A new family of companion forms of polynomial matrices

Vologiannidis, Stavros/ Antoniou, Efstathios/ Αντωνίου, Ευστάθιος/ Βολογιαννίδης, Σταύρος


Full metadata record
DC FieldValueLanguage
dc.contributor.authorVologiannidis, Stavrosel
dc.contributor.authorAntoniou, Efstathiosel
dc.contributor.otherΑντωνίου, Ευστάθιοςel
dc.contributor.otherΒολογιαννίδης, Σταύροςel
dc.date.accessioned2015-07-17T11:32:10Zel
dc.date.accessioned2018-02-28T17:06:03Z-
dc.date.available2015-07-17T11:32:10Zel
dc.date.available2018-02-28T17:06:03Z-
dc.date.issued2004-04el
dc.identifierhttp://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol11_pp78-87.pdfel
dc.identifier.citationAntoniou, E. & Vologiannidis, S. (Απρίλιος 2004). A new family of companion forms of polynomial matrices. Electronic Journal of Linear Algebra. 11:78-87.el
dc.identifier.citationJournal: Electronic Journal of Linear Algebra, vol.11, 2004el
dc.identifier.issn1081-3810el
dc.identifier.urihttp://195.251.240.227/jspui/handle/123456789/10393-
dc.descriptionΔημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 2004el
dc.description.abstractIn this paper a new family of companion forms associated to a regular polynomial matrix is presented. Similar results have been presented in a recent paper by M. Fiedler, where the scalar case is considered. It is shown that the new family of companion forms preserves both the finite and infinite elementary divisors structure of the original polynomial matrix, thus all its members can be seen as linearizations of the corresponding polynomial matrix. Furthermore, for the special class of self-adjoint polynomial matrices a particular member is shown to be self-adjoint itself.el
dc.format.extent152Kbel
dc.language.isoenel
dc.publisherElectronic Journal of Linear Algebrael
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Παρόμοια Διανομή 3.0 Ελλάδαel
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Greeceel
dc.source.urihttp://www.math.technion.ac.il/iic/ela/ela-articles/11.htmlel
dc.subjectΜαθηματικός προγραμματισμόςel
dc.subjectFinite element analysisel
dc.subjectNumerical analysis programsel
dc.subjectPolynomial methodsel
dc.subjectPolynomial matrix description (PMDs)el
dc.subjectPolynomial matricesel
dc.subjectLinear differential equationsel
dc.subjectMatrixes (Algebra)el
dc.subjectMathematical programmingel
dc.subjectLinearizationel
dc.subjectΠίνακες (Μαθηματικά)el
dc.subjectΓραμμικές διαφορικές εξισώσειςel
dc.subjectΠολυώνυμοι πίνακεςel
dc.subjectΠολυώνυμη περιγραφή πίνακαel
dc.subjectΠολυώνυμες μέθοδοιel
dc.subjectΠρογράμματα αριθμητικής ανάλυσηςel
dc.subjectΑνάλυση πεπερασμένων στοιχείωνel
dc.subject.lcshProgramming (Mathematics)el
dc.subject.lcshNumerical calculations—Computer programsel
dc.subject.lcshDifferential equations—Numerical solutionsel
dc.subject.lcshMatrices—Data processingel
dc.subject.lcshΠίνακες—Επεξεργασία δεδομένωνel
dc.subject.lcshΔιαφορικές εξισώσεις—Αριθμητικές λύσειςel
dc.subject.lcshNumerical analysisel
dc.subject.lcshΠρογραμματισμός (Μαθηματικά)el
dc.subject.lcshΑριθμητικοί υπολογισμοί—Προγράμματα υπολογιστώνel
dc.subject.lcshΑριθμητική ανάλυσηel
dc.titleA new family of companion forms of polynomial matricesel
dc.typeArticleel
heal.typeotherel
heal.type.enOtheren
heal.dateAvailable2018-02-28T17:07:03Z-
heal.languageelel
heal.accessfreeel
heal.recordProviderΤΕΙ Θεσσαλονίκηςel
heal.fullTextAvailabilitytrueel
heal.type.elΆλλοel
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
File Description SizeFormat 
Antoniou_Vologiannidis_A_New_Family.pdf152.58 kBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/10393
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.