Research and improvement of patent retrieval using machine learning methods (Master thesis)

Σιδέρης, Γεώργιος Νικόλαος


This dissertation researches and compares patent retrieval architectures using a combination of traditional first-stage retrieval algorithms and second-stage deep learning techniques. The author conducts experiments using various combinations of tools such as BERT models, the Pyserini indexing software, and the DeepCT software tools, and evaluates the effectiveness of each retrieval architecture. The datasets used, the field selection process, and the algorithm selection procedures are documented, along with the scripts and software developed for the experiments. The paper aims to determine the best techniques and methodologies for efficient and effective patent retrieval. The author concludes with their findings and proposes future research directions in this field. The study highlights the significance of information retrieval methods and their applications in everyday life in the 21st century. Furthermore, the paper provides an introduction to artificial intelligence, machine learning, and deep learning concepts, which are fundamental to understanding the thesis’s technical aspects.
Institution and School/Department of submitter: Σχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων
Subject classification: Μηχανική μάθηση
Συστήματα αποθήκευσης και ανάκτησης πληροφοριών -- Πατέντες
Machine learning
Information storage and retrieval systems -- Patents
Keywords: Μέθοδοι μηχανικής μάθησης;Ανάκτηση διπλωμάτων ευρεσιτεχνίας;Τεχνητή νοημοσύνη;Βαθιά Μάθηση;Methods of machine learning;Patent recovery;Artificial intelligence;Deep learning
Description: Μεταπτυχιακή εργασία - Σχολή Μηχανικών - Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Συστημάτων, 2023 (α/α 14071)
URI: http://195.251.240.227/jspui/handle/123456789/16870
Appears in Collections:Μεταπτυχιακές Διατριβές

Files in This Item:
File Description SizeFormat 
Sideris2.pdf1.14 MBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://195.251.240.227/jspui/handle/123456789/16870
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.