Linearizations of polynomial matrices with symmetries and their applications

Vologiannidis, Stavros/ Antoniou, Efstathios/ Βολογιαννίδης, Σταύρος/ Αντωνίου, Ευστάθιος


Full metadata record
DC FieldValueLanguage
dc.contributor.authorVologiannidis, Stavrosel
dc.contributor.authorAntoniou, Efstathiosel
dc.contributor.otherΒολογιαννίδης, Σταύροςel
dc.contributor.otherΑντωνίου, Ευστάθιοςel
dc.date.accessioned2015-07-20T09:56:30Zel
dc.date.accessioned2018-02-28T17:05:53Z-
dc.date.available2015-07-20T09:56:30Zel
dc.date.available2018-02-28T17:05:53Z-
dc.date.issued2006el
dc.identifier10.1109/.2005.1467008el
dc.identifierhttp://www.emis.de/journals/ELA/ela-articles/articles/vol15_pp107-114.pdfel
dc.identifier.citationAntoniou, E. & Vologiannidis, S. (Φεβρουάριος 2006). Linearizations of Polynomial Matrices with Symmetries and Their Applications.. Electronic Journal of Linear Algebra. 15:107-114.el
dc.identifier.citationJournal: Electronic Journal of Linear Algebra, vol.15, 2006el
dc.identifier.citationIEEE International Symposium on Intelligent Control, Mediterranean Conference on Control and Automation, Limassol, 2005el
dc.identifier.issn1081-3810el
dc.identifier.urihttp://195.251.240.227/jspui/handle/123456789/10355-
dc.descriptionΔημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 2006el
dc.description.abstractIn an earlier paper by the present authors, a new family of companion forms associated with a regular polynomial matrix was presented, generalizing similar results by M. Fiedler who considered the scalar case. This family of companion forms preserves both the finite and infinite elementary divisor structure of the original polynomial matrix, thus all its members can be seen as linearizations of the corresponding polynomial matrix. In this note, its applications on polynomial matrices with symmetries, which appear in a number of engineering fields, are examined.el
dc.format.extent118Kbel
dc.language.isoenel
dc.publisherIEEEel
dc.relation.isbasedon20th IEEE International Symposium on Intelligent Control, 13th Mediterranean Conference on Control and Automationel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Παρόμοια Διανομή 3.0 Ελλάδαel
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Greeceel
dc.source.urihttps://eudml.org/doc/130691el
dc.subjectΠολυώνυμη περιγραφή πίνακαel
dc.subjectΜαθηματικός προγραμματισμόςel
dc.subjectPolynomial methodsel
dc.subjectFinite difference methodel
dc.subjectFinite element analysisel
dc.subjectPolynomial matricesel
dc.subjectMathematical programmingel
dc.subjectPolynomial matrix description (PMDs)el
dc.subjectLinearizationel
dc.subjectΠολυώνυμοι πίνακεςel
dc.subjectΑνάλυση πεπερασμένων στοιχείωνel
dc.subjectΜέθοδος πεπερασμένων διαφορώνel
dc.subjectΠολυώνυμες μέθοδοιel
dc.subject.lcshΣυστήματα διακριτού χρόνουel
dc.subject.lcshΑριθμητική ανάλυσηel
dc.subject.lcshΠίνακες—Επεξεργασία δεδομένωνel
dc.subject.lcshΔιαφορικές εξισώσεις—Αριθμητικές λύσειςel
dc.subject.lcshΠεπερασμένες διαφορέςel
dc.subject.lcshΣυμμετρία (Μαθηματικά)el
dc.subject.lcshDiscrete-time systemsel
dc.subject.lcshΠολυώνυμα—Επεξεργασία δεδομένωνel
dc.subject.lcshΠρογραμματισμός (Μαθηματικά)el
dc.subject.lcshDifferential equations—Numerical solutionsel
dc.subject.lcshMatrices—Data processingel
dc.subject.lcshFinite differencesel
dc.subject.lcshNumerical analysisel
dc.subject.lcshProgramming (Mathematics)el
dc.subject.lcshSymmetry (Mathematics)el
dc.subject.lcshPolynomials—Data processingel
dc.titleLinearizations of polynomial matrices with symmetries and their applicationsel
dc.typeArticleel
heal.typeotherel
heal.type.enOtheren
heal.dateAvailable2018-02-28T17:06:53Z-
heal.languageelel
heal.accessfreeel
heal.recordProviderΤΕΙ Θεσσαλονίκηςel
heal.fullTextAvailabilitytrueel
heal.type.elΆλλοel
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
File Description SizeFormat 
Antoniou_Vologiannidis_Linearization_Of_Polynomial.pdf118.38 kBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/10355
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.