Journal of Biomedical Informatics 45 (2012) 495-506

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Contents lists available at SciVerse ScienceDirect

Knowledge engineering for adverse drug event prevention: On the design and
development of a uniform, contextualized and sustainable
knowledge-based framework

Vassilis Koutkias **, Vassilis Kilintzis %, George Stalidis?, Katerina Lazou?, Julie Niés >,
Ludovic Durand-Texte 9, Peter McNair ¢, Régis Beuscart ¢, Nicos Maglaveras ?

2 Lab of Medical Informatics, Medical School, Aristotle University, Thessaloniki, Greece

> MEDASYS, Gif-Sur-Yvette, France
€Lille University Hospital, EA2694, France
dVIDAL, Issy les Moulineaux, France

€ Region Hovedstaden & Kennedy Center, Copenhagen, Denmark

ARTICLE INFO

ABSTRACT

Article history:

Received 22 July 2011

Accepted 12 January 2012
Available online 2 February 2012

Keywords:

Adverse drug event (ADE) prevention
Patient safety

Knowledge engineering
Knowledge-based framework
Contextualization

Clinical Decision Support System (CDSS)

The primary aim of this work was the development of a uniform, contextualized and sustainable knowl-
edge-based framework to support adverse drug event (ADE) prevention via Clinical Decision Support Sys-
tems (CDSSs). In this regard, the employed methodology involved first the systematic analysis and
formalization of the knowledge sources elaborated in the scope of this work, through which an applica-
tion-specific knowledge model has been defined. The entire framework architecture has been then spec-
ified and implemented by adopting Computer Interpretable Guidelines (CIGs) as the knowledge
engineering formalism for its construction. The framework integrates diverse and dynamic knowledge
sources in the form of rule-based ADE signals, all under a uniform Knowledge Base (KB) structure, accord-
ing to the defined knowledge model. Equally important, it employs the means to contextualize the encap-
sulated knowledge, in order to provide appropriate support considering the specific local environment
(hospital, medical department, language, etc.), as well as the mechanisms for knowledge querying, infer-
ence, sharing, and management. In this paper, we present thoroughly the establishment of the proposed
knowledge framework by presenting the employed methodology and the results obtained as regards
implementation, performance and validation aspects that highlight its applicability and virtue in medi-

cation safety.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Adverse drug events (ADEs) constitute a major public health is-
sue endangering patients’ safety and causing considerable extra
healthcare costs [1]. An ADE is typically defined as “an injury
due to medication management rather than the underlying condi-
tion of the patient” [2]. ADEs are classified as preventable and non
preventable [3]; preventable ADEs are assimilated to “medication
errors” [4], while non preventable ADEs are considered adverse
drug reactions (ADRs) that could not be avoided [5].

A major challenge in research on ADEs and adverse events in
general involves their identification and prevention [6]. Towards
this aim, the potential of Information Technology (IT) tools and
techniques has been highlighted in various studies [7,8]. In partic-
ular, major focus of IT-based research on ADEs has been the
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automatic or semi-automatic identification of ADEs by employing
machine learning and statistical inference techniques applied to
patient data repositories [3,9-13], e.g. Electronic Health Records
(EHRs). Besides statistical methods, knowledge-based approaches
have been also employed for the identification of ADEs, e.g. based
on ontologies [14], formal concept analysis [15], intelligent agents
[16], and Semantic Web technologies [17].

In this regard, studies have been initially concentrated on the
development of IT tools capable of providing evidence on the origin
of ADEs, following typically experts review evaluation of the ob-
tained results [9]. These outcomes were foreseen to constitute
the basis for introducing/advancing the decision support function-
alities on ADEs offered by clinical information systems, such as
Computerized Physician Order Entry (CPOE) systems [18]. How-
ever, the majority of the proposed approaches have not elaborated
further towards the incorporation of the ADE signals identified into
actual Clinical Decision Support Systems (CDSSs) capable of inter-
operating with clinical information systems, e.g. CPOEs and EHRs.
As more mature evidence on ADEs’ prevalence is gained, the focus
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of IT research has been attracted by the incorporation of the iden-
tified ADE signals into sophisticated knowledge-based models for
automatic ADE prevention. For example, Rommers et al. presented
an ADE alerting system that consolidates clinical rules (formulated
by a multidisciplinary experts team based on seven risk categories)
to construct a Computer Interpretable Guideline (CIG) based deci-
sion support framework [19]. A total of 121 clinical rules were de-
fined by the experts via the analysis of the Dutch national
formulary and local medical reference books to identify drugs or
drug classes suitable for use. Del Fiol et al. proposed a Knowledge
Base (KB) incorporating 207 rules related to drug-drug interactions
[20]. Major emphasis in this work has been given on the knowl-
edge management potential for the end-users and on connectivity
aspects of the proposed system with hospital information systems.
In addition, aiming to reduce medical errors within hospitals, a
prototype intelligent assistant has been presented by Payne and
Metzler [21], following an ontology-based approach. The ontology
encapsulates hospital care concepts including activities, proce-
dures and policies, as well as medical knowledge, and is particu-
larly designed to track the implications of medical decisions
taken by health professionals within the context of guidelines/reg-
ulations of the medical environment, and the established medical
knowledge.

Although significant progress has been made in both ADE iden-
tification and prevention, the efficiency of the results obtained by
the proposed methods so far is still questionable due to the follow-
ing major obstacles: (a) the lack of reliable knowledge about ADEs,
and (b) the poor ability of IT solutions to deliver contextualized
knowledge appropriate for each case [22,23]. Moreover, some
studies concluded that over alerting may result in alert fatigue
and alert overriding by the end-users [24,18], with major risk
important alerts be overridden along with unimportant ones, thus,
compromising patient safety.

Motivated by the above challenges [25], this paper presents a
knowledge engineering framework that has been constructed aim-
ing to represent and manage various ADE signals, with major focus
on novel rule-based signals obtained through knowledge discovery
techniques, and validated by following a knowledge elicitation
phase [26]. Knowledge engineering constitutes the discipline that
elaborates on the theories, methods and tools for developing
knowledge-intensive applications [27-29]. In the scope of this
work, knowledge engineering tasks involved first the systematic
analysis of the relevant knowledge sources, resulting in the con-
struction of a knowledge model and the selection of the appropri-
ate knowledge engineering formalism. The model was employed to
develop a relevant KB, i.e. the core component of the framework,
encapsulating the abovementioned signals that are provided in
the form of rules. The framework incorporates mechanisms for
knowledge sharing, exploitation and management, as well as the
appropriate inference component, all integrated within a uniform
and sustainable architecture. In addition, the framework has been
designed to constitute the basis for the construction of contextuali-
zed CDSS modules for ADE prevention, in order to contribute in the
delivery of localized support services per clinical setting (hospital,
clinical department, etc.), advancing the decision support impact
and eliminating potential over alerting.

In this paper, we present thoroughly the establishment of the
proposed framework. Specifically, Section 2 presents the employed
methodology in terms of the elaborated knowledge sources, the
constructed knowledge model, the employed knowledge engineer-
ing formalism, the architecture of the framework, as well as its
underlying reasoning scheme. Section 3 presents the results ob-
tained as regards the implementation of the respective Knowl-
edge-based System (KBS), along with performance and validation
aspects. Finally, the proposed approach and future research chal-
lenges are discussed in Section 4.

2. Material and methods
2.1. Knowledge sources

The current work focuses on the construction of a rule-based
knowledge framework, which is designed to support ADE preven-
tion through effective decision support delivered via alerts and rec-
ommendations to the clinical personnel. In particular, the
knowledge elaborated in the framework consists of production
rules [30], which are generally expressed in the form:

C; AND C, AND...AND C, — E, (1)

where Cy, G,,...,G, constitute the conditions of the rule, expressed
in a general atomic formulae of some accepted language (e.g. prop-
ositional logic, first order logic, etc.), and E is the conclusion, action
or decision. In the scope of this work, such rules correspond to ADE
signals, i.e. the E part denotes a potential ADE that typically corre-
sponds to a diagnosis or laboratory examination result along with
a recommendation for actions and information as regards the expla-
nation of the risk. The conditions C; correspond to: (a) groups of
drug codes expressed in the ATC (Anatomical Therapeutic Chemi-
cal) classification system, (b) groups of laboratory examination re-
sults expressed in C-NPU/IUPAC (Nomenclature, Properties and
Units/International Union of Pure and Applied Chemistry), (c)
groups of diagnosis codes encoded in ICD-10 (International Classifi-
cation of Diseases), or (d) patient parameters compared to numeri-
cal or categorical values, e.g. age and gender. Thus, the conditions C;
denote a special type of rules that we call “intermediate” (as these
are the building blocks for defining the ADE signals). As an example,
an intermediate rule defines the variable “Antibiotic” as the pres-
ence of any member of a set of ATC codes corresponding to individ-
ual antibiotic drugs. The exploitation of these ADE signals for
decision support is initiated by a drug-related procedure, such as
a new drug prescription, which triggers the rules’ assessment based
on the provided patient data.

The types and origin of the elaborated ADE signals are primar-
ily: (a) Association or decision-tree induced rules obtained by apply-
ing data-mining techniques on routinely collected patient records
of past hospitalizations from various hospitals across Europe
[26], according to a common data structure (specifically designed
for this analysis) [31], and validated by clinical experts [32].
Data-mining aimed at detecting atypical hospital stays and, subse-
quently, at extracting associations among drugs, hospitalization
parameters, patient parameters, diagnoses and observed effects.
(b) Drug interactions, e.g. drug to drug, drug to allergy class, drug
to laboratory examination result, drug to diagnosis, etc., that are al-
ready known and registered in pharmacovigilance KBs.

In addition, our research elaborated on knowledge sources such
as: (a) the literature, i.e. obtaining evidence from either similar sta-
tistical analysis performed on clinical data repositories or focused
drug-safety related studies [32]; (b) tacit knowledge [33], which
was primarily captured in the knowledge elicitation process in
which experts validated the data-mining originated rules based
on their experiences and specialties, and (c) human factors and clin-
ical procedures analysis, resulting in specifications as regards the lo-
gic according to which the ADE signals discovered should be
applied in practice for the particular domain context, as well as
in recommendations for the CDSS design and functionality [34].

Especially, for the data-mining originated rules, the importance
and applicability of each rule is determined based on its statistical
significance in the local context that is being triggered [22], i.e.
hospital or clinical department. Thus, statistical features for each
rule such as the confidence (probability of having the effect know-
ing that the conditions are met), the support (probability of having
the effect and matching the conditions at the same time), the
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Fisher test p-value, etc. for assessing its statistical significance con-
stitute rules’ “meta-data” that may be particularly used for contex-
tualization of rules [32]. In this regard, the proposed knowledge
framework incorporates a context-sensitive, “meta-rule” level,
which is employed to address rule ranking and determine the
applicability of ADE signals per patient and clinical setting. Thus,
meta-rules along with the contextualization perspective proposed
in this work advance the source knowledge obtained in the discov-
ery phase towards its effective use for decision support operation.

Besides the incorporation of statistical features, rules obtained
by applying data-mining techniques are able to associate more
complex patterns of conditions compared to the rules that are typ-
ically met in pharmacovigilance KBs. In the later case, the effects of
drug discontinuation may be ignored and additional conditions
that could specify more accurately the probability of the ADE
occurrence are not taken into account [26].

As an example, a data-mining originated rule is the following:

dr1.diuretics_potassiumLowering = 1
AND dil.urinary_retention = 0
AND dil .cardiovasc_hbloodpressure = 1
AND dil.endoc_diabetes = 0
AND dr1.agtConvInhib_agtAntag = 0
AND mil.age.quanti >= 70
AND di1.diag_hypovol_dehydr = 0
— bi.kidney i, (2)

which is translated in physical language as “Treatment with potas-
sium lowering diuretics & NO urinary retention & high blood pressure
& NO diabetes & NO treatment with angiotensin conversion enzyme
inhibitor & age > 70 & NO diseases at risk for hypovolemia may result
in renal failure”. In this case, the rule consists of seven conditions
with the first one being the condition/cause triggering the rule

Table 1
Statistical prevalence of the example rule described in (2).
Hospital Hospital = Hospital
1 2 3
Ratio: Number of patients meeting both 5/ 2/ 2/
the conditions and the effect/number 74=6.8% 6=33.3% 21=9.5%
of patients meeting the conditions
Fisher test p-value 0.0797 0.0047 0.7557

(a potential drug prescription), the next three referring to condi-
tions that are clinically associated with the effect, and the rest cor-
responding to conditions that, although not explicitly linked with
the outcome from a clinical viewpoint, appear to significantly in-
crease the probability of its occurrence. The effect of this rule con-
stitutes a laboratory examination result that is associated with
renal failure. All the conditions, apart from the condition that in-
volves the age, correspond to groups of either drug codes in ATC
classification or diagnosis codes in ICD-10 classification, being
either present (=1) or absent (=0) from the evaluated patient data.

From a clinical perspective, the above example rule describes
that there is a risk of renal failure, when a patient over 70 is pre-
scribed a potassium lowering diuretic for high blood pressure
(hypertension). Assessing this rule in three different hospitals par-
ticipating in the study, we obtained different risk levels according
to the considered clinical setting, as demonstrated from the statis-
tical features provided in Table 1. Thus, healthcare professionals
may not assess the risk in the same way in all hospitals, for exam-
ple in cardiology or surgery, or if they have to add another drug in
the treatment plan (another diuretic or an antibiotic modifying re-
nal function). In this regard, the alert aims to facilitate the optimi-
zation of the risk-benefit analysis taken into account by the
healthcare professionals for each patient, as it provides informa-
tion concerning the relative risk of the ADE, which is weighed by
the probability of occurrence. In our experience, this alert can have
two consequences: (a) Rarely, to change the medication and (b)
more often, to monitor more precisely and more adequately the
patient’s medical status, e.g. by better monitoring of uremia and
creatininemia, if renal failure occurs.

Fig. 1 illustrates the overall classification of the data-mining
originated rules that have been elaborated in this work, according
to the associated effects and causes, where the size of each circle
denotes the available amount of rules per category. A detailed
description of the techniques employed in the knowledge discov-
ery phase and the categories of the obtained rules along with fur-
ther rule examples are presented in the work of Chazard et al. [26].

The analysis of the above knowledge sources resulted in the
definition of a relevant knowledge model, which is presented in
the following subsection.

2.2. Knowledge model description
The knowledge model construction process aimed at develop-

ing a KB structure that effectively captures source knowledge on
ADEs and is generic enough to capture relative knowledge from a
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Fig. 1. Classification of ADE rules according to the associated effects and causes; the size of each circle denotes the available amount of rules per category (APTT: Activated
Partial Thromboplastin Time, INR: International Normalized Ratio, LMW: Low Molecular Weight, NSAID: Non-Steroidal Anti-Inflammatory Drug, PPI: Proton-Pump Inhibitor,

VKA: Vitamin K Antagonist).
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wide spectrum of possible existing or future sources. In addition to
basic knowledge on ADE prevention in the form of rules, the devel-
oped knowledge model is designed to express higher-level knowl-
edge, in the form of meta-rules, as regards the effective use of ADE
signals, their scope of applicability and contextualization parame-
ters. The model encapsulates background knowledge of the appli-
cation domain via the intermediate rules and the terminologies
adopted, since the definition of the drug, diagnosis and laboratory
examination related conditions correspond to application-specific
knowledge. The conceptual schema of the model has been pre-
sented in [35].

The proposed model can be logically divided into several com-
ponents that are of different type and may be considered as sub-
models in the overall framework, with some of the components
corresponding to knowledge as derived from the sources and oth-
ers providing the background terminology to support the former.
Primarily, the knowledge model encapsulates rule-based compo-
nents that are defined via a set of classes and populated with
ADE signals and ontology-based structures, either problem-specific
or based on standard classifications. The knowledge model is illus-
trated in Fig. 2, via a UML (Unified Modeling Language) class dia-
gram. In the design followed, all the elements and concepts

involved are represented as classes or groups of classes along with
their associations, while the attributes defined for each class reflect
the adopted approach regarding the rule structure, contextualiza-
tion mechanisms and relation to standard classifications.

The domain knowledge in this work is represented by a num-
ber of classes that are used to express the administration or
discontinuation/absence of a specific medication, diagnoses (infor-
mation about medical conditions existing for the patient), results
of laboratory examinations, other patient parameters (e.g. age,
weight, etc.), as well as the predicted effects. These classes are
namely:

(a) Drug and Drug_specific, where each Drug instance corre-
sponds to a set of possible medications of the same family,
e.g. vitamin K antagonists, that is given a unique name taken
from the namespace defined in the data-mining process for
drug variables. The individual drugs that belong to the group
of one Drug are instances of the class Drug_specific and are
coded according to the ATC classification.

(b) Lab, which is used to express results of laboratory examina-
tions in the form of binary values that indicate a specific
type of anomaly. This is expressed via several instances of

1.% 1.*
Rule : Context
Identifier : intager Statistics Hospital : text
Validated : binary Depariment : text
Source : infeger Confidence : number USZI"USBI‘l}; .
Conditions [1..*] : Condition Support: number Lan 'a o ’{EN DK, FR}
Result: Effect p-value : number ™ guh gld. 0 b h
Stay Explanation (0..1] - text RR : number FESHOIde i=3] Hoiliwoey
Entry_date : date - Effect_Delay_Percentiles [1..*] : number
Duration : integer - 1
ICU: binary 3 1.7
1 1. L involves
3 evaluated for consists of applies to 1.* 1
Meta-rule
0. 1.7 Lt Filtering_Mechanism [0..*] : Procedure
Patient Parameters Condition predicts -
patlenl_!dflnteger 0.1 1| Variable: Lab, Diagnosis, Drug, Patient Parameter Accept_rule0 (saquential}
Gender : binary i
Weight : number § Operator : <, », >=, <=, <»
7 involves| Reference_value [1.*]: number
Age : number
stay_id : integer 1 Effect
Evaluation_method{) {sequential}
ld_name : text
1 T 1 Description : text
j _ involves Recommendation : text
0. .f Involves |n;0|1ves 0.1 Severity_level : number
: Drug Translation [0.4] : text
Lab Diagnosis = = Result_id [0.1]; Lab, Diagnosis
ld_name : text ld_name : text Danar:ee.ci’cﬂ *): Drug_specific
Lab_specific [1..%] : Lab_specific Chranic : binary g_specific {17 9_specil
Diag_specific [1.* : Diagnosis_specific

Type_of_diagnosis
Description : text

1

includes T
1.* includes
Lab_specific 1.x
Code  IUPAC Diagnosis_specific
operator: <, > Code :ICD10

Bound : number Date : date

Date : date

1

includes

1.7
Drug_specific

Code : ATC

Dosage : number
Administration : Route
Date : date

Fig. 2. Class diagram of the proposed knowledge model for ADE signals representation.
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the class Lab_specific. In particular, the specific type of exam-
ination is identified using the relevant C-NPU/IUPAC coding,
while the boundary and the corresponding arithmetic com-
parison operator are also defined for each examination.

(c) Diagnosis that expresses a known patient condition that may
play a role in a possible ADE. Chronic medical conditions are
differentiated from acute diagnoses (as discriminated also in
the source ruleset). A Diagnosis instance typically corre-
sponds to a set of possible specific diagnoses of a similar
group, e.g. cancer. Specific diagnoses are defined with the
class Diagnosis_specific and are identified by their ICD-10
code.

(d) Patient Parameters expresses information about the patient,
such as age, weight, and gender. The respective attributes
comply with the fields defined in the common data model
[31], which has been adopted to specify the link between
the present framework and hospital information systems.

(e) Effect defines the predicted outcome of a rule and may con-
tain a recommendation for actions. All possible instances of
the Effect class are predefined in a problem-specific taxon-
omy that has been produced during the data-mining process
and is considered as domain knowledge acquired from the
data-mining knowledge source.

The main knowledge on predicting possible ADEs (inference
knowledge) is represented by the classes Rule and Condition. Each
Rule instance corresponds to a uniquely identified rule that is
linked to the associated Conditions and Effect. The provenance of
each Rule with respect to the considered knowledge sources is de-
fined via the “Source” attribute. Condition is a class which defines
the structure of each condition participating in the rules, contain-
ing the variable on which the condition is based (i.e. drug, diagno-
sis, laboratory examination or patient parameter), a comparison
operator and a reference value.

In addition to the main knowledge on ADE prevention con-
tained in the Rules, the knowledge model provides elements con-
cerning the effective application of these rules. For this purpose,
the classes Meta-rule, Context and Statistics are defined. The Meta-
rule contains knowledge in the form of a process that indicates
whether a rule should be considered or not in specific circum-
stances. Each Meta-rule instance applies to a set of Rule instances
in relation to a specific Context instance. The Meta-rule operates
as a filtering mechanism that may “de-activate” certain rules in a
particular context. The Context class contains as attributes param-
eters that can be used to specify a particular local setting, such as
the hospital/clinic, and the targeted user, while the logical process
that is followed to evaluate whether an ADE signal should be visi-
ble or not is represented in the class diagram as the Accept_rule()
method of class Meta-rule.

The class Statistics is defined as an association class which con-
tains a set of statistical parameters (meta-data) related to the
application of a Rule in a particular Context. These parameters are
initially evaluated for each rule discovered during the data-mining
phase. However, the statistical features may also be evaluated in
the specific clinical epidemiology in which the KB is to be used.
Hence, the thresholds for rule application may be adjusted for
the hospital or clinical department where the KB is used. The value
of such statistical parameters is an indication of how likely this
rule will fire (sensitivity), and with what confidence the predicted
event will actually happen (predictive value). Thus, their useful-
ness is two-fold: (a) to enable rule filtering according to their sta-
tistical significance, and (b) to adjust the KB to a specific hospital
and clinical department by evaluating the parameters locally.

It is interesting to note that, although the proposed model
encapsulates concepts targeting ADE prevention via rule-based sig-
nals, it may be reusable for expressing rules that are applicable in

the clinical environment in general, and especially for rules ob-
tained by applying data-mining techniques on EHRs (as in this
case, the statistical features of the rules are especially applicable).
In the general case, laboratory examination results and diagnoses
may participate in the conditions of rules for a particular clinical
domain without requiring drug-related conditions to be present.
Although the model has been designed without having drugs as a
mandatory part (however, all the rules that have been elaborated
in the scope of this work contain at least one drug), the exact def-
inition of the included concepts was primarily driven by the scope
of the specific knowledge discovery activities (e.g. note the attri-
butes included in the Patient Parameters class). However, as the
major concepts of the model are core concepts in healthcare set-
tings, further attributes could be introduced to extend the model,
if necessary. A limitation of the model that was implied by the
elaborated knowledge sources involves the support of crisp rules
(i.e. the comparison of data with a specific number via an arithme-
tic operator) via the definition of the Condition class. Nevertheless,
the overall rationale and the design of the model may be reusable
for expressing rule-based knowledge for other clinical applications
besides ADE prevention.

2.3. Knowledge engineering formalism

Several knowledge engineering formalisms and methodologies
were investigated for the design and development of the proposed
knowledge framework [27-29]. The primary aim was to develop a
KB in correspondence with the presented knowledge model, i.e.
comprising of a set of ontology-based structures, either applica-
tion-specific or standard classifications, as well as to include a
rule-based component that is defined via a set of classes and pop-
ulated with ADE signals. The above knowledge components consti-
tute the fundamental elements for defining complex procedural
logic for ADE prevention. In this regard, as unification of the former
knowledge components was required, our analysis resulted in the
adoption of the CIG formalism [36,37], as the basis for developing
the common knowledge framework to deploy ADE prevention ser-
vices. Initiated by the need to electronically encode clinical prac-
tice guidelines in order to incorporate them in decision support
and monitoring applications, the knowledge modeling approaches
that have been proposed in the literature resulted in the establish-
ment of CIGs as a knowledge engineering formalism that can be
used to express procedural knowledge for a variety of clinical
applications [38-40]. Thus, in the scope of this work, the term
CIG refers to this established knowledge engineering formalism
in healthcare, which is applied in our case for describing the paths
leading to an ADE forecast based on a variety of knowledge sources
and reasoning steps.

The majority of CIG formalisms rely on “Task-Network Models”,
while the following are considered as their common elements [40]:
(a) patient states, (b) execution states, (c) eligibility criteria, (d)
classification schemes, (e) goals, (f) decisions and (g) actions.
Ontologies, rules and procedures that constitute the building
blocks of the proposed framework are effectively supported and
uniformly integrated via CIGs [36,41].

The application of the CIG formalism for constructing knowl-
edge-based medical applications for decision support has been re-
ported in several studies [42-45]. Especially, in the application
domain of patient safety and error prevention, Grando et al. pre-
sented a generic approach for handling exceptions in workflow exe-
cution based on a flexible workflow definition schema using clinical
goals at multiple hierarchical levels, and separating exception
detection and handling from normal workflow execution [46]. The
approach allows for modeling of exceptions that occur during CIG
execution and their handling, and addresses some important barri-
ers to CIG adoption such as the ability to provide decision-support in
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the case of exceptions, and the fact that the majority of CIG-based
CDSSs do not work well when the encoded knowledge is incom-
plete. Seyfang et al. elaborated on the detection and prevention of
risks against patient safety by comparing the actual care practice
against descriptions of best practice given in clinical guidelines
and protocols (CGPs) [47]. In order to perform such comparisons
automatically, CGPs are modeled in a computer-executable form,
while the execution of the CGP model is integrated with the care
process at the site of application, and with risk-assessment tools
used by the hospital’s risk manager to explore “what-if” scenarios.
The current work employs CIG as the main engineering formal-
ism in the construction of a unified knowledge framework for ADE
prevention. Our research involves knowledge engineering of novel
ADE signals discovered by applying data-mining techniques across
diverse EHRs across Europe [26], aiming to integrate them with
other knowledge sources into a single KB supported by appropriate
management mechanisms and fully exploitable at the point of care.
In practical terms, each ADE prevention rule incorporated in the
framework constitutes a CIG (in other words, a protocol or work-
flow). In addition, the context-sensitive strategy employed to sup-
port the delivery of localized knowledge to the end-users, involves
the definition of filtering mechanisms (i.e. the “meta-rules”),
which are also defined as CIGs. The overall architecture of the
knowledge framework is presented in the following subsection.

2.4. Knowledge framework architecture

The major components of the knowledge framework architec-
ture are (Fig. 3):

(a) Knowledge Base: Constitutes the central part of the frame-
work, encapsulating the source knowledge concerning the
ADE signals into an exploitable structure and in an appropri-
ate electronic format. The knowledge involves the domain
ontology, i.e. standard classifications and major concepts
that are used to express parts of the ADE signals, inference
knowledge in terms of defining the ADE signals as a whole,
as well as task knowledge, i.e. procedures and protocols
defining the scope according to which the ADE prevention
rules are applicable/used or not.

(b) KB Instantiation & Update Mechanism: Provides the means for
populating the KB with ADE signals, supporting also poten-
tial updates of the KB content. In particular, an automatic
import mechanism has been developed, enabling straight-
forward KB population with ADE signals expressed in an
XML (eXtensible Markup Language) based document struc-
ture [32], which was commonly agreed between the knowl-
edge discovery experts and the knowledge authors.

(c) Knowledge Verification Mechanism: Performs syntactic verifi-
cation of source knowledge [32], upon launching the KB
instantiation or update procedures. In case of errors identi-
fied, the knowledge authors are prompted with informative
messages as regards the relevant inconsistencies to resolve
them.

(d) KB Contextualization Mechanism: The KB content is contextu-
alized via ADE signals’ meta-data, such as the statistical fea-
tures per ADE signal in the particular context (i.e. hospital or
clinical department) [22]. As these data are dynamic by nat-
ure, it is expected to be recalculated in periodic time inter-
vals for the local context, as part of the knowledge
discovery phase [26]. Upon the availability of the updated
figures, the mechanism supports the update of the KB con-
tent as regards this part per se. In addition, it handles lin-
guistic issues concerning the knowledge delivered to the
end users (English, Danish and French languages are cur-
rently supported).

(e) Knowledge Export Mechanism: Enabling knowledge sharing
and reuse is a typical requirement in knowledge engineering
tasks, adding value concerning the exploitation potential of
knowledge. Several export mechanisms have been developed
and made available in the proposed framework, either linked
with implementation details and tools (e.g. Resource Descrip-
tion Framework (RDF)/XML), or standards defined/applicable
for the medical domain (i.e. HL7/ANSI GELLO [48]).

(f) Inference Engine: The inference part involves the CIG execu-
tion engine and filtering mechanisms that are particularly
targeting elimination of alert fatigue, i.e. filtering ADE sig-
nals with respect to contextual information and meta-rules.
Inference has its basis on a FSM (Finite State Machine) based
execution engine (the typical, inherent mechanism of CIGs
[36,37,41]) that executes rules upon data requests, as well
as on a basic terminological reasoning mechanism devel-
oped to address query expansion on the requests posed,
when applicable and according to the underlying semantics
(as explained in the description of (3), in Section 2.5). Con-
textualization of the Inference Engine is achieved via the def-
inition of various configuration parameters that control
activation of the filtering mechanisms, define thresholds
for statistical parameters, customize the KBS output, and
so forth.

(g) Interface to External Knowledge Sources: There are several
knowledge sources available related to ADEs, such as
drug-drug interaction databases. In this regard, the frame-
work provides a generic database import mechanism, which
is designed in a parameterized way to assure its reusability.
In this viewpoint, the KB may be considered as a distributed
knowledge source, which enables connection with external
KBs and data, provided that there is an efficient mechanism
able to exploit all knowledge components as a whole. In
addition to technical aspects, organizational issues may be
even more important for preferring a connectivity mecha-
nism with external knowledge sources, instead of an import
mechanism, e.g. issues including ownership of the content,
responsibility/accountability, maintenance and control, thus
the adopted approach.

(h) Interface to External Healthcare Systems & Services: This con-
stitutes the necessary mean for exploiting the KB content
and the reasoning services provided by the knowledge
framework. The interface involves both the request and the
response parts of communication. It is XML-based providing
this way a clear specification as regards its implementation
for external hospital systems, i.e. EHR or CPOE systems.
The interface relies on the mapping of each concept/attri-
bute defined in the knowledge model with the relevant
tables/fields respectively defined in the data model [31].

The functionality offered by the proposed framework in terms
of its reasoning scheme and exploitation in decision support oper-
ation is formally presented in the following subsection.

2.5. Functional attributes and reasoning scheme

The KB developed aims to constitute the core part of CDSS mod-
ules for ADE prevention; thus, the Interface to External Healthcare
Systems & Services enables querying the KB with patient data, so
as to assess the case(s) of interest against the ADE signals incorpo-
rated in the KB. Let us consider a data request as the input to a rel-
evant CDSS module that is expressed as the tuple <Dr, Di, Bi, Mi>. Dr
corresponds to a set of drug values, Di to a set of diagnosis values,
Bi to a set of laboratory examination results and Mi to a set of med-
ical parameter values concerning a patient (with Di, Bi and Mi
being optional parts in general). An inference mechanism f; is
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Fig. 3. Overall architecture of the proposed knowledge framework.

introduced in order to match the above tuple in the set of ADE pre-
vention rules R that are incorporated in the KB, i.e.:

fi - < Dr,Di,Bi,Mi > — R. 3)

In essence, f; involves the assessment of matching conditions in
the entire ruleset incorporated in the KB. It also provides the
means to support the dynamic filtering of input data according
to temporal constraints, e.g. considering only the last laboratory
measurement per C-NPU/IUPAC code, the recent drug prescrip-
tions, etc. (configurable options). In addition, particularly for diag-
nosis-related data, the mechanism examines whether there are
rules in R that match diagnosis conditions, in case of non-exact
match in Di (encapsulated in the request), taking advantage of
the is-a hierarchy of ICD-10 (e.g. let us consider a rule with match-
ing condition the ICD-10 code A071A and a data request sent to the
KBS that does not contain AQ71A, but A07; the condition is consid-
ered true, as AO71A is subclass of A07). The outcome of this proce-
dure is a new set R; C R, corresponding only to the relevant ADE
signal(s).

In case of multiple applicable ADE signals, i.e. multiple rules
triggered by fi, a major issue in the application of discourse consti-
tutes the assessment of the significance per alert according to the
case, so as to eliminate over-alerting. In this regard, the KBS is
fine-tuned following a context-sensitive strategy (in both con-
struction and runtime mode) that applies meta-rules in terms of
threshold-based filtering as regards the statistical significance of
the corresponding triggered rules, to determine the most signifi-
cant alerts or recommendations that will reach the CDSS end-user.
Thus, a new mechanism f; is introduced that maps R; into a set R,
with R, C Ry, according to the contextual criteria Cy:

fz :R]/CxﬂRz, (4)

Cx may be a set of statistical thresholds associated with each ADE
signal in the local context, such as confidence >20% and Fisher test
p-value <0.05. It has to be noted that there are cases where it is

necessary to preserve a part of Ry (i.e. specific rules that might be
considered important) as an outcome of (4), independently of the
constraints introduced by applying the criteria Cx. This is also a con-
figurable option supported by f>. The final outcome of f, is a list of
effects that correspond to R,, along with appropriate explanations
of the respective rules, the importance of the potential ADEs, as well
as the data that made the rules fire. The language of the text and the
user type (clinician/nurse/patient) constitute also configurable run-
time options.

Finally, the framework supports enabling/disabling interfaces
for querying external pharmacovigilance databases; thus, R,
may be potentially extended with additional signals into Rs,
with R, C Rs. In that case, the final outcome constitutes a unifi-
cation of the signals generated by all the considered knowledge
sources.

3. Results
3.1. Implementation platform

Implementation of the presented knowledge framework was
based on Gaston [49]. The core of Gaston consists of a CIG formal-
ism relying on a combination of knowledge representation ap-
proaches and concepts, i.e. primitives, problem solving methods
(PSMs), domain and method ontologies. Domain ontologies model
domain-specific knowledge in terms of entities, attributes and
relations, while method ontologies model concepts such as primi-
tives, PSMs and guidelines. The ontologies are defined in the
frame-based version of Protégé [50]. Frames are used to represent:
(1) knowledge related to the application domain (domain ontolo-
gies), and (2) knowledge related to the guideline’s control structure
(method ontologies). CIGs are represented in turn by a set of prim-
itives or by means of PSMs. The two main advantages offered by
Gaston with respect to the knowledge engineering requirements
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posed in this work that lead to its adoption are: (a) support for all
the identified knowledge engineering formalisms, i.e. ontologies,
rules and protocols encapsulated its CIG formalism, and (b) sup-
port for various interface technologies to explore/query the under-
lying KB.

It is interesting to note that during the KB implementation
phase, a proof-of-concept development was conducted to assess
the portability and implementation of ADE rules in another KBS.
In particular, the potential offered by the open-source rule engine
Drools [51] was investigated. The selection of Drools was mainly
because of its openness, the fact that its programming environ-
ment was familiar to the developers’ team, and its wide exploita-
tion in business-logic oriented applications, appropriate for the
procedural knowledge elaborated in this work. In our case, an
application was developed that automatically creates the relevant
KB (intermediate and main rules) based on the source knowledge.

Both Gaston and Drools were successfully used in this
development.

3.2. Knowledge-based system

Using Gaston for representing the ADE prevention rules in the
form of a KB, involves instantiating and extending its underlying
knowledge model. In essence, the KB comprises several ontologies
related to domain knowledge, the mapping between the common
data model and the domain knowledge model, the overall ADE rule
component (i.e. the intermediate rules, the ADE signals and the
meta-rules), along with procedures and options for exporting this
knowledge. An excerpt of the KB structure is illustrated in Fig. 4
via the Protégé knowledge modeling tool.

The concrete implementation of the knowledge model presented
in Section 2.2 involves mapping its items to Gaston’s knowledge
representation contracts and concepts. For example, each ADE sig-
nal of the framework is an instance of the class Guideline in Gaston,
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under the hierarchy Method_Entity > Complex_Method_Entity >
Guideline. Similarly, in the internal Gaston representation, each
intermediate rule of the framework (as defined Section 2.1) is an in-
stance of the class Intermediate, under the hierarchy Method_Entity >
Complex_Method_Entity > PSM > Common_PSMs > Situation-Action-
Rule_Entity > Intermediate. Finally, mechanisms such as meta-rules,
filters, and interfaces to external knowledge sources, constitute also
instances of the Guideline class.

The KB Instantiation and Update Mechanism (Fig. 3) developed
enables straightforward population of the KB schema. Currently,
the KB contains 55,687 classes and 33,879 instances. The above
KB features correspond to the incorporation of 236 ADE rules and
403 intermediate rules in total, besides the incorporation in the do-
main knowledge of ICD-10, ATC and C-NPU/IUPAC standard classi-
fications and codings, as well as rule-specific concepts (e.g. Patient,
Stay, etc.). The large number of classes is due to the large domain
ontology defined (as standard classifications have been included
in the KB), while the similarly large number of instances is because
the number of steps and conditions in the guidelines defined is also
large.

Example meta-rules defined are: (a) the Static Filter, i.e. a rule
may fire, only if certain rule meta-data parameters reach specific
thresholds (p-value, confidence, relative risk, severity of the effect,
etc.); (b) the Temporal Filter, i.e. rules do not generate alerts, if the
period since all their conditions are met and the current time is
more than a threshold (that corresponds to a rule-specific time de-
lay parameter), and (c) handling Rules with a Laboratory-related
Effect, i.e. when a rule involves a laboratory examination result
abnormality as the effect, the output will be suppressed in case
there is laboratory examination result corresponding to the effect
and indicating absence of the effect after all the conditions of the
rule are met.

In order to provide encapsulation of expert knowledge related to
a specific context, another procedure named Final Manual Filter was
defined. Configuring the Final Manual Filter for specific rules, experts
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Fig. 4. Excerpt of the KB in Protégé (basic, ontology class hierarchy on the left side and example Guideline instance depicted on the right side).
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may override the filtering mechanisms of the previous steps for
these rules, e.g. for a rule that involves an effect that occurs often
in the particular clinic, one could suppress the Temporal Filter for this
rule to allow generation of alerts without temporal constraints.

Use all input Data? _— Dynamic Fittering

of Input Data

Use METARULE Nr. 3

Rules with a
laboratory related
Effect

Use METARULE Nr. 2

Temporal Fitter

Use Final Manual ;
Fi“er R

Is there an
External Knowledge
Source

Merging Possible
External KS Output

Fig. 5. The overall workflow for generating ADE signals based on the reasoning
steps and knowledge components supported by the proposed framework, as
illustrated in Gaston’s knowledge acquisition tool.

The overall workflow encapsulating the reasoning steps for
exploiting the ADE prevention knowledge provided by the pro-
posed frameworKk is illustrated in Fig. 5. In the depicted flowchart
each procedural step is represented by a distinct shape. The deci-
sion steps correspond to configuration choices that may be set in
the local environment, in order to enable or disable features and
subsequently define and adapt the generated output.

3.3. Interfacing with external knowledge sources

Besides data-mining originated rules, a commercial knowledge
source concerning drug interactions has been made available for

this development by Vidal (http://www.vidal.fr/), following also a
rule-based formalism that is based on the abovementioned stan-
dard terminologies/classifications. Thus, the Interface to External
Knowledge Sources component (Fig. 3) has been instantiated. The
nature of the Vidal knowledge source involves rules that may re-
late two drugs regarding their interaction or one drug with a par-
ticular diagnosis, allergy, laboratory examination, or patient
characteristic. The result of each rule is a description of the possi-
ble ADE and, depending on the type of rule, it can also include a de-
gree of severity or a suggestion for action. The main sources of the
abovementioned drug interactions come from international scien-
tific publications, health agencies, guidelines and summaries of
product characteristics (SPCs) provided by AFSSAPS (Agence Franc-
aise de Securite Sanitaire des Produits de Sante), EMEA (European
Medicines Agency), FDA (Food and Drug Administration), etc.

Such a knowledge source is considered as complementary to
the data-mining originated rules which were introduced in this
work and obtained by analyzing routinely collected patient data
of past hospitalizations. There might be cases where important
ADE cases may not be identified in patient data repositories
through data-mining techniques, because either the conditions
never occur, or when the conditions are present, the outcome
never occurs. This is probably because such cases are well known
and, consequently, the relevant risks are well monitored in clinical
practice [26].

3.4. Knowledge sharing and reuse

The KB is available in the following representations: (a) Protégé,
frame-based ontology and (b) RDF/XML structure. Although Proté-
gé is an open-source tool and RDF/XML originates from an open
specification of W3C (WWW Consortium), the above representa-
tions are specific to the adopted development platform.

Standardization constitutes a major challenge in medical
knowledge modeling (and in CIG representations in particular
[40]). Among the several efforts made, GELLO is the most relevant
to the application discourse, as it is based on the CIG formalism.
GELLO was initially conceived as a standard expression language
for decision support [52], and it has evolved as an HL7/ANSI stan-
dard decision support language [48]. It aims primarily to constitute
a query language for obtaining clinical information from an EHR
system in a standard way. It uses an abstract “virtual medical re-
cord” (VMR), a simplified view of HL7 RIM (Reference Information
Model) V3, so that the same code can run on multiple systems
accessing data stored in different formats.

In this regard, aiming to reinforce knowledge interoperability
and reuse of the presented KB through a knowledge representation
standard applicable in the medical domain, HL7/ANSI GELLO was
employed. In particular, the intermediate and main ADE rules of
the KB have been represented in the GELLO.

3.5. Evaluation

Evaluation of the framework has been conducted with respect
to implementation aspects, performance testing and quality of
the KB content. As regards the implementation, components of
the framework (e.g. the KB import/export mechanisms, the reason-
ing scheme and the interfaces), have been iteratively and exten-
sively evaluated by the knowledge authors using several
benchmarking tests, e.g. syntactic verification, extensive querying,
exception testing, etc. As the development of the framework was
performed incrementally, several technical shortcomings and er-
rors were addressed in each development phase.

Given the large KB content and the ultimate goal of exploiting
the KBS in practice via CDSSs at the point of care, performance con-
stitutes an important issue. Thus, an analysis was conducted with a
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variety of requests and runtime configuration options. Each step
defined in the procedure depicted in Fig. 5 (if enabled) introduces
a particular computational cost at the KBS runtime. In the particu-
lar case, when all features are enabled, the execution flow begins
with the dynamic filtering of input data that corresponds to 27%
of the total computational cost. The following step involves the
main ADE rule execution (corresponding to the f; mechanism pre-
sented in Section 2.5), which is responsible for 20% of the total
computational cost. The execution continues with meta-rules nr.
3, nr. 2 and nr. 1 (i.e. Rules with a Laboratory-related Effect, the Tem-
poral Filter and the Static Filter, respectively, corresponding to the f,
mechanism presented in Section 2.5). Meta-rules nr. 3 and nr. 2
introduce each 13% of the total computational cost, while meta-
rule nr. 1 is responsible for the 20%. The Final Manual Filter and
the use of an External Knowledge Source (in this case, the Vidal
pharmacovigilance knowledge source) execution steps are each
responsible for 3% of the total computational cost. As expected,
the meta-rules employed in the framework introduce a significant
computational cost.

Finally, as regards the completeness, correctness, relevance and
comprehension of the KB content, a validation study that took
place with experts and test cases of various types was proven
successful [53]. Specific suggestions for enhancement were made
concerning the “wording” of the generated alerts and their expla-
nation. The recommendations made from the experts were taken
into account for developing the final version of the framework
for further improvement. Interestingly, the study indicated also
the necessity for employing context-sensitive strategies for CDSS
delivery as elaborated in this work, and highlighted the importance
and potential impact of the proposed framework in medication
safety along this perspective. Quantitative features concerning
the overall potential of the framework are expected to be extracted
during its validation in realistic clinical settings that is under
development.

4. Discussion

The presented knowledge framework is the result of knowledge
engineering tasks that took place in a 3-year period. The main out-
come is the development of the KB, which includes the architec-
tural design and modeling part, as well as its implementation in
a fully operational KBS. The KB effectively encapsulates source
knowledge as regards ADE signals into an exploitable structure
and in an appropriate electronic format. The framework is comple-
mented with import/export mechanisms from knowledge sources
to external systems, and mechanisms for querying, inference and
KB contextualization.

The developed KB has been subject to a large number of up-
grades and refinements, which were performed in parallel to the
continuous updates of source knowledge. The current version
adapts well to the particular knowledge sources considered and
the requirements posed, providing a sound basis for delivering
effective, contextualized, clinical decision support services. A posi-
tive outcome has been the successful implementation of the KB
and the interfacing of the framework with external KBs and health-
care information systems. The design followed resulted in a gener-
ic/blueprint KB that can be easily instantiated with contextual
information to construct contextualized KBs specifically tailored
to the local environment.

From a technical perspective, it is interesting to note that the
framework has been adopted to exploit decision support services
via three distinct healthcare applications, i.e. a commercial CPOE
system, a commercial EHR system, and a Web prototype that is
independent of any healthcare information system, as presented
by Bernonville et al. [54]. Although the knowledge framework is

mature, further development may be needed as feedback will be
received while using the contextualized CDSSs that will be built
upon and used in clinical practice. Furthermore, several limitations
have been also recognized and many challenges for future work
have been identified. In this regard, issues worth discussing as well
as future research directions are presented in the following.

4.1. Source knowledge

The XML-based model employed to share knowledge between
the knowledge discovery and the knowledge authoring teams
was proven of paramount importance [32]. In essence, the evolu-
tion of this representation into a mature, rich and highly accurate
(multiple XML documents based) structure, enabled the construc-
tion of appropriate mechanisms for analyzing, verifying and
importing this type of source knowledge into existing KBSs, while
resolving the introduced ambiguities. In this regard, the KB imple-
mentation timeframe was reduced significantly. Whenever not
feasible (e.g. in the case of meta-rules), natural language was
employed as the knowledge sharing mechanism instead.

However, there were cases where the delivered source knowl-
edge introduced limitations due to (inevitable) simplifications ap-
plied. For example, the representation of laboratory examination
results via binary variables (the value of which rely on “crisp” logic
and generally-defined thresholds) constitutes a quite rough esti-
mate introducing information loss. A more informative approach
and representation (e.g. fuzzy logic oriented) would enhance the
granularity of this information. Nevertheless, as remarked in
Section 2.2, the proposed knowledge model is applicable in
expressing rule-based knowledge for other clinical applications be-
sides ADE prevention.

Similarly, the analysis of clinical observations concerning the
patients could be quite an important knowledge source that was
not elaborated in the scope of this work. These observations could
provide further insights, potentially realized by employing seman-
tic mining techniques. In addition, elaborating on time-dependen-
cies derived from, for example, trend analysis could reveal time-
related developments as conditions and ADE prodromes.

4.2. Knowledge representation

A significant challenge in the application domain of ADE pre-
vention constitutes handling time-dependent clinical data and
information. Several concepts have been included in the data mod-
el [31], such as stay, duration_of_stay, and delay_drug, and, thus,
corresponding concepts have been defined in the knowledge mod-
el and implemented in the KB. In this regard, the knowledge model
does not explicitly define time-dependent information [55], but
rather implicitly encapsulates this time dimension for the imple-
mentation of ADE rules. Thus, a future challenge would be to
encapsulate in the KB all the “pre-rules” which are associated with
time variables and are now implicitly elaborated.

With respect to the CIG formalism adopted, as it typically relies
on frame-based ontologies, it is evident that to some extent the
reasoning capabilities and expressiveness offered are limited com-
pared to those available in Description Logics (DLs) based formal-
isms. However, in a comparative study among frame-based
ontologies and OWL (Web Ontology Language) [56], the closed-
world assumption (CWA), i.e. what is not currently known to be
true is false (negation as failure), that frame-based ontologies are
based on is particularly favorable in the application context, as
knowledge has to be explicit and complete, in order to avoid
over-alerting in a CDSS for ADE prevention. On the other hand,
the open-world assumption (OWA), i.e. lack of knowledge does
not imply falsity (negation as unsatisfiability), is favorable in cases
where DL reasoning is required to ensure logical consistency of
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ontologies and in cases of applications in which classification is a
paradigm for reasoning. Based on the knowledge engineering ratio-
nale of this work, the requirements posed differ from a DL-oriented
scope. In particular, the procedural knowledge that the meta-rules
imply, would definitely require an underlying model per se to sup-
port them. Meta-rules are effectively represented under the CIG
formalism, which is procedural by nature.

4.3. Standardisation - sustainability - reusability

Standardization of the KB constitutes a challenging issue, as
there are no widely used standards available for representing med-
ical knowledge in particular; on the other hand, the attributes of
openness and interoperability are important in modern healthcare
information systems. In this regard, the KB has been partially
(excluding the meta-rules that could not be explicitly encoded)
represented in GELLO [48], which is a promising option for the
time being, having its origins in the CIG knowledge engineering
formalism. This effort was particularly significant so as to enable
the accessibility and reuse of the accumulated knowledge poten-
tially from other, third-party systems that conform to the above
standard, advancing this way the exploitation potential. In addi-
tion, the representation of the KB as a Protégé frame-based ontol-
ogy enables its straightforward editing and management using
Protégé, a widely known, open-source, knowledge modeling tool.

The development of the KBS with Gaston and the proof-of-con-
cept implementation conducted with Drools revealed that a signif-
icant weakness of each particular KBS is the dependence on its
specific knowledge representation scheme that is employed to ex-
press the KB, as standardization of such a representation is a major
issue. Nonetheless, while Gaston was the primary tool employed,
experimentation with Drools enables us to argue that the
deployment of the knowledge framework is feasible with other
KBS platforms as well. In addition, the knowledge management
mechanisms (e.g. import/update, interfaces with external knowl-
edge sources) that have been elaborated contribute further in the
framework’s sustainability and extensibility.

As highlighted in Section 2.2, the proposed knowledge model
introduces a significant reusability potential for other types of clin-
ical applications elaborating on rule-based knowledge. The overall
reusability of the proposed approach is further reinforced through
the design that was followed for the majority of the knowledge
framework components (Fig. 3). Specifically, the interfaces of the
framework rely on XML-based specifications, which enable the
necessary openness for populating the KB, updating source knowl-
edge, accessing additional knowledge sources, and providing ac-
cess to the services of the framework for diverse healthcare
applications. The KB structure is capable of representing produc-
tion rules like those elaborated in this work, exceeding this way
the current application scope. The subcomponents of the Inference
Engine concerning terminological reasoning and filtering may be
used to elaborate on other types of rule-based knowledge. The con-
textualization-related components may be used in cases where
rules are associated with meta-data denoting their statistical sig-
nificance for the local application setting.

4.4. Inference logic

The issue of over-alerting [24], which is the most challenging
one that needs to be addressed by the reasoning scheme encapsu-
lated in the presented KBS, is currently being dealt with by a num-
ber of meta-rules handling contextual parameters [22]. Meta-rules
are important for tailoring the KBS functionality, according to the
clinical procedures and followed practices in actual settings. Such
meta-rules, for example, are able to filter-out certain ADE
signals based on a set of (statistically-oriented) rule meta-data

and heuristic practices. However, it has become evident that the is-
sue of which (fired) rules are really applicable in each case and
whether it is productive to present the respective ADE alerts to
the user at a specific moment, is quite sophisticated and crucial
at the same time. A future development would involve the design
and implementation of a distinct and more intelligent layer incor-
porating such meta-rules that would be applied on ADE signals for
this purpose. This layer should be considered as an additional
knowledge-based component that can either be based on its own
KB or integrated in an expanded version of the current KB. Such
an approach would advance the inference logic according to which
the KBS will operate, offering more sophisticated and effective
functionality for the CDSS end-users.

4.5. Human factors and clinical procedures

One of the challenges for preventing ADEs is considering not
only the medical parameters available at the time of drug manage-
ment, but also the human factors related to increased possibility
for errors during the prescribing-ordering—dispensing—adminis-
tration (PDAC) medication chain. For this purpose, one of the iden-
tified knowledge sources was related to human factors and clinical
procedures. Such knowledge was initially considered as a means to
associate medication issues and other medical conditions with spe-
cific steps of the clinical practice and actions. The human factor
analysis until now resulted in a set of recommendations for the
CDSS design and functionality [34], which would increase the
effectiveness of such systems in clinical practice. In this regard,
the set of meta-rules was defined providing the logic according
to which the ADE rules should be applied in practice in a particular
context.

A potential field for future work that is worth exploring lies in
developing knowledge discovery methods and the appropriate
knowledge representation methods and inference mechanisms
capable of: (a) capturing clinical procedures, e.g. related to drug
administration and effect monitoring, (b) associating individual
steps and actors of such procedures with the main ADE rules,
and (c) introducing an additional layer of advanced rules which
would be able to prevent a much wider set of errors by sensing hu-
man-factor related parameters.

5. Conclusions

A uniform, exploitable and sustainable knowledge-based
framework has been designed to support the implementation of
context-sensitive and advanced knowledge-based CDSSs for ADE
prevention. The CIG formalism that was adopted as the main
knowledge engineering endeavor has proven successful in the con-
struction of the proposed framework. The context-sensitive layer
introduced enables the adaptation of the KB in the local clinical
environment (hospital, department, clinic), defining the applicabil-
ity of the ADE prevention signals it incorporates according to their
statistical significance, so as to enhance the delivery of targeted
and effective decision support services. The results obtained as
regards implementation, performance and validation aspects of
the framework highlight its applicability in medication safety.
The potential of the framework is currently under assessment in
realistic clinical scenarios and settings.
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