Application of Neural Networks Solar Radiation Prediction for Hybrid Renewable Energy Systems

Voutetakis, Spyros/ Stergiopoulos, Fotis/ Papadopoulos, Athanasios/ Papadopoulou, Simira/ Seferlis, Panos/ Ziogou, Chrysovalantou/ Ipsakis, Dimitris/ Giaouris, Damian/ Georgoulas, Nikolaos/ Chatziagorakis, Prodromos/ Karafyllidis, Ioannis/ Andreadis, Ioannis/ Elmasides, Costas/ Sirakoulis, Georgios/ Σεφερλής, Πάνος/ Στεργιόπουλος, Φώτης/ Ιψάκης, Δημήτρης/ Παπαδοπούλου, Σημίρα/ Βουτετάκης, Σπύρος/ Ζιώγου, Xρυσοβαλάντου/ Παπαδόπουλος, Αθανάσιος/ Γκιαούρης, Δαμιανός/ Γεωργουλάς, Νικόλαος/ Ανδρεάδης, Ιωάννης/ Καραφυλλίδης, Ιωάννης/ Συρακούλης, Γεώργιος/ Ελμασίδης, Κωνσταντίνος/ Χατζηαγοράκης, Πρόδρομος


Full metadata record
DC FieldValueLanguage
dc.contributor.authorVoutetakis, Spyrosel
dc.contributor.authorStergiopoulos, Fotisel
dc.contributor.authorPapadopoulos, Athanasiosel
dc.contributor.authorPapadopoulou, Simirael
dc.contributor.authorSeferlis, Panosel
dc.contributor.authorZiogou, Chrysovalantouel
dc.contributor.authorIpsakis, Dimitrisel
dc.contributor.authorGiaouris, Damianel
dc.contributor.authorGeorgoulas, Nikolaosel
dc.contributor.authorChatziagorakis, Prodromosel
dc.contributor.authorKarafyllidis, Ioannisel
dc.contributor.authorAndreadis, Ioannisel
dc.contributor.authorElmasides, Costasel
dc.contributor.authorSirakoulis, Georgiosel
dc.contributor.otherΣεφερλής, Πάνοςel
dc.contributor.otherΣτεργιόπουλος, Φώτηςel
dc.contributor.otherΙψάκης, Δημήτρηςel
dc.contributor.otherΠαπαδοπούλου, Σημίραel
dc.contributor.otherΒουτετάκης, Σπύροςel
dc.contributor.otherΖιώγου, Xρυσοβαλάντουel
dc.contributor.otherΠαπαδόπουλος, Αθανάσιοςel
dc.contributor.otherΓκιαούρης, Δαμιανόςel
dc.contributor.otherΓεωργουλάς, Νικόλαοςel
dc.contributor.otherΑνδρεάδης, Ιωάννηςel
dc.contributor.otherΚαραφυλλίδης, Ιωάννηςel
dc.contributor.otherΣυρακούλης, Γεώργιοςel
dc.contributor.otherΕλμασίδης, Κωνσταντίνοςel
dc.contributor.otherΧατζηαγοράκης, Πρόδρομοςel
dc.date.accessioned2015-07-14T14:02:42Zel
dc.date.accessioned2018-02-28T16:10:12Z-
dc.date.available2015-07-14T14:02:42Zel
dc.date.available2018-02-28T16:10:12Z-
dc.date.issued2014-09-05el
dc.identifier10.1007/978-3-319-11071-4_13el
dc.identifier.citationSofia.15th International Conference. (2014) Application of Neural Networks Solar Radiation Prediction for Hybrid Renewable Energy Systems. Switzerland: Springer International Publishing (133-144)el
dc.identifier.citationInterInternational Conferencenational Conference, Sofia, 2014el
dc.identifier.isbn978-3-319-11070-7el
dc.identifier.isbn978-3-319-11071-4el
dc.identifier.urihttp://195.251.240.227/jspui/handle/123456789/10008-
dc.descriptionΔημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Αυτοματισμού, 2015el
dc.description.abstractIn this paper a Recurrent Neural Network (RNN) for solar radiation prediction is proposed for the enhancement of the Power Management Strategies (PMSs) of Hybrid Renewable Energy Systems (HYRES). The presented RNN can offer both daily and hourly prediction concerning solar irradiation forecasting. As a result, the proposed model can be used to predict the Photovoltaic Systems output of the HYRES and provide valuable feedback for PMSs of the understudy autonomous system. To do so a flexible network based design of the HYRES is used and, moreover, applied to a specific system located on Olvio, near Xanthi, Greece, as part of SYSTEMS SUNLIGHT S.A. facilities. As a result, the RNN after training with meteorological data of the aforementioned area is applied to the specific HYRES and successfully manages to enhance and optimize its PMS based on the provided solar radiation prediction.el
dc.language.isoenel
dc.publisherSpringer International Publishingel
dc.relation.ispartof15th International Conferenceel
dc.rightsΤο τεκμήριο πιθανώς υπόκειται σε σχετική με τα Πνευματικά Δικαιώματα νομοθεσίαel
dc.rightsThis item is probably protected by Copyright Legislationel
dc.source.urihttp://link.springer.com/chapter/10.1007/978-3-319-11071-4_13el
dc.subjectHybrid Renewable Energy Systemel
dc.subjectPower Management Strategyel
dc.subjectSolar Radiationel
dc.subjectRecurrent Neural Networkel
dc.titleApplication of Neural Networks Solar Radiation Prediction for Hybrid Renewable Energy Systemsel
dc.typeBook chapterel
heal.typeotherel
heal.type.enOtheren
heal.dateAvailable2018-02-28T16:11:12Z-
heal.languageelel
heal.accessfreeel
heal.recordProviderΤΕΙ Θεσσαλονίκηςel
heal.fullTextAvailabilityfalseel
heal.type.elΆλλοel
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
There are no files associated with this item.



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/10008
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.