Εξόρυξη πληροφορίας και ανάλυση συναισθήματος με χρήση μεθόδων μηχανικής μάθησης και σύγχρονων μοντέλων επεξεργασίας φυσικής γλώσσας (Master thesis)

Καμπατζής, Αριστοτέλης/ Σαρόγλου, Στυλιανός


Data Mining and Sentiment Analysis in texts are two important fields in Computer Science and Artificial Intelligence. They are a valuable tool for understanding attitudes and opinions expressed on social networks, such as Twitter. The use of Machine Learning methods and modern Natural Language Processing models allows for the automatic analysis of text content and the extraction of important information, while also offering, accuracy and convenience in drawing conclusions. In this paper, we utilize the Twitter API for data collection from Twitter, in combination with Natural Language Processing (NLP) methods. Specifically, we use Machine Learning models from the Scikit-learn library, as well as more modern models, such as BERT, RoBERTa, DistilBERT, and GPT-2, with the aim of identifying sentiment in text from the Twitter social network, as well as in reviews of stores contained in a specific dataset from the Skroutz.gr online service. According to our experiments, the models that show the best performance in terms of accuracy for predicting on new data, are BERT and SVM combined with the TF-IDF encoding.
Institution and School/Department of submitter: Σχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων
Subject classification: Εξόρυξη δεδομένων
Βαθιά μάθηση (Μηχανική μάθηση)
Ανάλυση συναισθήματος
Επεξεργασία φυσικής γλώσσας (Πληροφορική)
Data mining
Deep learning (Machine learning)
Sentiment analysis
Natural language processing (Computer science)
Keywords: Επεξεργασία φυσικής γλώσσας;Μηχανική μάθηση;Βαθιά μάθηση;Twitter API;NLP;Machine learning;Deep learning;BERT;RoBERTa;DistilBERT;GPT-2;TF-IDF;Word2Vec;Transformers;TensorFlow;PyTorch;Keras;Scikit learn
Description: Μεταπτυχιακή εργασία - Σχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων, 2023 (α/α 14053)
URI: http://195.251.240.227/jspui/handle/123456789/16855
Appears in Collections:Μεταπτυχιακές Διατριβές

Files in This Item:
File Description SizeFormat 
Kabatzis, Saroglou.pdf5.04 MBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/16855
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.