Advanced methods for evolutionary optimisation
Petridis, Vassilios/ Kazarlis, Spyros/ Adamidis, Panagiotis/ Αδαμίδης, Παναγιώτης/ Καζαρλής, Σπυρίδων/ Πετρίδης, Παναγιώτης
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Petridis, Vassilios | el |
dc.contributor.author | Kazarlis, Spyros | el |
dc.contributor.author | Adamidis, Panagiotis | el |
dc.contributor.other | Αδαμίδης, Παναγιώτης | el |
dc.contributor.other | Καζαρλής, Σπυρίδων | el |
dc.contributor.other | Πετρίδης, Παναγιώτης | el |
dc.date.accessioned | 2015-07-22T15:12:35Z | el |
dc.date.accessioned | 2018-02-28T17:06:00Z | - |
dc.date.available | 2015-07-22T15:12:35Z | el |
dc.date.available | 2018-02-28T17:06:00Z | - |
dc.date.issued | 1998 | el |
dc.identifier | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.2246 | el |
dc.identifier.citation | Adamidis P., Kazarlis S., Petridis V. (1998) Advanced methods for evolutionary optimisation. University of Patras.July 15 -17, 1998: Greece | el |
dc.identifier.citation | IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory and Applications, Greece, 1998 | el |
dc.identifier.uri | http://195.251.240.227/jspui/handle/123456789/10376 | - |
dc.description | Δημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 1998 | el |
dc.description.abstract | In this paper we present two advanced methods for evolutionary optimisation. One method is based on Parallel Genetic Algorithms. It is called Co-operating Populations with Different Evolution Behaviours (CoPDEB), and allows each population to exhibit a different evolution behaviour. Results from two problems show the advantage of using different evolution behaviour on each population. The other method concerns application of GAs on constrained optimisation problems. It is called the Varying Fitness Function (VFF) method and implements a fitness function with varying penalty terms, added to the objective function for penalising infeasible solutions, in order to assist the GA to easily locate the area of the global optimum. Simulation results on two real world problems show that the VFF method outperforms the classic static fitness function implementations. 1. Introduction Using a serial Genetic Algorithm with a static quality function is a wise decision in a great number of optimisatio... | el |
dc.language.iso | en | el |
dc.relation.ispartof | 8th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory and Application | el |
dc.rights | This item is probably protected by Copyright Legislation | el |
dc.rights | Το τεκμήριο πιθανώς υπόκειται σε σχετική με τα Πνευματικά Δικαιώματα νομοθεσία | el |
dc.title | Advanced methods for evolutionary optimisation | el |
dc.type | Conference article | el |
heal.type | other | el |
heal.type.en | Other | en |
heal.dateAvailable | 2018-02-28T17:07:00Z | - |
heal.language | el | el |
heal.access | free | el |
heal.recordProvider | ΤΕΙ Θεσσαλονίκης | el |
heal.fullTextAvailability | false | el |
heal.type.el | Άλλο | el |
Appears in Collections: | Δημοσιεύσεις σε Περιοδικά |
Files in This Item:
There are no files associated with this item.
Please use this identifier to cite or link to this item:
This item is a favorite for 0 people.
http://195.251.240.227/jspui/handle/123456789/10376
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.