A new family of companion forms of polynomial matrices
Vologiannidis, Stavros/ Antoniou, Efstathios/ Αντωνίου, Ευστάθιος/ Βολογιαννίδης, Σταύρος
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vologiannidis, Stavros | el |
dc.contributor.author | Antoniou, Efstathios | el |
dc.contributor.other | Αντωνίου, Ευστάθιος | el |
dc.contributor.other | Βολογιαννίδης, Σταύρος | el |
dc.date.accessioned | 2015-07-17T11:32:10Z | el |
dc.date.accessioned | 2018-02-28T17:06:03Z | - |
dc.date.available | 2015-07-17T11:32:10Z | el |
dc.date.available | 2018-02-28T17:06:03Z | - |
dc.date.issued | 2004-04 | el |
dc.identifier | http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol11_pp78-87.pdf | el |
dc.identifier.citation | Antoniou, E. & Vologiannidis, S. (Απρίλιος 2004). A new family of companion forms of polynomial matrices. Electronic Journal of Linear Algebra. 11:78-87. | el |
dc.identifier.citation | Journal: Electronic Journal of Linear Algebra, vol.11, 2004 | el |
dc.identifier.issn | 1081-3810 | el |
dc.identifier.uri | http://195.251.240.227/jspui/handle/123456789/10393 | - |
dc.description | Δημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 2004 | el |
dc.description.abstract | In this paper a new family of companion forms associated to a regular polynomial matrix is presented. Similar results have been presented in a recent paper by M. Fiedler, where the scalar case is considered. It is shown that the new family of companion forms preserves both the finite and infinite elementary divisors structure of the original polynomial matrix, thus all its members can be seen as linearizations of the corresponding polynomial matrix. Furthermore, for the special class of self-adjoint polynomial matrices a particular member is shown to be self-adjoint itself. | el |
dc.format.extent | 152Kb | el |
dc.language.iso | en | el |
dc.publisher | Electronic Journal of Linear Algebra | el |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Παρόμοια Διανομή 3.0 Ελλάδα | el |
dc.rights | Attribution-NonCommercial-ShareAlike 3.0 Greece | el |
dc.source.uri | http://www.math.technion.ac.il/iic/ela/ela-articles/11.html | el |
dc.subject | Μαθηματικός προγραμματισμός | el |
dc.subject | Finite element analysis | el |
dc.subject | Numerical analysis programs | el |
dc.subject | Polynomial methods | el |
dc.subject | Polynomial matrix description (PMDs) | el |
dc.subject | Polynomial matrices | el |
dc.subject | Linear differential equations | el |
dc.subject | Matrixes (Algebra) | el |
dc.subject | Mathematical programming | el |
dc.subject | Linearization | el |
dc.subject | Πίνακες (Μαθηματικά) | el |
dc.subject | Γραμμικές διαφορικές εξισώσεις | el |
dc.subject | Πολυώνυμοι πίνακες | el |
dc.subject | Πολυώνυμη περιγραφή πίνακα | el |
dc.subject | Πολυώνυμες μέθοδοι | el |
dc.subject | Προγράμματα αριθμητικής ανάλυσης | el |
dc.subject | Ανάλυση πεπερασμένων στοιχείων | el |
dc.subject.lcsh | Programming (Mathematics) | el |
dc.subject.lcsh | Numerical calculations—Computer programs | el |
dc.subject.lcsh | Differential equations—Numerical solutions | el |
dc.subject.lcsh | Matrices—Data processing | el |
dc.subject.lcsh | Πίνακες—Επεξεργασία δεδομένων | el |
dc.subject.lcsh | Διαφορικές εξισώσεις—Αριθμητικές λύσεις | el |
dc.subject.lcsh | Numerical analysis | el |
dc.subject.lcsh | Προγραμματισμός (Μαθηματικά) | el |
dc.subject.lcsh | Αριθμητικοί υπολογισμοί—Προγράμματα υπολογιστών | el |
dc.subject.lcsh | Αριθμητική ανάλυση | el |
dc.title | A new family of companion forms of polynomial matrices | el |
dc.type | Article | el |
heal.type | other | el |
heal.type.en | Other | en |
heal.dateAvailable | 2018-02-28T17:07:03Z | - |
heal.language | el | el |
heal.access | free | el |
heal.recordProvider | ΤΕΙ Θεσσαλονίκης | el |
heal.fullTextAvailability | true | el |
heal.type.el | Άλλο | el |
Appears in Collections: | Δημοσιεύσεις σε Περιοδικά |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Antoniou_Vologiannidis_A_New_Family.pdf | 152.58 kB | Adobe PDF | View/Open |
Please use this identifier to cite or link to this item:
This item is a favorite for 0 people.
http://195.251.240.227/jspui/handle/123456789/10393
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.