneously, as the patent documents contained various fields such as Abstract, Claims,
Description, Applicant the author set out to find the most efficient fields, or combination
of fields, to use from the patent documents, keeping in mind two objectives: the most
accurate representative of the patent text and substance should be picked and the selection
must be smaller in size than the whole document text size. It is easily inferred that the
most accurate representation of a patent’s text is the whole text included in it, but this is
highly ineffective in terms of computational power needed and it is impossible to use with
some tools as there are limitations in the input size allowed.

After creating separate indexes with Pyserini, that were built by using different field input
variations, these indexes were compared side by side by running identical queries and
comparing the results. This process is further documented in the corresponding chapter of
this thesis (see more in Chapter 7). The field that was selected as the most suitable for the
experiments was the Description field.

The technical process of creating indexes using only Pyserini was the following. A python
script named pythonCreateInvertedIndexHelpFile.py that uses Pyserini functions and the
database created earlier with the create-db.py script to create a helper file that from now
on will be referred to as the jsonl file was developed and used. This helper file’s structure
will be further explained in the next sub-chapter and it is needed by Pyserini to create the
inverted index needed for these experiments. The author created indexes directly with
Pyserini as well as combined with DeepCT preprocessing and Pyserini subsequently and
all of those variations are used comparatively as it will be further explained earlier. The
indexes were created by executing Pyserini command line tools with the usage of the jsonl

file.

Nevertheless, for a more well rounded opinion and taking into account the fact that the
description field seems to be missing from a number of patent documents - as well as the
claims - the abstract field was also used to conduct experiments. These two experiments
helped the author make more safe assumptions about the effectiveness of the methods and
techniques used for effective Information Retrieval.

6.2 Helper files structure

There were several files created to help progress the experiments and use DeepCT and
Pyserini effectively. These files will be referred to by the author as helper files moving
forward. One file that was already mentioned is the docterm_recall file which is used for
the training of the word model with DeepCT and an example is listed above in Listing 6.1.

30

Similarly, for the prediction stage of DeepCT, the DeepCT executable needs to be provided
with a helper file containing lines for each document with each line carrying the IDs of
each patent document and the text included in the selected field from previous steps. For
example, the author used the description field as stated above, which was selected as the
most effective and representative field for each patent document. The ID and text of each
line were separated by a tab character and the extension of the document was tsv. This file
will from now on be referred to as edit.tsv file. An example is listed below.

EP-0000001 The invention relates to a thermal heat pump

consisting of a heat pipe (11) in which the steam passage (16)

between the heat transfer zone for heat supply and the heat

transfer zone for heat dissipation steam channel (16)

initially changing over its length, the flow rate of the

steam initially increasing and then degradingExcess cross-

section and wherein in the region of the increased vapor rate,

another heat transfer zone with heat supply or removal is

located.The increased steam velocity can be in the column

range or in the transition range.The cross-sectional change

of the vapor channel (16) in the heat pipe (11) between the

two outer heat transfer zones is advantageously effected by a

displacement body (13) with a certain surface contour.

EP-0000009 1. a process for the oxidation of quinine to

quininone and quinidinone by means of an oppenauer type

oxidation reaction, characterized in that said reaction is

carried out with a basic reagent known as "ketyl" resulting

from the direct action, on a diphenylketone, of an alcaline

metal in a solvent medium.

EP-0000010 1. a device for the temporary storage of coins of

various values before their further conveying into the

storage means of an automatic coin-freed machine for goods

vending or services and comprising a coin slot, characterised

in that a conveying screw (5) with a selector lever (19) is

connected in series with the coin slot (12), the selector

lever being selectively pivotal from a middle position in

which the inserted coins (m) of a payment operation are

retained at one end of the conveying screw (5), to either a

return position in which the coins (m) are released for

return, or an encashment position at which the coins (m) are

transferred to the other end of the conveying screw (5), from

which the coins (m) are delivered to down-stream storage

stacks.

Listing 6.2. Code block: Prediction edit.tsv helper file

31

Another helper file that was mentioned briefly previously is the jsonl file needed by Pyserini
to create the inverted index needed for the sake of our experiments. The format of this
is file is JSON-Line which translates to a json line for every patent document and all the
lines are included on the same file. That means that the file contains as many lines as the
documents that are included on the patent document collection. A part of the file as an
example is displayed below on Listing 6.3

Each line contains a JSON object containing the document identifier and the contents
that are provided to Pyserini, in this example it is the abstract field of each patent, the
description was also used for the experiments.

{"id": "EP-0000007", "contents":"The invention relates to a

method for the polymerization of alphaolefins as well as the

soli catalytic complexes of use for this polymerization and a

method for their preparation. The solid catalytic complexes

are prepared in fact react between: (1) at least one compound

selected from organic oxygen compounds and the halogenated

compounds of magnes SIUM; (2) at least one compound selected

from organic oxygen compounds and the halogenated compounds

of titanium; (3) At least one aluminum halide. The aluminum

halide is selected from the organoaluminous chlorides of

general formula A1RNC13-N wherein R is an alkyl radical

comprising at least 4 carbon atoms and n is a number such as

1 < N < 2. The polymerization method allows To obtain, with

very high catalytic activities, polyolefins whose percentage

of fine particles is reduced and whose average particle size

is higher."}

{"id": "EP-0000008", "contents":"a lifting device for lifting

and transferring a load, said device having a rigid carrier

arm (1) supporting load receiving means (2), and transfer

means (13, 12, 10, 9a, 9b, 8a, 8b, 7a, 7b, 6a, 6b, 5a, 5b)

for lateral movement of said carrier arm. in order to achieve

said movement of the carrier arm said transfer means

includes two symmetrically disposed transfer assemblies each

having a link member (5a; 5b) pivotably connected at a

separate end of the carrier arm (1) and a lever (6a; 6b)

pivotably connected at one end to the associated link member,

said lever being pivotably supported at its other end by a

pivot shaft (7a, 7b). said transfer means also includes drive

means (13, 12) and transmission means (9a, 9b, 8a, 8b) for

simultaneous pivoting the levers in opposite directions."}

32

{"id": "EP-0000009", "contents":"1. a process for the oxidation

of quinine to quininone and quinidinone by means of an

oppenauer type oxidation reaction, characterized in that said

reaction is carried out with a basic reagent known as ketyl

resulting from the direct action, on a diphenylketone, of an

alcaline metal in a solvent medium."}

Listing 6.3. Code block: Pyserini jsonl helper file

6.3 Technologies and tools used

Regarding the technologies, the tools or the technology stack used in this project, the most
significant were the ones needed for index creation and Information Retrieval, namely
DeepCT and Pyserini that have already been explained in detail earlier in this dissertation.
DeepCT also uses BERT models to function.

Additionally, for the custom scripts that were developed, the language of choice was Python
and more specifically, Python 3. Pyserini and DeepCT are also powered by Python and
have different packages and versioned dependencies that are needed for them to function.
A difficulty that occurred with the different dependencies was that these pieces of software
needed different versions of Tensorflow to work. These different versions of Tensorflow
also required different versions of Python which made switching back and forth difficult.
For this reason, Conda was used as a package and environment system, which allowed the
author to create and store two separate environments with different Python and packages
versions. These two environments can be easily installed on a new system and can be
switched to and from more conveniently.

Furthermore, the script that creates a database storing all documents and their selected
fields words, is utilising SQLite which is a simple library for databases based on the SQL
engine that stores databases in the user’s file system.

Finally, the experiments, code and environments are all uploaded to a public git repository
stored in Github. This allows for easy versioning and work between different systems.

6.4 Limitations of the technologies

One important limitation that was already mentioned is that the size of the title field on the
docterm_recall helper file should not exceed 128 characters that is needed for the DeepCT
training step. The parameter max_seq_length in thee source code defines the maximum

33

number of characters that can be be processed for every document by DeepCT.

As the patent documents contain various fields such as Abstract, Description, Claims,
Applicant some of which contain duplicate informations, for example Title and Description
and with the limitation of 128 the characters needed for representation of each document
for DeepCT training, the most valuable field in terms of information density needs to be
selected and extracted. For this purpose, the author executed some experiments to find the
most suitable field for this process. These experiments are further explained and presented
on the next chapter.

Furthermore, it must be noted that due to the sheer size of the document collection that was
used, the computational capacity as well as the memory capacity needed to be significant.
In order for a computer to be able to handle this large amount of data, an enormous amount
of data needed to be stored on the RAM memory, especially for a personal computer as the
one that was used for these experiments. Similarly, the amount of computational power
needed is non negligible as calculations between large floating point numbers and matrices
needed to be executed in the background.

The dataset contained approximately 1.7 million documents and for the training and
prediction - more importantly for the training - executed by DeepCT the execution time
needed was significantly large. For example training during the experiments for this
dissertation lasted many days, sometimes more than a week. It is very probable that using
a more powerful computer could have resulted in better execution times.

The biggest challenge in running these experiments was the computational power & simply
the amount of time needed to complete deep learning reinforced training with DeepCT.
Some of the test runs were run against a part of the collection, mainly on a one-fifth-sized
part of the data set. This was done in order to save time and these experiments should be
ran against the whole collection to further test the accuracy of the results and conclusion
of this dissertation.

As an example on how large the execution times of the experiments that included DeepCT,
a complete training of the word model with the following parameters: 3 epochs, 50,000
documents, 0.02 learning rate and a batch size of 16 took approximately 30 hours on the
author’s computer with the execution averaging 1.5 processed documents each second.

34

The computer that was used has the following specs: Intel Core i5-10400 2.9 GHz, 16GB
RAM, Ubuntu on Windows WSL2.

It should also be noted here that while the dataset contained the amount of documents
mentioned earlier, not all of them included every data field. On Chapter 7, "Fields
selection", there is a single field that was selected to be used as the representative text of
each patent document. This field was not contained on every document, but only on a part
of it, which makes the participating documents count smaller.

35

7. Fields selection

In order to select the most valuable field, in terms of information density, the author
executed some test runs. These included creating indexes containing only some fields with
the use of Pyserini, then running queries on these indexes and evaluating the results with a
Qrels file. The queries and the Qrels evaluation file are also used in subsquent experiments
in the following chapters.

The evaluation produced by using trec_eval various metrics which can be seen below on
Table 1.

Table 1. Field selection experiment results

Field GM_MAP Num_rel_-
ret

P_100 P_1000 iprec_at_-
recall_1.00

1 all fields 0.0132 1206 0.0213 0.0040 0.0111
2 abstract 0.0060 907 0.0148 0.0030 0.0055

3 claims 0.0049 961 0.0151 0.0032 0.0049

4 description 0.0088 1076 0.0190 0.0036 0.0068
5 title, abstract

& applicant
0.0068 963 0.0157 0.0032 0.0050

The metrics above have the following meanings: GM_MAP: Average Precision. Geometric
Mean, q_score=log(MAX(map,.00001))

Num rel ret: Total number of relevant documents retrieved over all queries

P100: Precision after 100 docs retrieved

P1000: Precision after 1000 docs retrieved

ircl_prn.1.00: Interpolated Recall - Precision Averages at 1.00 recall

The author inferred looking at the results, "all fields" and "description" produced the best
metrics. This seemed like a reasonable outcome if it was considered that using "all fields",
the index included every possible word contained in every document and this was naturally

36

bound to produce the best results. But the earlier mentioned character limit needed for
using DeepCT training and more importantly the fact that this wouldn’t be reasonable as it
was the whole content and not a represantation of the patent, made this option unsuitable
for this thesis’s experiments. On the other hand, "Description" was a more suitable field
that was much more possible to contain less than 128 characters and produced better results
than the rest of the fields, excluding "all fields".

Figure 7. Evaluation performance per field

As a result, description was the better suited field to represent each document. However,
the data set documents did not all contain this field and the final amount of documents that
did was approximately 240,000.

37

8. Weights creation algorithm

As it was explained in previous chapters, before running DeepCT training, the author used
a term weights creation algorithm. This was done in order to be used with deepCT training
and to enhance deepCT’s results with the term weight from this pre-processing procedure.

Initially, two algorithms were considered, namely TF-IDF and BM-25. TF-IDF, which
is short for Term Frequency / Inverted Document Frequency is used for calculating term
scores or weights within a document. Whereas, BM-25 is used mainly for document
ranking in relation to a search query. It uses an algorithm similar to TF-IDF internally but
it is more valuable in a different context than the one it is designed for.

Subsequently, considering that TF-IDF is a very well known and widely used algorithm
in the field of Information Retrieval and Computer Science in general and that it is a
simple and intuitive algorithm that is quite easy to implement on demand and finally there
are various implementations available in the open source space, this was the algorithm
that was selected for this purpose. It should be noted here that Pyserini already provides
developers with APIs (Application Programming Interfaces) to calculate the TF-IDF score
of documents.

Figure 8. Custom TF-IDF implementation

38

At first, the author implemented TF-IDF in a custom Python script leveraging the use of
an SQLite database, part of which can be seen in Figure 8. Although this script produced
the intended results, the execution time needed for TF-IDF scores estimation in this large
dataset, was immense and after comparison with Pyserini’s TF-IDF implementation, it was
decided that the latter was the most suitable tool for this task.

As a result, Pyserini’s TF-IDF implementation was used. In addition to this calculation, to
further enhance the final product and to make sure only important words were included
- keeping in mind the 128 character limit of DeepCT - another distinction was made. It
was decided that after calculating all words’ TF-IDF score and the average score for each
document word scores, only the words that had a TF-IDF score larger than the average
were kept and the rest of the words were discarded. Part of this implementation can be seen
in Figure 9. This process requires for a Pyserini Inverted Index to be created, to then be
used to get a document vector and to estimate TF-IDF scores of each word in the context
of the document it belongs to.

Figure 9. TF-IDF calculation & preservation

Finally, following the calculation of the TF-IDF scores of each word in the context of
each document, the selected words were used to create the aforementioned docterm_recall

39

helper file, that is then used for DeepCT’s training procedure. Additionally, the TF-IDF
scores help reinforce DeepCT’s deep learning algorithm and - in theory - produce more
accurate results. This can be better visualised by looking at Figure 10, where the floating
point numbers that can be seen correspond to the TF-IDF scores calculated earlier.

Figure 10. TF-IDF scores in docterm_recall helper file

40

9. Creating Indices with Pyserini

The indices created for the purposes of this thesis are variable in nature and the procedures
to create them differ in the tools used, preprocessing used and fields used but are all
ultimately created with Pyserini. Independently of which of the two distinct approaches
(which are explained thoroughly in Figure 14) was followed to create the index, the final
product (index) was produced through the use of Pyserini. In order to create the indices
the author created a jsonl helper file, which is presented with more detail in Chapter 6 and
more specifically in Listing 6.3.

After the creation of the jsonl helper file ensued which includes a json object in every
line, where each line contains the document identification number and the contents of the
document. The contents of the document in this case are the selected fields of each patent
document as described in previous chapters, particularly Chapter 7. This file can be used
with a Pyserini command line tool to then build an index. The command line prompt that
was used can be seen below.

python -m pyserini.index --input jsonl/<EXPERIMENT_NAME> --

collection JsonCollection --generator

DefaultLuceneDocumentGenerator --index indexes/<

EXPERIMENT_NAME> --stemmer=none --threads 1 --storePositions

--storeDocvectors --storeRaw

Listing 9.1. Command: Creating index with Pyserini

The final output of this process is a collection of files that represent the index which was
created and the file structure can be seen below in Figure 11.

The Pyserini indexes that were created directly from the document collection - without
any pre-processing - can be used the run queries and evaluate results. Similarly, with the
experiments that involved DeepCT training, the document collection is processed with
DeepCT, which is documented thoroughly in the next Chapter (Chapter 10). After this
processing and Deep Learning procedures are run, the end product is a jsonl file that can
be used with Pyserini to build indexes.

41

Figure 11. Index files

Finally, the aforementioned indices that refer to the same data set can respond to search
queries and allows us to compare and evaluate results from these different indices to reach
a conclusion on which method is more effective.

42

10. DeepCT indexing

In this chapter, the process of leveraging DeepCT’s capabilities to create more efficient
and accurate indexes is explained. This was a multi-step process and some of those steps
were explained briefly in the previous chapters.

It should be noted here that this process is documented in this dissertation as well as on
the author’s repository on Github that also contains all custom scripts developed for the
purposes of this dissertation.

Firstly, the document collection was processed and a database containing the words and
occurences of each word, along with the information of the documents these words were
found. The created database was fed to a custom script (pyserini_tfIdf.py) to calculate each
word’s TF-IDF score, accordingly for each document of the collection. These scores were
used to create the helper file needed for DeepCT training.

After creating the docterm_recall file with the usage of Pyserini and the custom scripts
developed by the author, the training of the word model took place. The training was done
by executing the following command:

python DeepCT-master/run_deepct.py --data_dir=output/<

EXPERIMENT_NAME>/train.docterm_recall --vocab_file=bert-base-

uncased/vocab.txt --bert_config_file=bert-base-uncased/

bert_config.json --init_checkpoint=bert-base-uncased/

bert_model.ckpt --output_dir=output/<EXPERIMENT_NAME>/train --

do_train=true --task_name=marcodoc --num_train_epochs=3.0 --

train_batch_size=16

Listing 10.1. Command: Training with DeepCT

The placeholder <EXPERIMENT_NAME> corresponds to each experiment, - correspond-
ing to different fields chosen to create the index with - done by the author, as these
were grouped in separate folders with the same structure inside. For the purposes of
this dissertation, the experiments were named in the following format: <LIMIT OF

DOCUMENTS>-<PATENT FIELDS USED>. The most important experiments include:
inf-abstract and inf-description which are the ones that the author basically focuses on.

As for the parameters defined in this command, data_dir defines the path of the docterm_-

43

recall helper file that contains the contents of the collection as explained before, vocab_file

and bert_config_file are provided to the pre-trained bert model that is used as a starting
point for this training. Additionally, the parameter init_checkpoint defines the word model
that DeepCT uses to train on, instead of starting from a blank basis, it leverages the
knowledge generated on this pre-trained word model. The output directory is defined
with the output_dir parameter, the do_train parameter simply declares that training is the
intended action in this context, the task_name defines the type of the documents processed
with DeepCT to create the pre-trained model. Marcodoc refers to the MS MARCO
collection of datasets focused on deep learning in search [14] . Lastly, num_train_epochs

describes the number of epochs or runs the deep learning model should do when being
trained and the train_batch_size defines the count of documents that are used in each batch
that is fed to the algorithm for the training. These last two parameters were decided after
experimentation with the same or smaller datasets, and with guidance from university staff.
Epoch means a set of complete available input dataset. Weights are analyzed to create a
model after each period. The weights are modified and tested again against the following
simulation cycle of the same dataset (called next epoch) [15].

Subsequently, the prediction stage that was based on the trained word model from the
previous step was executed using a command line command. Another helper file that is
needed by DeepCT, the edit.tsv file, was created by using a custom Python script developed
by the author as referred to before. The command used for prediction of the term weights
can be seen in the block below:

python DeepCT-master/run_deepct.py --task_name=marcotsvdoc --

do_train=false --do_eval=false --do_predict=true --data_dir=

output/<EXPERIMENT_NAME>/edit.tsv --vocab_file=bert-base-

uncased/vocab.txt --bert_config_file=bert-base-uncased/

bert_config.json --init_checkpoint=output/<EXPERIMENT_NAME>/

train/model.ckpt-0 --max_seq_length=128 --train_batch_size=16

--learning_rate=2e-5 --num_train_epochs=3.0 --output_dir=

output/<EXPERIMENT_NAME>/predict

Listing 10.2. Command: Predicting term weights with DeepCT

Looking into the parameters used in this command, some of them are already described
above, such as task_name, data_dir, vocab_file, bert_config_file. It should be noted that
the init_checkpoint is referring to the checkpoint generated by the training of the word
model previously, with the batch_size and the number of epochs being identical to the
training stage. Finally, some novel technical parameters seen here are max_seq_length

which defines the maximum number of characters that can be be processed for every
document by DeepCT and is set here to the maximum allowed number and learning_rate

44

refers to the pace at which the model learns new weights for the neural network during
training. Large Learning Rate produces a quick learning model with fewer epochs, but it
also produces weights that are not ideal. On the other side, a low Learning Rate causes the
model to learn slowly, but it also necessitates more training epochs and produces optimal
weights [16].

The final product of this process was the calculation of floating-point term weights for
every word and document accordingly, it can be seen on Figure 12 below.

Figure 12. Floating point term weights

Thereafter, these weights estimation of the previous step needed to be converted to tf-like
index weights. Another command line tool provided by DeepCT was used for this (bert_-

term_sample_to_json.py). By configuring the script to create an output in json format, a
jsonl file was created that was ready for use with Pyserini as explained in the previous
chapters, to create an inverted index for testing queries on.

Figure 13. Term weighting ready to use with Pyserini

As one can see on Figure 13 above, the jsonl file contains a json object for each line
of the patent document collection, while marking each important word by replicating it
accordinly to the word’s importance or term weight. This is estimated by the deep learning
algorithm’s prediction capabilities.

45

Finally, the jsonl file created previously was used with Pyserini command line tools to
create the index. This index then can be used to run queries on and subsequently these
queries can be tested for their accuracy to find the most effective indexing method. This
process is further explained on the next chapters. The Pyserini command needed to create
the index is listed in the Listing on the previous chapter.

46

11. Comparing indices

This chapter is focused on the comparison of the different indices that were created for
this dissertation. Some of these indices were created simply by using Pyserini on the data
collection that is mentioned throughout this documents.

Figure 14. Different approaches used

On the other hand, most of them were created by running a multi-step process that includes:

■ Term weighting - powered by TF-IDF calculation.

■ Preprocessing - it was done to include certain fields of the document

■ Word model training and prediction - these processes were executed with DeepCT.

■ Term weights conversion - with the use of another DeepCT function, term weights
were converted to be suitable to be fed into the Pyserini Index creation.

47

■ Index creation - the indices were created with the use of Pyserini

This complex process can be better visualised on Figure 14 above.

Folowing the creation of the indices, a set of 300 queries/topics were ran on them. After-
wards, the results of the query searches for each index are evaluated using a predetermined
set of expected results, which are included in the Qrels helper file, mentioned in previous
chapters.

Figure 15. Queries file & Qrels file

Several observations can be made by examining the results that are presented on Table 2
below. Indices that were passed through DeepCT produce better results on Mean Average
Precision (MAP), Precision@100 (Precision after 100 documents), Precision@1000 (simi-
lary, precision after 1000 documents) and Recall@1000. Generally, after some test runs
the number of epochs used for training and prediction seems to produce ideal results with
parameters set to the parameter values as suggested by DeepCT documentation. Surely,
the machine learning process is beneficial for every metric and the more appropriate the
parameters that word model is trained with, the better the predictions and results, generally
speaking.

48

Concerning the different learning rates that were used, and keeping in mind that DeepCT
examples used a learning rate of 2e-5(0.00002) or 5e-5(0.00005), we see that a much
larger learning rate - for example 2e-2(0.02), produces much worse results. By increasing
the learning rate, the model is taught to make bigger, rapid changes instead of small
adjustments and thus a smaller amount of epochs is required. It can be observed that
defining epochs in the range of 3 to 5 as our examples, the learning rate of 2e-5 (0.00002)
seems to be well suited for better results. Another test run with a learning rate smaller that
2e-5 and more epochs might be in the right direction moving the experiments forward.

Table 2. Querying evaluation of indices with common metrics

Index MAP P100 P1000 Recall1000

1 DeepCT, 3 epochs, 16 batch
size, learning rate 2e-5

0.0016 0.0014 0.0004 0.0504

2 DeepCT, 5 epochs, 16 batch
size, learning rate 2e-5

0.0002 0.0001 0 0.0033

3 DeepCT, 3 epochs, 16 batch
size, learning rate 2e-2

0.0002 0.0002 0 0.0036

4 DeepCT, 5 epochs, 16 batch
size, learning rate 2e-2

0.0004 0.0001 0 0.0045

5 Simple Pyserini 0.0014 0.0002 0 0.0036

It is safe to say that DeepCT pre-processing largely improved every index’s performance,
with a few exceptions that had not used ideal parameters.

Figure 16. Evaluation performance

As one can see on Table 2 and Table 3 Recall after 100 & 1000 documents as well as,

49

naturally, the absolute number of retrieved relevant documents on indices that involve
DeepCT processing is significantly higher than their counterparts. This can be further
visualised on Figure 16

Table 3. Querying evaluation of indices with common metrics

Index Queries Retrieved rele-
vant documents

Recall100

1 DeepCT, 3 epochs, 16 batch
size, learning rate 2e-5

300 119 0.0181

2 DeepCT, 5 epochs, 16 batch
size, learning rate 2e-5

300 5 0.0025

3 DeepCT, 3 epochs, 16 batch
size, learning rate 2e-2

300 5 0.0036

4 DeepCT, 5 epochs, 16 batch
size, learning rate 2e-2

300 6 0.0030

5 Simple Pyserini 300 5 0.0036

Regarding these three metrics, looking at Recall@100 & Recall@1000, the difference
between simple indices and DeepCT-processed indices seem to be significantly larger and
the difference on the number of Retrieved relevant documents, which is 119 versus 5,
appears to be very significant.

Figure 17. Evaluation performance

50

One could argue that this could make a large impact on patent retrieval which can largely
influence businesses looking for patents conflicting with theirs. Another thing to note,
is that "simple Pyserini" index appeared to perform well on one metric, Mean Average
Precision (MAP).

Naturally, more extensive experiments shall be executed to make safer assumptions and
conclusions.

51

12. Conclusion

This dissertation’s objective was to research determine whether improvement of patent
retrieval was possible using machine learning methods combined with traditionally used
indexing software such as Pyserini.

More particularly, the machine learning methods used were the ones that are involved in a
new software tool, using machine learning, DeepCT. DeepCT is based on Google’s BERT
word model and uses deep learning methods to make better sense of input text.

Some very important concepts are introduced and summarized for the reader to grasp the
context of this research piece. Concepts like Information Retrieval, Artificial Intelligence,
Machine Learning and Deep Learning, trained deep models are presented among others.
Additionally, detailed information is provided by the author about the data, procedular
details of the experiments and the parts of the data set that were used as well as exploration
of weight creating algorithm were documented.

In this case, a data set containing hundreds of thousands of patent documents was used,
namely the CLEF-IP dataset. After commencing running several experiments that included
index creation with the use of machine learning methods, as well as simple index creation
without machine learning enhancement and many test runs that were focused on finding
the right parameters for running DeepCT procedures. These experiments produced as a
final result several indices that each one of them originated of and provided representation
of the same document collection.

Subsequently, it became apparent that DeepCT processing reinforced with TF-IDF term
weight calculation provides more value on created indices, as opposed to indices that were
created without any pre-processing, with only Pyserini index build. These observations
were made on various different indices that the same queries/topics were ran on them as a
baseline. Additionally, the query results of all the different indices were evaluated using a
Qrels file with "expected" results, to further define which index performed better or not.

52

Finally, detailed experiment results are documented against the same baselines that provide
the research with a way forward after careful interpretation. It is clear that Deep Learning
can enhance term weighting and more importantly, Information Retrieval and in this case
study, Patent Retrieval. Further and more thorough experiments and test runs shall be
executed for researchers to make conclusions to a greater extend and crucially optimize the
use of various tools like the ones discussed in this dissertation for the greater advancement
of Information Retrieval.

53

13. Future research and work

In regards to how the presented research should be enhanced and expanded, there is one
key aspect that can be improved and can provide us with safer and more accurate results.
These test runs need to be run on the full dataset which requires for the use of a higher
capacity computer with larger computational power and size of memory.

Several of the experiments were run on a part of the document collection, a part that
contained approximately one fifth of the total data set. Being able to run the same
experiments on the whole document collection would provide this research piece with
much more confidence on the results and the observations that were made based on those
results.

Moreover, TF-IDF was used in these test runs that involved DeepCT, as an extra way to
further enhance the results. Continuing with this research, more term weighting algorithms
should be considered and tested as alternatives to the TF-IDF algorithm, to determine if
this part of the process can become more effective.

54

References

[1] Ehsan Nowroozi. “Introduction to new methodologies and applications in informa-
tion retrieval indexing”. In: 2010 2nd International Conference on Mechanical and

Electronics Engineering (2010). DOI: 10.1109/icmee.2010.5558505.

[2] Ahmet Alkilinc and Ahmet Arslan. “A comparison of recent information retrieval
term-weighting models using ancient datasets”. In: 2018 International Conference

on Artificial Intelligence and Data Processing (IDAP) (2018). DOI: 10.1109/
idap.2018.8620857.

[3] K. R. Chowdhary and V. S. Bansal. “Information retrieval using probability and
belief theory”. In: 2011 International Conference on Emerging Trends in Networks

and Computer Communications (ETNCC) (2011). DOI: 10.1109/etncc.2011.
5958513.

[4] Nina Wacholder. “Interactive query formulation”. In: Annual Review of Information

Science and Technology 45.1 (2011), pp. 157–196. DOI: 10.1002/aris.2011.
1440450111.

[5] AI vs. Machine Learning vs. Deep Learning vs. neural networks: What’s the dif-

ference? URL: https://www.ibm.com/cloud/blog/ai-vs-machine-
learning-vs-deep-learning-vs-neural-networks.

[6] Pariwat Ongsulee. “Artificial Intelligence, Machine Learning and deep learning”. In:
2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE)

(2017). DOI: 10.1109/ictke.2017.8259629.

[7] Peng Shengguang. “Overview of meta-reinforcement learning research”. In: 2020

2nd International Conference on Information Technology and Computer Application

(ITCA) (2020). DOI: 10.1109/itca52113.2020.00019.

[8] By: IBM Cloud Education. What are neural networks? URL: https://www.ibm.
com/cloud/learn/neural-networks.

[9] Zhuyun Dai and Jamie Callan. “Context-Aware Sentence/Passage Term Importance
Estimation For First Stage Retrieval”. In: . In Proceedings of ACM Conference

(2019). DOI: 1910.10687.

[10] Jacob Devlin et al. Bert: Pre-training of deep bidirectional Transformers for lan-

guage understanding. 2019. URL: https://arxiv.org/abs/1810.04805.

55

https://doi.org/10.1109/icmee.2010.5558505
https://doi.org/10.1109/idap.2018.8620857
https://doi.org/10.1109/idap.2018.8620857
https://doi.org/10.1109/etncc.2011.5958513
https://doi.org/10.1109/etncc.2011.5958513
https://doi.org/10.1002/aris.2011.1440450111
https://doi.org/10.1002/aris.2011.1440450111
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://doi.org/10.1109/ictke.2017.8259629
https://doi.org/10.1109/itca52113.2020.00019
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://doi.org/1910.10687
https://arxiv.org/abs/1810.04805

[11] Dai Zhuyun. Adedzy/DeepCT: Deepct and HDCT uses Bert to generate novel,

context-aware bag-of-words term weights for documents and queries. Jan. 2020.
URL: https://github.com/AdeDZY/DeepCT.

[12] Florina Piroi and Allan Hanbury. “Multilingual patent text retrieval evaluation:
CLEF–IP”. In: Information Retrieval Evaluation in a Changing World (2019),
pp. 365–387. DOI: 10.1007/978-3-030-22948-1_15.

[13] Information management and preservation. URL: http://www.ifs.tuwien.
ac.at/~clef-ip/index.html.

[14] MS marco. URL: https://microsoft.github.io/msmarco/.

[15] Ochin Sharma. “Deep challenges associated with Deep Learning”. In: 2019 Interna-

tional Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COMITCon) (2019). DOI: 10.1109/comitcon.2019.8862453.

[16] Anusha Chamarty. “Fine-tuning of learning rate for improvement of object detection
accuracy”. In: 2020 IEEE India Council International Subsections Conference

(INDISCON) (2020). DOI: 10.1109/indiscon50162.2020.00038.

56

https://github.com/AdeDZY/DeepCT
https://doi.org/10.1007/978-3-030-22948-1_15
http://www.ifs.tuwien.ac.at/~clef-ip/index.html
http://www.ifs.tuwien.ac.at/~clef-ip/index.html
https://microsoft.github.io/msmarco/
https://doi.org/10.1109/comitcon.2019.8862453
https://doi.org/10.1109/indiscon50162.2020.00038

57

	Introduction
	Introduction to Information Retrieval
	Definition of Information Retrieval
	IR methodology
	Indexing
	Query Formulation
	Matching
	Re-ranking

	IR in everyday life

	Artificial Intelligence, Machine Learning and Deep Learning
	Artificial Intelligence
	Machine Learning
	Neural Networks

	Deep Learning
	Pre-trained deep models

	Introducing BERT and deepCT
	BERT
	DeepCT
	DeepCT hands-on and its importance in this thesis

	Structure and background of the data set used
	CLEF-IP
	Data set figures

	Experimental procedures
	Progressive experimenting
	Helper files structure
	Technologies and tools used
	Limitations of the technologies

	Fields selection
	Weights creation algorithm
	Creating Indices with Pyserini
	DeepCT indexing
	Comparing indices
	Conclusion
	Future research and work
	References

