Advanced methods for evolutionary optimisation

Petridis, Vassilios/ Kazarlis, Spyros/ Adamidis, Panagiotis/ Αδαμίδης, Παναγιώτης/ Καζαρλής, Σπυρίδων/ Πετρίδης, Παναγιώτης


Full metadata record
DC FieldValueLanguage
dc.contributor.authorPetridis, Vassiliosel
dc.contributor.authorKazarlis, Spyrosel
dc.contributor.authorAdamidis, Panagiotisel
dc.contributor.otherΑδαμίδης, Παναγιώτηςel
dc.contributor.otherΚαζαρλής, Σπυρίδωνel
dc.contributor.otherΠετρίδης, Παναγιώτηςel
dc.date.accessioned2015-07-22T15:12:35Zel
dc.date.accessioned2018-02-28T17:06:00Z-
dc.date.available2015-07-22T15:12:35Zel
dc.date.available2018-02-28T17:06:00Z-
dc.date.issued1998el
dc.identifierhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.2246el
dc.identifier.citationAdamidis P., Kazarlis S., Petridis V. (1998) Advanced methods for evolutionary optimisation. University of Patras.July 15 -17, 1998: Greeceel
dc.identifier.citationIFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory and Applications, Greece, 1998el
dc.identifier.urihttp://195.251.240.227/jspui/handle/123456789/10376-
dc.descriptionΔημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 1998el
dc.description.abstractIn this paper we present two advanced methods for evolutionary optimisation. One method is based on Parallel Genetic Algorithms. It is called Co-operating Populations with Different Evolution Behaviours (CoPDEB), and allows each population to exhibit a different evolution behaviour. Results from two problems show the advantage of using different evolution behaviour on each population. The other method concerns application of GAs on constrained optimisation problems. It is called the Varying Fitness Function (VFF) method and implements a fitness function with varying penalty terms, added to the objective function for penalising infeasible solutions, in order to assist the GA to easily locate the area of the global optimum. Simulation results on two real world problems show that the VFF method outperforms the classic static fitness function implementations. 1. Introduction Using a serial Genetic Algorithm with a static quality function is a wise decision in a great number of optimisatio...el
dc.language.isoenel
dc.relation.ispartof8th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory and Applicationel
dc.rightsThis item is probably protected by Copyright Legislationel
dc.rightsΤο τεκμήριο πιθανώς υπόκειται σε σχετική με τα Πνευματικά Δικαιώματα νομοθεσίαel
dc.titleAdvanced methods for evolutionary optimisationel
dc.typeConference articleel
heal.typeotherel
heal.type.enOtheren
heal.dateAvailable2018-02-28T17:07:00Z-
heal.languageelel
heal.accessfreeel
heal.recordProviderΤΕΙ Θεσσαλονίκηςel
heal.fullTextAvailabilityfalseel
heal.type.elΆλλοel
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
There are no files associated with this item.



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/10376
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.