Evolutionary data mining applied to TV databases : a first approach

Koukoulakis, Konstantinos/ Adamidis, Panagiotis/ Κουκουλάκης, Κωνσταντίνος/ Αδαμίδης, Παναγιώτης


Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoukoulakis, Konstantinosel
dc.contributor.authorAdamidis, Panagiotisel
dc.contributor.otherΚουκουλάκης, Κωνσταντίνοςel
dc.contributor.otherΑδαμίδης, Παναγιώτηςel
dc.date.accessioned2015-07-24T14:41:45Zel
dc.date.accessioned2018-02-28T17:06:02Z-
dc.date.available2015-07-24T14:41:45Zel
dc.date.available2018-02-28T17:06:02Z-
dc.date.issued1999el
dc.identifierhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.4538&rep=rep1&type=pdfel
dc.identifier.citationP. Adamidis, K. Koukoulakis (1999). Evolutionary Data Mining Applied to TV Databases: A First Approach. ACAI'99 (Advanced Course on Artificial Intelligence) workshop on Data Mining.el
dc.identifier.citationAdvanced Course on Artificial Intelligence, [S.l.], 1999el
dc.identifier.urihttp://195.251.240.227/jspui/handle/123456789/10387-
dc.descriptionΔημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 1999el
dc.description.abstractRecently, Evolutionary Algorithms (EAs) have been applied with very good results to various types of data mining problems. This paper presents the initial results of our work on data mining from TV program databases using EAs. We compare the performance of different operators and different operator parameters. INTRODUCTION Evolutionary Algorithms (EAs) have already proved their usefulness in scientific and real-world problems quite successfully. They are stochastic search techniques that explore combinatorial search spaces using simulated evolution. The primary objective of an EA is either to find something -- whether this is known or not -- or accomplish a goal, or, more generally, to solve a problem. EAs maintain a population of individuals that evolve according to a set of rules regarding selection, recombination and mutation. The population is evolved towards the optimum, concentrating search in those areas of higher fitness (exploitation). Recombination and mutation perturb the.el
dc.format.extent207Kbel
dc.language.isoenel
dc.relation.ispartofACAI'99 (Advanced Course on Artificial Intelligence) workshop on Data Miningel
dc.rightsΑναφορά Δημιουργού-Μη Εμπορική Χρήση-Παρόμοια Διανομή 3.0 Ελλάδαel
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Greeceel
dc.subjectΑνακάλυψη Γνώσης σε Βάσεις Δεδομένωνel
dc.subjectKnowledge Discovery in Databasesel
dc.subjectΤηλεοπτικές βάσεις δεδομένωνel
dc.subjectTV databasesel
dc.subjectΕξελικτικοί αλγόριθμοιel
dc.subjectEvolutionary algorithmsel
dc.subjectKDD (Information retrieval)el
dc.subjectKDD (Ανάκτηση πληροφοριών)el
dc.subjectTelevision broadcasting databasesel
dc.subjectΒάσεις δεδομένων τηλεοπτικών εκπομπώνel
dc.subject.lcshData miningel
dc.subject.lcshΕξόρυξη δεδομένωνel
dc.subject.lcshTelevision broadcasting--Databasesel
dc.subject.lcshTelevision programs--Data processingel
dc.subject.lcshΤηλεοπτικά προγράμματα--Επεξεργασία δεδομένωνel
dc.subject.lcshΤηλεοπτική μετάδοση--Βάσεις δεδομένωνel
dc.subject.lcshDatabase managementel
dc.subject.lcshΔιαχείριση βάσεων δεδομένωνel
dc.titleEvolutionary data mining applied to TV databases : a first approachel
dc.typeConference articleel
heal.typeotherel
heal.type.enOtheren
heal.dateAvailable2018-02-28T17:07:02Z-
heal.languageelel
heal.accessfreeel
heal.recordProviderΤΕΙ Θεσσαλονίκηςel
heal.fullTextAvailabilitytrueel
heal.type.elΆλλοel
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
File Description SizeFormat 
Adamidis_Koukoulakis_Evolutionary_Data_Mining.pdf207.78 kBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/10387
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.