Evolutionary data mining applied to TV databases : a first approach

Koukoulakis, Konstantinos/ Adamidis, Panagiotis/ Κουκουλάκης, Κωνσταντίνος/ Αδαμίδης, Παναγιώτης


Institution and School/Department of submitter: ΤΕΙ Θεσσαλονίκης
Keywords: Ανακάλυψη Γνώσης σε Βάσεις Δεδομένων;Knowledge Discovery in Databases;Τηλεοπτικές βάσεις δεδομένων;TV databases;Εξελικτικοί αλγόριθμοι;Evolutionary algorithms;KDD (Information retrieval);KDD (Ανάκτηση πληροφοριών);Television broadcasting databases;Βάσεις δεδομένων τηλεοπτικών εκπομπών
Issue Date: 1999
Citation: P. Adamidis, K. Koukoulakis (1999). Evolutionary Data Mining Applied to TV Databases: A First Approach. ACAI'99 (Advanced Course on Artificial Intelligence) workshop on Data Mining.
Advanced Course on Artificial Intelligence, [S.l.], 1999
Abstract: Recently, Evolutionary Algorithms (EAs) have been applied with very good results to various types of data mining problems. This paper presents the initial results of our work on data mining from TV program databases using EAs. We compare the performance of different operators and different operator parameters. INTRODUCTION Evolutionary Algorithms (EAs) have already proved their usefulness in scientific and real-world problems quite successfully. They are stochastic search techniques that explore combinatorial search spaces using simulated evolution. The primary objective of an EA is either to find something -- whether this is known or not -- or accomplish a goal, or, more generally, to solve a problem. EAs maintain a population of individuals that evolve according to a set of rules regarding selection, recombination and mutation. The population is evolved towards the optimum, concentrating search in those areas of higher fitness (exploitation). Recombination and mutation perturb the.
Description: Δημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 1999
URI: http://195.251.240.227/jspui/handle/123456789/10387
Other Identifiers: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.4538&rep=rep1&type=pdf
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
File Description SizeFormat 
Adamidis_Koukoulakis_Evolutionary_Data_Mining.pdf207.78 kBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/10387
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.