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ABSTRACT 

Algal blooms constitute one of the most important en-

vironmental phenomena in coastal areas; particularly if 

these blooms contain potential toxic algae populations. As 

Dinophysis spp. had been recorded in low population den-

sities, all over the year in Thermaikos Gulf, a mathematical 

model was developed to simulate critical conditions for 

the appearance of an algal bloom episode and the popula-

tion’s dispersion in space and time. The model is consti-

tuted from two parts, a mechanical which computes the 

hydrodynamics and the matter transfer of the investigated 

area as well as a biological part which computes the cells 

growth rate and the cells decay.  

The application of the model simulations were based 

on: (a) different starting population densities, (b) different 

positions in the Gulf as sources of initial population, (c) 

different wind direction and speed. 

The results show that population densities above a 

number of 500-1000 cells/L with mean wind speed of 5 m/ 

sec and low grazing rates may regulate the appearance of 

a HAB in Thermaikos Gulf. The dispersion of algae popu-

lation was finally found to be regulated by wind velocity, 

filter feeder’s abundance.  

It was found that if an episode starts in the inner part 

of the Gulf, under the influence of the prevailing north 

and south winds over the area of the Gulf, the population 

hardly reaches to the outer part of the Gulf, while an epi-

sode in the outer area of the Gulf leads to a variety of pat-

tern dispersions depending on the different wind conditions.  
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INTRODUCTION 

Thermaikos Gulf (NW Aegean Sea, Greece) is a semi-

enclosed and eutrophic area, receiving high nutrient inputs 

from rivers, urban and industrial runoff [1]. The shellfish 

farming activity, especially in the NW area of the gulf, 

reaches 85% of the total Greek production [2]. As primary 

producers respond to increased nutrient loads increasing 

their production, algal blooms constitute one of the most 

important environmental phenomena in coastal areas; par-

ticularly if these blooms contain potential toxic algal popu-

lations. 

Since 2000, harmful algal blooms (HABs) have been 

recorded repeatedly in Thermaikos Gulf and the causative 

organisms have been identified as Dinophysis acuminata, 

Prorocentrum micans, P. dentatum, Gymnodinium sp., 

Scrippsiella trochoidea, and Noctiluca scintillans. One of the 

most serious HAB events was recorded during the winter 

of 2000, when D. acuminata reached 8.5·10
4
 cells L

-1
 [3, 

4]. Species belonging to the genus Dinophysis produce 

toxins consisting mostly of okadaic acid (OA) and/or dino-

physistoxin-1 (DTX-1) [5]. The human consumption of 

toxin-contaminated shellfish causes gastrointestinal symp-

toms known in literature as Diarrhetic Shellfish Poison 

(DSP) [6]. Due to this reason, during HABs, the har-

vest in mussel cultures is not allowed, causing a substan-

tial socio-economic impact in the area. 

Hence, it is obvious that HABs represent a serious and 

widespread threat to marine ecosystems, fishery resources 

and human health. There is, therefore, a need to understand 

better their population dynamics in order to improve our 

capability to predict and manage these episodes. In this 

effort, the study of the involved physical and biological in-

teractions may play a particular and important role [7, 8]. 

As living cysts and low population densities of Dino-

physis sp were found in the whole area of the Gulf, all 

over the year [9, 10], a mathematical model was developed 

to simulate critical conditions for the appearance of an algal 

bloom episode and the population’s dispersion in space 

within a short time period (7 days). 
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MATERIALS AND METHODS 

MODEL DESCRIPTION 

A 2D-depth averaged hydrodynamic mathematical 

model coupled with a transport model is applied for the 

description of the algal dispersion in the Thermaikos basin.  
 

According to the principles of mass and momentum 

conservation, the hydrodynamic model is based on the 

following equations [11]: 
 

                                                               
 

 

 
                                  ,                                                        
 
 
 
 

where, h is the depth of the water column, U & V the 

vertically averaged horizontal current velocities, ζ is the 

surface elevation, f the Coriollis parameter, τsx & τsy the 

wind surface shear stresses and τbx & τby the bottom shear 

stresses, νh is the dispersion coefficient, ρ the seawater 

density. and g the gravity acceleration. 
 

The study area was discretized with a grid of 41×42 

cells. The spatial step was dx = 1 nm (1852 m) while the 

time step was dt = 20 s.  
 

Concerning the transport model, the horizontal posi-

tions of the particles are computed from the superposition 

of the deterministic and stochastic displacements, accord-

ing to the following relationships:  
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displacement for x-axis with u 
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n

) the determinis-

tic velocity at time t 
n 

at the location x
n

i  of the i particle 

and u 
n

i ΄ the random (stochastic) horizontal velocities at 

time t
n 

at the location xi, with u 

n

i ΄= dtDh /6 , Dh  is the 

horizontal sediment diffusion coefficient and rnd is a 

random variable distributed uniformly between -1 and +1. 

Similar relationships are considered, respectively, for the 

velocities on y-axis. The spatial particle distribution result-

ing from the above process can then lead to the computa-

tion of particle concentrations, relative to the number of 

particles in each grid box. 

 

Each one of the above particles is considered to be a 

Dinophysis spp. cell following exponential growth: 

N = N0 e
µ
, 

 

where N0 is the starting population and µ is the net 

growth rate, usually limited by temperature, light, nutri-

ents, predation, competition and sinking [12-14]. 
 

In this simulation, we take into account the following 

two assumptions coming from literature: 

a) Although cell abundance in the peak of the blooms 

exceeds the number of 10
4
 cells L

-1
, a minimum of 0.5 - 

1.2 ·10
3
 cells L

-1
 is a threshold for restrictions in fisheries 

[7]. So, in our model, a number of 2,000 cells of Dinophy-

sis spp are considered to be the minimum population for 

the starting of a bloom episode.  

b) In almost all the studies, before a bloom episode, 

Dinophysis cell abundance is usually less than 200 cells 

L
-1

. For this reason, we consider, in this simulation, No = 

150 cells L
-1

. 
 

Concerning the application of the model, we consider 

a) two different positions for the starting point, the first 

one, position A, in the inner part of the gulf, and the sec-

ond one, position B, in the outer gulf as depicted in Fig. 1, 

and b) simulation time of 7 days.    
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FIGURE 1 - Thermaikos Gulf, Greece. A and B are the starting 

points of the simulation, A is the area close to the harbor of Thessa-

loniki, M1, M2 and M3 are mussel cultures areas. 

 

 

RESULTS AND DISCUSSION 

Model simulation started with low phytoplankton net 

growth rate (0.3 div day
-1

). HAB episodes appeared when 

net growth rate takes values close to 1.0 div day
-1

.
 
 

For the inner part of the Gulf (point A), we consider 

4 cases of different wind speed (2, 5, 7 and 10 m/s ) and 
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4 cases for the most frequent wind directions N, NW, S, 

and SE [15]. Figure 2 depicts the computer outcomes for 

the simulation of a 7-days time period, under the influ-

ence of N winds. It is shown that the appearance of a 

bloom is favored by low wind velocities (Figs. 2a and b). 

As wind velocities increase, population density decreases 

while the spread of dispersion increases. With wind speed 

higher than 5 m/s, high population densities could be ob-

served in the whole area of the inner part of the gulf (Figs. 

2 c and d) with maximum population densities close to 

2300 cells L
-1

; in such cases, the transfer of large amount 

of Dinophysis spp cells close to shellfish cultures could be 

expected (M1 in Fig. 1).  

NW winds show similar patterns with N winds con-

cerning the maximum growth rate and the population 

density of phytoplankton, but they differ in the way they 

influence its dispersion. While N and NW winds with 

speed 2 m/s show similar patterns of dispersion (Fig. 3a), 

a quite different pattern appeared when their velocity 

reaches the value of 5 m/s (Figs. 1b and 2b). Further 

more, winds with speed higher than 5 m/s may force large 

amount of the algal population, close to the mussel cul-

tures area M1 in a 7-days period (Figs. 3 c and d). 
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c)            d) 
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FIGURE 2 - The concentrations of algae (cells L-1) a week after the bloom in position A  

under the influence of N wind with speed a)  2 m/s, b) 5 m/s, c) 7 m/s, and d) 10 m/s. 
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a)          b) 
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c) d) 
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FIGURE 3 - The concentrations of algae (cells L-1) a week after the bloom in position A  

under the influence of NW wind with speed a)  2 m/s, b) 5 m/s, c) 7 m/s,and d) 10 m/s. 
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In such cases, phytoplankton cells are dispersed in the 

whole area of the inner part of Thermaikos Gulf.  

South-east winds cause the most serious HAB ap-

pearance, meaning that in all cases phytoplankton popula-

tion overcomes the critical value of 2000 cells L
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 (Figs. 5 
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ern areas of the harbor (Figs. 5a, b). Winds with speed 
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with a net growth rate close to 1.0 div/day even if starting 

population has low values (less than 200 cells L
-1

). Fur-

thermore, the dispersion of the HAB is affected by the 

winds’ velocity [16] which plays a very important role to 

the pattern of circulation in a basin. The role of eddies (as 

a characteristic element of the hydrodynamic circulation) 

on the appearance of HAB coastal events is reported by 

Xie et al. [17]. More generally, it is well-known that mat-

ter transfer is closely related with the hydrodynamics in a 

coastal basin [18, 19]. 

When the source is located at the position B in the 

outer Gulf (northwest of the Epanomi coasts), in almost 

all cases with a net growth rate close to 1.0 div day
-1

, only 

winds with very low speed (2 m/s) can favour the appear-

ance of a HAB episode. With higher winds’ speed a HAB 

can occur only when net growth rate take values higher 

than 1.3 div day
-1

. 

 

 

 
a)       b) 

 

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000

   5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300

 
 
 

 

c)       d) 
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FIGURE 4 - The concentrations of algae (cells L-1) a week after the bloom in position A  

under the influence of S wind with speed a)  2 m/s, b) 5 m/s, c) 7 m/s, and d) 10 m/s. 

South Wind with 

speed 

7 m/s 

 

South Wind with 

speed 

10 m/s 

 

South Wind  

with speed 

5 m/s 

 

South Wind  

with speed 

2 m/s 

 

cells· l-1 

cells · l-1 

cells · l-1 

cells · l-1 



© by PSP Volume 19 – No 9b. 2010   Fresenius Environmental Bulletin    

 

 

2105 
  

 
 

a)       b) 

 

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

6500
7000

7500
8000

8500
9000

9500
10000

10500
11000

11500
12000

   5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

 
 
 
 

c)       d) 
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FIGURE 5 - The concentrations of algae (cells L-1) a week after the bloom in position A  

under the influence of SE wind with speed a)  2 m/s, b) 5 m/s, c) 7 m/s, and d) 10 m/s. 
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c) d) 

d)  
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FIGURE 6 - The concentrations of algae (cells L-1) a week after the bloom in position B 

under the influence of N wind with speed a)  2 m/s, b) 5 m/s, c) 7 m/s, and d) 10 m/s. 
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a)                                     b) 
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c)                                     d) 
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FIGURE 7 - The concentrations of algae (cells L-1) a week after the bloom in position B under the influence of S wind with speed a)  2 m/s, b) 

5 m/s, c) 7 m/s, and d) 10 m/s. 

 
 
 

CONCLUSIONS 

As dinoflagellate maximum growth rate shows an an-

nually spatial and temporal variation in Thermaikos Gulf 

with a range of 0.09-2.1 divisions day
-1 

[12, 13], the pre-

sent analysis shows that: 

 
(A) For the case of the algal bloom in the Inner Thermaikos 
Gulf 

1. A Dinophysis spp outbreak is possible to start with 

low population (150 cells L
-1

) and a net growth rate close 

to 1.0 div·day
-1

, in a short time period (6-7 days).  

2. The wind speed and direction play an important 

role for an algal bloom appearance and its dispersion. S 

and SE winds with speed 2-5 m/s can cause higher cell 

concentrations than N and NW winds with the same speed 

(Fig. 2-5 a and b). 

3. When the source is close to position A, the disper-

sion of the bloom in the outer part of the Gulf is rather rear. 

 
(B) For the case of the algal bloom in Outer Thermaikos Gulf 

1.  An algal bloom may appear only when wind speed 

is low (~2 m/s) (Figs. 6 and 7). 

2. S winds may cause dispersion of phytoplankton 

cells in the inner Gulf. 

The geographical characteristics of the starting posi-

tion may play an important role for the appearance and 

South Wind with 

speed 

2 m/s 

 

South Wind with 

speed 

5 m/s 

 

South Wind 

with speed 

7 m/s 

 

South Wind 

with speed 

10 m/s 

 

 
cel

ls·l-1 

cel cel

ls·l-1 

cells·l-1 
 



© by PSP Volume 19 – No 9b. 2010   Fresenius Environmental Bulletin    

 

 

2108 
  

the dispersion of a bloom as winds with the same speed 

give different patterns of dispersion and different phyto-

plankton abundance in places A and B (Figs. 2 - 6). 

As the maximum growth rate exceeds the threshold of 

1.0 divisions day
-1

, more than 200 days annually [12, 13] 

grazing, competition and sinking may also play an impor-

tant role in the regulation of algal populations. In such 

cases, the model seems to be a useful tool for restrictions 

if high cell concentrations are forced close to mussel cul-

tures.   
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