Πρόβλεψη μη προσέλευσης ασθενών σε ιατρικά ραντεβού σε νοσοκομεία με αλγορίθμους κατηγοριοποίησης (Master thesis)

Λαφατζή, Ειρήνη


Full metadata record
DC FieldValueLanguage
dc.contributor.authorΛαφατζή, Ειρήνηel
dc.date.accessioned2024-07-23T10:45:56Z-
dc.date.available2024-07-23T10:45:56Z-
dc.identifier.urihttp://195.251.240.227/jspui/handle/123456789/16831-
dc.descriptionΜεταπτυχιακή εργασία - Σχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων, 2023 (α/α 14102)el
dc.rightsDefault License-
dc.subjectΕξόρυξη Γνώσηςel
dc.subjectΚατηγοριοποίησηel
dc.subjectSMOTEel
dc.subjectΔέντρα αποφάσεων (C4.5)el
dc.subjectNaïve Bayesen
dc.titleΠρόβλεψη μη προσέλευσης ασθενών σε ιατρικά ραντεβού σε νοσοκομεία με αλγορίθμους κατηγοριοποίησηςel
heal.typemasterThesis-
heal.type.enMaster thesisen
heal.generalDescriptionΜεταπτυχιακή εργασίαel
heal.identifier.secondary14102-
heal.dateAvailable2024-07-23T10:46:56Z-
heal.languageel-
heal.accessfree-
heal.recordProviderΣχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρικών Συστημάτωνel
heal.publicationDate2023-11-15-
heal.bibliographicCitationΛαφατζή, Ε. (2023). Πρόβλεψη μη προσέλευσης ασθενών σε ιατρικά ραντεβού σε νοσοκομεία με αλγορίθμους κατηγοριοποίησης (Μεταπτυχιακή εργασία). ΔΙΠΑΕ.el
heal.abstractΈνα από τα μεγαλύτερα προβλήματα στον τομέα της υγείας είναι η μη-εμφάνιση των ασθενών σε προγραμματισμένα ραντεβού. Το φαινόμενο αυτό έχει σημαντικό αντίκτυπο, τόσο στους ασθενείς λόγω της χαμηλής ποιότητας παροχής υπηρεσιών από μέρους των δομών υγείας, όσο και στη λειτουργία των δομών σε οργανωτικό, διοικητικό, οικονομικό επίπεδο. Για την αντιμετώπιση του προβλήματος ένας τρόπος είναι να γίνει πρόβλεψη των ασθενών που δεν θα εμφανισθούν στα προγραμματισμένα ραντεβού. Έτσι θα ληφθούν τα κατάλληλα εξατομικευμένα μέτρα για κάθε ασθενή, όπως για παράδειγμα υπενθύμιση του ραντεβού. Αυτό μπορεί να επιτευχθεί με την χρήση μεθόδων εξόρυξης γνώσης πάνω σε δεδομένα ιατρικών ραντεβού. Στην παρούσα διπλωματική εργασία σκοπός είναι η σύγκριση μεθόδων εξόρυξης γνώσης και συγκεκριμένα η σύγκριση αλγορίθμων κατηγοριοποίησης μέσω πειραματικής διαδικασίας. Για την εκτέλεση των πειραμάτων χρησιμοποιήθηκαν οι αλγόριθμοι k-NN, Naïve Bayes και δέντρα αποφάσεων (C4.5), οι οποίοι εφαρμόστηκαν πάνω σε 2 ελεύθερα διαθέσιμα σύνολα δεδομένων με ιατρικά ραντεβού. Επιπλέον διερευνήθηκε η πιθανότητα βελτίωσης των αποτελεσμάτων κατηγοριοποίησης με την εφαρμογή της τεχνικής υπερδειγματοληψίας SMOTE στα παραπάνω σύνολα δεδομένων. Για την προεπεξεργασία των δεδομένων και την εκτέλεση των πειραμάτων χρησιμοποιήθηκε το ελεύθερο λογισμικό εξόρυξης γνώσης WEKA. Μετά την πειραματική διαδικασία έγινε σύγκριση των αποτελεσμάτων και εξαγωγή συμπερασμάτων σχετικά με την επίδοση των αλγορίθμων κατηγοριοποίησης, καθώς και τον βαθμό επίδρασης της τεχνικής SMOTE στις επιδόσεις τους. H πειραματική διαδικασία απέδειξε ότι οι αλγόριθμοι γνώσης μπορούν να βοηθήσουν στην πρόβλεψη μη εμφάνισης ασθενών σε προγραμματισμένα ραντεβού.el
heal.abstractOne of the biggest problems in the health sector is patients not showing up for scheduled appointments. This phenomenon has a significant impact, both on patients due to the low quality of service provided by health structures, and on the functioning of the structures at an organizational, administrative, financial level. To deal with the problem, one way is to predict the patients who will not show up for the scheduled appointments. In this way, appropriate personalized measures will be taken for each patient, such as a reminder of the appointment. This can be achieved by using knowledge mining methods on medical appointment data. In this thesis, the purpose is to compare knowledge mining methods and specifically to compare classification algorithms through an experimental process. To perform the experiments, k-NN, Naïve Bayes and decision trees (C4.5) algorithms were used, which were applied on 2 freely available datasets with medical appointments. In addition, the possibility of improving the classification results by applying the SMOTE oversampling technique to the above datasets was investigated. WEKA free knowledge mining software was used to pre-process the data and run the experiments. After the experimental process, the results were compared and conclusions were drawn regarding the performance of the classification algorithms, as well as the degree of influence of the SMOTE technique on their performance.en
heal.advisorNameΟυγιάρογλου, Στέφανοςel
heal.committeeMemberNameΣαλαμπάσης, Μιχαήλel
heal.committeeMemberNameΗλιούδης, Στέφανοςel
heal.academicPublisherΣχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρικών Συστημάτωνel
heal.academicPublisherIDihu-
heal.numberOfPages189 σελ.-
heal.fullTextAvailabilitytrue-
heal.type.elΜεταπτυχιακή εργασίαel
Appears in Collections:Μεταπτυχιακές Διατριβές




 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/16831
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.