Research and improvement of patent retrieval using machine learning methods (Master thesis)
Σιδέρης, Γεώργιος Νικόλαος
This dissertation researches and compares patent retrieval architectures using a combination
of traditional first-stage retrieval algorithms and second-stage deep learning techniques.
The author conducts experiments using various combinations of tools such as BERT
models, the Pyserini indexing software, and the DeepCT software tools, and evaluates the
effectiveness of each retrieval architecture. The datasets used, the field selection process,
and the algorithm selection procedures are documented, along with the scripts and software
developed for the experiments. The paper aims to determine the best techniques and
methodologies for efficient and effective patent retrieval. The author concludes with their
findings and proposes future research directions in this field. The study highlights the
significance of information retrieval methods and their applications in everyday life in
the 21st century. Furthermore, the paper provides an introduction to artificial intelligence,
machine learning, and deep learning concepts, which are fundamental to understanding
the thesis’s technical aspects.
Institution and School/Department of submitter: | Σχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων |
Subject classification: | Μηχανική μάθηση Συστήματα αποθήκευσης και ανάκτησης πληροφοριών -- Πατέντες Machine learning Information storage and retrieval systems -- Patents |
Keywords: | Μέθοδοι μηχανικής μάθησης;Ανάκτηση διπλωμάτων ευρεσιτεχνίας;Τεχνητή νοημοσύνη;Βαθιά Μάθηση;Methods of machine learning;Patent recovery;Artificial intelligence;Deep learning |
Description: | Μεταπτυχιακή εργασία - Σχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων, 2023 (α/α 14071) |
URI: | http://195.251.240.227/jspui/handle/123456789/16870 |
Appears in Collections: | Μεταπτυχιακές Διατριβές |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sideris2.pdf | 1.14 MB | Adobe PDF | View/Open |
Please use this identifier to cite or link to this item:
This item is a favorite for 0 people.
http://195.251.240.227/jspui/handle/123456789/16870
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.