Linearizations of polynomial matrices with symmetries and their applications
Vologiannidis, Stavros/ Antoniou, Efstathios/ Βολογιαννίδης, Σταύρος/ Αντωνίου, Ευστάθιος
Institution and School/Department of submitter: | ΤΕΙ Θεσσαλονίκης |
Keywords: | Πολυώνυμη περιγραφή πίνακα;Μαθηματικός προγραμματισμός;Polynomial methods;Finite difference method;Finite element analysis;Polynomial matrices;Mathematical programming;Polynomial matrix description (PMDs);Linearization;Πολυώνυμοι πίνακες;Ανάλυση πεπερασμένων στοιχείων;Μέθοδος πεπερασμένων διαφορών;Πολυώνυμες μέθοδοι |
Issue Date: | 2006 |
Publisher: | IEEE |
Citation: | Antoniou, E. & Vologiannidis, S. (Φεβρουάριος 2006). Linearizations of Polynomial Matrices with Symmetries and Their Applications.. Electronic Journal of Linear Algebra. 15:107-114. Journal: Electronic Journal of Linear Algebra, vol.15, 2006 IEEE International Symposium on Intelligent Control, Mediterranean Conference on Control and Automation, Limassol, 2005 |
Abstract: | In an earlier paper by the present authors, a new family of companion forms associated with a regular polynomial matrix was presented, generalizing similar results by M. Fiedler who considered the scalar case. This family of companion forms preserves both the finite and infinite elementary divisor structure of the original polynomial matrix, thus all its members can be seen as linearizations of the corresponding polynomial matrix. In this note, its applications on polynomial matrices with symmetries, which appear in a number of engineering fields, are examined. |
Description: | Δημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Μηχανικών Πληροφορικής, 2006 |
URI: | http://195.251.240.227/jspui/handle/123456789/10355 |
ISSN: | 1081-3810 |
Other Identifiers: | 10.1109/.2005.1467008 http://www.emis.de/journals/ELA/ela-articles/articles/vol15_pp107-114.pdf |
Appears in Collections: | Δημοσιεύσεις σε Περιοδικά |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Antoniou_Vologiannidis_Linearization_Of_Polynomial.pdf | 118.38 kB | Adobe PDF | View/Open |
Please use this identifier to cite or link to this item:
This item is a favorite for 0 people.
http://195.251.240.227/jspui/handle/123456789/10355
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.