Χρήση αλγορίθμων μηχανικής μάθησης για την εξόρυξη διάθεσης (Sentiment Analysis) από κριτικές ξενοδοχείων στο διαδίκτυο (Master thesis)

Σταλίδης, Παναγιώτης


In the present thesis we tackled the problem of sentiment analysis on hotel reviews found online. Sentiment Analysis is the process of detecting the positive or negative orientation of the writer, in this case of a hotel review, towards the subject of the text excerpt, in this case hotel. We utilized both probabilistic machine learning algorithms like Naïve Bayes and Maximum Entropy, and linear classifiers like Support Vector Machines. The classifiers were investigated on several feature extracting methods. One method was to use a general purpose sentimental lexicon and aggregate the sentiment orientation to the review level. The other method was to detect hidden aspects of the words used in the review and thus detect the hidden aspects discussed in the review. A third method was the Bag-ofWords model, where each word becomes a feature for the classifier. Finally we investigated combining the feature extraction methods and that proved the most successful method.
Institution and School/Department of submitter: Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής
Keywords: Ανάλυση Συναισθήματος;Μηχανική μάθηση;Ταξινόμηση κειμένων;Κιτρικές Ξενοδοχείων;Sentiment Analysis;Machine Learning;Text Classification;Opinion Mining;Naïve Bayes;Maximum Entropy;SVM (Support Vector Machines);Hotel Reviews
Description: Μεταπτυχιακή εργασία -- Σχολή Τεχνολογικών Εφαρμογών -- Τμήμα Μηχανικών Πληροφορικής, 2015 (α/α 6980)
URI: http://195.251.240.227/jspui/handle/123456789/13685
Item type: masterThesis
General Description / Additional Comments: Μεταπτυχιακή εργασία -- ΠΜΣ "Ευφυείς Τεχνολογίες Διαδικτύου - Web Intelligence"
Submission Date: 2021-12-13T14:57:13Z
Item language: el
Item access scheme: free
Institution and School/Department of submitter: Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής
Publication date: 2015-07-01
Bibliographic citation: Σταλίδης, Π. (2015). Χρήση αλγορίθμων μηχανικής μάθησης για την εξόρυξη διάθεσης (Sentiment Analysis) από κριτικές ξενοδοχείων στο διαδίκτυο (Μεταπτυχιακή εργασία). Αλεξάνδρειο ΤΕΙ Θεσσαλονίκης
Abstract: In the present thesis we tackled the problem of sentiment analysis on hotel reviews found online. Sentiment Analysis is the process of detecting the positive or negative orientation of the writer, in this case of a hotel review, towards the subject of the text excerpt, in this case hotel. We utilized both probabilistic machine learning algorithms like Naïve Bayes and Maximum Entropy, and linear classifiers like Support Vector Machines. The classifiers were investigated on several feature extracting methods. One method was to use a general purpose sentimental lexicon and aggregate the sentiment orientation to the review level. The other method was to detect hidden aspects of the words used in the review and thus detect the hidden aspects discussed in the review. A third method was the Bag-ofWords model, where each word becomes a feature for the classifier. Finally we investigated combining the feature extraction methods and that proved the most successful method.
Η παρούσα διπλωματική εργασία μελετά μεθόδους μηχανικής μάθησης με σκοπό της εξόρυξη συναισθήματος από κριτικές ξενοδοχείων που βρίσκονται στο διαδίκτυο. Μελετήσαμε την συμπεριφορά τεσσάρων αλγορίθμων μηχανικής μάθησης συγκεκριμένα τον αλγόριθμο Naïve Bayes και τον αλγόριθμο Maximum Entropy και τις Μηχανές Διανυσμάτων Υποστήριξης SVM, και δύο διαφορετικούς πυρήνες έναν γραμμικό και έναν ακτινικό (RBF).. Για την εκπαίδευση των αλγορίθμων μηχανικής μάθηση, μελετήθηκαν τρία μοντέλα εξόρυξης χαρακτηριστικών , ένα μοντέλο λεξικού , ένα μοντέλο εντοπισμού κρυφών χαρακτηριστικών και ένα μοντέλο καταμέτρησης λέξεων. Παρόλο που οι αλγόριθμοι είχαν διαφορετικές προσεγγίσεις στη λύση του προβλήματος που τους ανατίθεται, σημαντικότερο παράγοντα στη διαφοροποίηση των αποτελεσμάτων είχε η μέθοδος εξόρυξης χαρακτηριστικών. Συνδυάζοντάς τα χαρακτηριστικά από όλες τις μεθόδους εξόρυξης, καταφέραμε να βελτιώσουμε τα αποτελέσματα όλων των αλγορίθμων μηχανικής μάθησης.
Advisor name: Διαμαντάρας, Κωνσταντίνος
Examining committee: Διαμαντάρας, Κωνσταντίνος
Αδαμίδης, Παναγιώτης
Σαλαμπάσης, Μιχάλης
Publishing department/division: Τμήμα Μηχανικών Πληροφορικής
Publishing institution: teithe
Number of pages: 71
Appears in Collections:Μεταπτυχιακές Διατριβές

Files in This Item:
File Description SizeFormat 
Stalidis_Panagiotis.pdf2.5 MBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/13685
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.